Sexual Transmission of Lyme Borreliosis? The Question That Calls for an Answer

. 2021 May 24 ; 6 (2) : . [epub] 20210524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34074046

Grantová podpora
NV19-05-00191 Ministerstvo Zdravotnictví Ceské Republiky

Transmission of the causative agents of numerous infectious diseases might be potentially conducted by various routes if this is supported by the genetics of the pathogen. Various transmission modes occur in related pathogens, reflecting a complex process that is specific for each particular host-pathogen system that relies on and is affected by pathogen and host genetics and ecology, ensuring the epidemiological spread of the pathogen. The recent dramatic rise in diagnosed cases of Lyme borreliosis might be due to several factors: the shifting of the distributional range of tick vectors caused by climate change; dispersal of infected ticks due to host animal migration; recent urbanization; an increasing overlap of humans' habitat with wildlife reservoirs and the environment of tick vectors of Borrelia; improvements in disease diagnosis; or establishment of adequate surveillance. The involvement of other bloodsucking arthropod vectors and/or other routes of transmission (human-to-human) of the causative agent of Lyme borreliosis, the spirochetes from the Borrelia burgdorferi sensu lato complex, has been speculated to be contributing to increased disease burden. It does not matter how controversial the idea of vector-free spirochete transmission might seem in the beginning. As long as evidence of sexual transmission of Borrelia burgdorferi both between vertebrate hosts and between tick vectors exists, this question must be addressed. In order to confirm or refute the existence of this phenomenon, which could have important implications for Lyme borreliosis epidemiology, the need of extensive research is obvious and required.

Zobrazit více v PubMed

Afzelius A. Verhandlungen der dematologischen gesellschaft zu Stockholm. Sitzung vom 28. Oktober 1909. Arch. Fur Dermatol. Syph. 1910;101:404.

Afzelius A. Erythema chronicum migrans. Acta Derm. Venereol. 1921;2:120–125.

Garin C., Bujadoux C. Paralysie par les tiques. J. Médecine Lyon. 1922;3:765–767.

Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P. Lyme disease-a tick-borne spirochetosis? Science. 1982;216:1317–1319. doi: 10.1126/science.7043737. PubMed DOI

Johnson R.C., Schmid G.P., Hyde F.W., Steigerwalt A.G., Brenner D.J. Borrelia burgdorferi sp. nov.: Etiologic agent of Lyme disease. Int. J. Syst. Bacteriol. 1984;34:496–497. doi: 10.1099/00207713-34-4-496. DOI

Rudenko N., Golovchenko M., Grubhoffer L., Oliver J.H., Jr. Undates on Borrelia burgdorferi sensu lato complex with respect to human health. Ticks Tick Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC

Lindgren E., Jaenson T.G.T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology and adaptation measures. In: Menne B., Ebi K.L., editors. Climate Change and Adaptation Strategies for Human Health. Steinkopff; Darmstadt, Germany: 2006. pp. 157–188.

Hubálek Z. Epidemiology of lyme borreliosis. In: Lipsker D., Jaulhac B., editors. Lyme Borreliosis. Karger Publishers; Basel, Switzerland: 2009. pp. 31–50.

Kuehn M.B. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 2013;310:1110. doi: 10.1001/jama.2013.278331. PubMed DOI

Nelson C.A., Saha S., Kugeler K.J., Delorey M.J., Shankar M.B., Hinckley A.F., Mead P.S. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerg. Infect. Dis. 2015;21:1625–1631. doi: 10.3201/eid2109.150417. PubMed DOI PMC

Kugeler K.J., Schwartz A.M., Delorey M.J., Mead P.S., Hinckley A.F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021;27:616–619. doi: 10.3201/eid2702.202731. PubMed DOI PMC

European Parliament Resolution on Lyme Disease (Borreliosis) (2018/2774(RSP) [(accessed on 15 November 2018)]; Available online: https://www.europarl.europa.eu/doceo/document/B-8-2018-0514_EN.html.

Stricker R.B., Middelveen M.J. Sexual transmission of Lyme disease: Challenging the tickborne disease paradigm. Expert Rev. Anti Infect. Ther. 2015;13:1303–1306. doi: 10.1586/14787210.2015.1081056. PubMed DOI

Barbour A.G., Hayes S.F. Biology of Borrelia species. Microbiol. Rev. 1986;50:381–400. doi: 10.1128/MR.50.4.381-400.1986. PubMed DOI PMC

Steere A. Lyme disease. N. Engl. J. Med. 1989;321:586–596. doi: 10.1056/NEJM198908313210906. PubMed DOI

Hofhuis A., Harms M., Bennema S., van den Wijngaard C.C., van Pelt W. Physician reported incidence of early and late Lyme borreliosis. Parasites Vectors. 2015;8:161. doi: 10.1186/s13071-015-0777-6. PubMed DOI PMC

Harvey W.T., Salvato P. Lyme disease: Ancient engine of an unrecognized borreliosis pandemic? Med. Hypotheses. 2003;60:742–759. doi: 10.1016/S0306-9877(03)00060-4. PubMed DOI

Rizzoli A., Hauffe H.C., Carpi G., Vourch G.I., Neteler M., Rosà R. Lyme borreliosis in Europe. [(accessed on 15 March 2010)];Euro Surveill. 2011 16:19906. doi: 10.2807/ese.16.27.19906-en. Available online: https://www.eurosurveillance.org/content/10.2807/ese.16.27.19906-en#html_fulltext. PubMed DOI

Syphilis—CDC Fact Sheet (Detailed) [(accessed on 13 April 2021)]; Available online: https://www.cdc.gov/std/syphilis.

Stoltey J.E., Cohen S.E. Syphilis transmission: A review of the current evidence. Sex. Health. 2015;12:103–109. doi: 10.1071/SH14174. PubMed DOI PMC

Porcella S.F., Schwan T.G. Borrelia burgdorferi and Treponema pallidum: A comparison of functional genomics, environmental adaptations, and pathogenic mechanisms. J. Clin. Investig. 2001;107:651–656. doi: 10.1172/JCI12484. PubMed DOI PMC

Hercogova J., Vanousova D. Syphilis and borreliosis during pregnancy. Dermatol. Ther. 2008;21:205–209. doi: 10.1111/j.1529-8019.2008.00192.x. PubMed DOI

Rudolf J. Role of outer membrane architecture in immune evasion by Treponela pallidum and Borrelia burgdorferi. Trends Microbiol. 2008;2:307–311. doi: 10.1016/0966-842X(94)90446-4. PubMed DOI

Brorson Ø., Brorson S.H. Transformation of cystic forms of Borrelia burgdorferi to normal mobile spirochetes. Infection. 1997;25:240–246. doi: 10.1007/BF01713153. PubMed DOI

Murgia R., Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI

MacDonald A.B. Borrelia burgdorferi tissue morphologies and imaging methodologies. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:1077–1082. doi: 10.1007/s10096-013-1853-5. PubMed DOI

Stricker R.B., Johnson L. Borrelia burgdorferi aggrecanase activity: More evidence for persistent infection in Lyme disease. Front. Cell. Infect. Microbiol. 2013;3:40. doi: 10.3389/fcimb.2013.00040. PubMed DOI PMC

Meriläinen L., Herranen A., Schwarzbach A., Gilbert L. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology. 2015;161:516–527. doi: 10.1099/mic.0.000027. PubMed DOI PMC

Burgess E.C., Amundson T.E., Davis J.P., Kaslow R.A., Edelman R. Experimental inoculation of Peromyscus spp. with Borrelia burgdorferi: Evidence of contact transmission. Am. J. Trop. Med. Hyg. 1986;35:355–359. doi: 10.4269/ajtmh.1986.35.355. PubMed DOI

Wright S.D., Nielsen S.W. Experimental infection of the white-footed mouse with Borrelia burgdorferi. Am. J. Vet. Res. 1990;51:1980–1987. PubMed

Moody K.D., Barthold S.W. Relative infectivity of Borrelia burgdorferi in Lewis rats by various routes of inoculation. Am. J. Trop. Med. Hyg. 1991;44:135–139. doi: 10.4269/ajtmh.1991.44.135. PubMed DOI

Woodrum J.E., Oliver J.H. Investigation of venereal, transplacental, and contact transmission of the Lyme disease spirochete, Borrelia burgdorferi, in Syrian hamsters. J. Parasitol. 1999;85:426–430. doi: 10.2307/3285773. PubMed DOI

Gustafson J.M. Ph.D. Thesis. University of Wisconsin; Madison, WI, USA: 1993. The in Utero and Seminal Transmission of Borrelia burgdorferi in Canidae.

Bach G. Recovery of Lyme spirochetes by PCR in semen samples of previously diagnosed Lyme disease patients; Proceedings of the 14th International Scientific Conference on Lyme Disease and Other Tick-Borne Disorders; Hartford, CT, USA. 21–23 April 2001.

Middelveen M.J., Burke J., Sapi E., Bandoski C., Filush K.R., Wang Y., Franco A., Timmaraju A., Schlinger H.A., Mayne P.J., et al. Culture and identification of Borrelia spirochetes in human vaginal and seminal secretions. F1000Research. 2015;3:309. doi: 10.12688/f1000research.5778.3. PubMed DOI PMC

Magnuson H.J., Thomas E.W., Olansky S., Kapplan B.I., de Mello L., Cutler J.C. Inoculation syphilis in human volunteers. Medicine. 1956;35:33–82. doi: 10.1097/00005792-195602000-00002. PubMed DOI

Lafond R.E., Lukehart S.A. Biological basis for syphilis. Clin. Microbiol. Rev. 2006;19:29–49. doi: 10.1128/CMR.19.1.29-49.2006. PubMed DOI PMC

Wagner-Jevseenko O. Fortplanzung bei Ornithodoros moubata und genitale Ubertragung von Borrelia duttoni. Acta Trop. 1958;15:118–168. PubMed

Gaber M.S., Khalil G.M., Hoogstraal H. Borrelia crocidurae: Venereal transfer in Egyptian Ornithodorus erraticus ticks. Exp. Parasitol. 1982;54:182–184. doi: 10.1016/0014-4894(82)90125-4. PubMed DOI

Gaber M.S., Khalil G.M., Hoogstraal H., Aboul-Nasr A.E. Borrelia crocidurae localization and transmission in Ornithodoros erraticus and O. savignyi. Parasitology. 1984;88:403–413. doi: 10.1017/S0031182000054676. PubMed DOI

Alekseev A.N., Dubinina H.V. Exchange of Borrelia burgdorferi between Ixodes persulcatus (Ixodidae, Acarina) sexual partners. J. Med. Entomol. 1996;33:351–354. doi: 10.1093/jmedent/33.3.351. PubMed DOI

Alekseev A.N., Dubinina H.V. Venereal and cannibalistic way of Borrelia burgdorferi sensu lato exchange between males and females of Ixodes persulcatus (Ixodidae, Acarina) Rocz. Akad. Med. Bialymst. 1996;41:103–110. PubMed

Alekseev A.N., Dubinina H.V., Rjipkema S., Schouls L.M. Sexual transmission of Borrelia garinii by male Ixodes persulcatus ticks (Acari, Ixodidae) Exp. Appl. Acarol. 1999;23:165–169. doi: 10.1023/A:1006058728821. PubMed DOI

Rudenko N., Golovchenko M., Honig V., Mallátová N., Krbková L., Mikulášek P., Fedorova N., Belfiore N.M., Grubhoffer L., Lane R.S., et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl. Environ. Microbiol. 2013;79:1444–1453. doi: 10.1128/AEM.02749-12. PubMed DOI PMC

Oschmann P., Dorndorf W., Hornig C., Schäfer C., Wellensiek H.J., Pflughaupt K.W. Stages and syndromes of neuroborreliosis. J. Neurol. 1998;245:262–272. doi: 10.1007/s004150050216. PubMed DOI

Ornstein K., Berglund J., Bergström S., Norrby R., Barbour A.G. Three major Lyme Borrelia genospecies (Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii) identified by PCR in cerebrospinal fluid from patients with neuroborreliosis in Sweden. Scand. J. Infect. Dis. 2002;34:341–346. doi: 10.1080/00365540110080313. PubMed DOI

Ruzić-Sabljić E., Maraspin V., Lotric-Furlan S., Jurca T., Logar M., Pikelj-Pecnik A., Strle F. Characterization of Borrelia burgdorferi sensu lato strains isolated from human material in Slovenia. Wien. Klin. Wochenschr. 2002;114:544–550. PubMed

Grange F., Wechsler J., Guillaume J.C., Tortel. J., Tortel M.C., Audhuy B., Jaulhac B., Cerroni L. Borrelia burgdorferi-associated lymphocytoma cutis simulating a primary cutaneous large B-cell lymphoma. J. Am. Acad. Dermatol. 2002;47:530–534. doi: 10.1067/mjd.2002.120475. PubMed DOI

Van Dam A.P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B.M., Spanjaard L., Ramselaar A.C.P., Kramer M.D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. J. Clin. Infect. Dis. 1993;17:708–717. doi: 10.1093/clinids/17.4.708. PubMed DOI

Picken R.N., Strle F., Picken M.M., Ruzic-Sabljic E., Maraspin V., Lotric-Furlan S., Cimperman J. Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J. Investig. Dermatol. 1998;110:211–214. doi: 10.1046/j.1523-1747.1998.00130.x. PubMed DOI

Smetanick M.T., Zellis S.L., Ermolovich T. Acrodermatitis chronica atrophicans: A case report and review of the literature. Cutis. 2010;85:247–252. PubMed

Rudenko N., Golovchenko M., Mokrácek A., Piskunová N., Růžek D., Mallatová N., Grubhoffer L. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J. Clin. Microbiol. 2008;46:3540–3543. doi: 10.1128/JCM.01032-08. PubMed DOI PMC

Rudenko N., Golovchenko M., Růzek D., Piskunova N., Mallátová N., Grubhoffer L. Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol. Lett. 2009;292:274–281. doi: 10.1111/j.1574-6968.2009.01498.x. PubMed DOI

Petrulionienė A., Radzišauskienė D., Ambrozaitis A., Čaplinskas S., Paulauskas A., Venalis A. Epidemiology of Lyme disease in a highly endemic European zone. Medicina. 2020;56:115. doi: 10.3390/medicina56030115. PubMed DOI PMC

Estrada-Peña A., Ortega C., Sánchez N., Desimone L., Sudre B., Suk J.E., Semenza J.C. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic. Appl. Environ. Microbiol. 2011;77:3838–3845. doi: 10.1128/AEM.00067-11. PubMed DOI PMC

Antonovics J., Wilson A.J., Forbes M.R., Hauffe H.C., Kallio E.R., Leggett H.C., Longdon B., Okamura B., Sait S.M., Webster J.P. The evolution of transmission mode. Philos. Trans. R. Soc. B. 2017;372:20160083. doi: 10.1098/rstb.2016.0083. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...