Sexual Transmission of Lyme Borreliosis? The Question That Calls for an Answer
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NV19-05-00191
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34074046
PubMed Central
PMC8163173
DOI
10.3390/tropicalmed6020087
PII: tropicalmed6020087
Knihovny.cz E-resources
- Keywords
- Lyme borreliosis, sexually transmitted disease, spirochete, tick-borne disease,
- Publication type
- Journal Article MeSH
Transmission of the causative agents of numerous infectious diseases might be potentially conducted by various routes if this is supported by the genetics of the pathogen. Various transmission modes occur in related pathogens, reflecting a complex process that is specific for each particular host-pathogen system that relies on and is affected by pathogen and host genetics and ecology, ensuring the epidemiological spread of the pathogen. The recent dramatic rise in diagnosed cases of Lyme borreliosis might be due to several factors: the shifting of the distributional range of tick vectors caused by climate change; dispersal of infected ticks due to host animal migration; recent urbanization; an increasing overlap of humans' habitat with wildlife reservoirs and the environment of tick vectors of Borrelia; improvements in disease diagnosis; or establishment of adequate surveillance. The involvement of other bloodsucking arthropod vectors and/or other routes of transmission (human-to-human) of the causative agent of Lyme borreliosis, the spirochetes from the Borrelia burgdorferi sensu lato complex, has been speculated to be contributing to increased disease burden. It does not matter how controversial the idea of vector-free spirochete transmission might seem in the beginning. As long as evidence of sexual transmission of Borrelia burgdorferi both between vertebrate hosts and between tick vectors exists, this question must be addressed. In order to confirm or refute the existence of this phenomenon, which could have important implications for Lyme borreliosis epidemiology, the need of extensive research is obvious and required.
See more in PubMed
Afzelius A. Verhandlungen der dematologischen gesellschaft zu Stockholm. Sitzung vom 28. Oktober 1909. Arch. Fur Dermatol. Syph. 1910;101:404.
Afzelius A. Erythema chronicum migrans. Acta Derm. Venereol. 1921;2:120–125.
Garin C., Bujadoux C. Paralysie par les tiques. J. Médecine Lyon. 1922;3:765–767.
Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P. Lyme disease-a tick-borne spirochetosis? Science. 1982;216:1317–1319. doi: 10.1126/science.7043737. PubMed DOI
Johnson R.C., Schmid G.P., Hyde F.W., Steigerwalt A.G., Brenner D.J. Borrelia burgdorferi sp. nov.: Etiologic agent of Lyme disease. Int. J. Syst. Bacteriol. 1984;34:496–497. doi: 10.1099/00207713-34-4-496. DOI
Rudenko N., Golovchenko M., Grubhoffer L., Oliver J.H., Jr. Undates on Borrelia burgdorferi sensu lato complex with respect to human health. Ticks Tick Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC
Lindgren E., Jaenson T.G.T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology and adaptation measures. In: Menne B., Ebi K.L., editors. Climate Change and Adaptation Strategies for Human Health. Steinkopff; Darmstadt, Germany: 2006. pp. 157–188.
Hubálek Z. Epidemiology of lyme borreliosis. In: Lipsker D., Jaulhac B., editors. Lyme Borreliosis. Karger Publishers; Basel, Switzerland: 2009. pp. 31–50.
Kuehn M.B. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 2013;310:1110. doi: 10.1001/jama.2013.278331. PubMed DOI
Nelson C.A., Saha S., Kugeler K.J., Delorey M.J., Shankar M.B., Hinckley A.F., Mead P.S. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerg. Infect. Dis. 2015;21:1625–1631. doi: 10.3201/eid2109.150417. PubMed DOI PMC
Kugeler K.J., Schwartz A.M., Delorey M.J., Mead P.S., Hinckley A.F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021;27:616–619. doi: 10.3201/eid2702.202731. PubMed DOI PMC
European Parliament Resolution on Lyme Disease (Borreliosis) (2018/2774(RSP) [(accessed on 15 November 2018)]; Available online: https://www.europarl.europa.eu/doceo/document/B-8-2018-0514_EN.html.
Stricker R.B., Middelveen M.J. Sexual transmission of Lyme disease: Challenging the tickborne disease paradigm. Expert Rev. Anti Infect. Ther. 2015;13:1303–1306. doi: 10.1586/14787210.2015.1081056. PubMed DOI
Barbour A.G., Hayes S.F. Biology of Borrelia species. Microbiol. Rev. 1986;50:381–400. doi: 10.1128/MR.50.4.381-400.1986. PubMed DOI PMC
Steere A. Lyme disease. N. Engl. J. Med. 1989;321:586–596. doi: 10.1056/NEJM198908313210906. PubMed DOI
Hofhuis A., Harms M., Bennema S., van den Wijngaard C.C., van Pelt W. Physician reported incidence of early and late Lyme borreliosis. Parasites Vectors. 2015;8:161. doi: 10.1186/s13071-015-0777-6. PubMed DOI PMC
Harvey W.T., Salvato P. Lyme disease: Ancient engine of an unrecognized borreliosis pandemic? Med. Hypotheses. 2003;60:742–759. doi: 10.1016/S0306-9877(03)00060-4. PubMed DOI
Rizzoli A., Hauffe H.C., Carpi G., Vourch G.I., Neteler M., Rosà R. Lyme borreliosis in Europe. [(accessed on 15 March 2010)];Euro Surveill. 2011 16:19906. doi: 10.2807/ese.16.27.19906-en. Available online: https://www.eurosurveillance.org/content/10.2807/ese.16.27.19906-en#html_fulltext. PubMed DOI
Syphilis—CDC Fact Sheet (Detailed) [(accessed on 13 April 2021)]; Available online: https://www.cdc.gov/std/syphilis.
Stoltey J.E., Cohen S.E. Syphilis transmission: A review of the current evidence. Sex. Health. 2015;12:103–109. doi: 10.1071/SH14174. PubMed DOI PMC
Porcella S.F., Schwan T.G. Borrelia burgdorferi and Treponema pallidum: A comparison of functional genomics, environmental adaptations, and pathogenic mechanisms. J. Clin. Investig. 2001;107:651–656. doi: 10.1172/JCI12484. PubMed DOI PMC
Hercogova J., Vanousova D. Syphilis and borreliosis during pregnancy. Dermatol. Ther. 2008;21:205–209. doi: 10.1111/j.1529-8019.2008.00192.x. PubMed DOI
Rudolf J. Role of outer membrane architecture in immune evasion by Treponela pallidum and Borrelia burgdorferi. Trends Microbiol. 2008;2:307–311. doi: 10.1016/0966-842X(94)90446-4. PubMed DOI
Brorson Ø., Brorson S.H. Transformation of cystic forms of Borrelia burgdorferi to normal mobile spirochetes. Infection. 1997;25:240–246. doi: 10.1007/BF01713153. PubMed DOI
Murgia R., Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI
MacDonald A.B. Borrelia burgdorferi tissue morphologies and imaging methodologies. Eur. J. Clin. Microbiol. Infect. Dis. 2013;32:1077–1082. doi: 10.1007/s10096-013-1853-5. PubMed DOI
Stricker R.B., Johnson L. Borrelia burgdorferi aggrecanase activity: More evidence for persistent infection in Lyme disease. Front. Cell. Infect. Microbiol. 2013;3:40. doi: 10.3389/fcimb.2013.00040. PubMed DOI PMC
Meriläinen L., Herranen A., Schwarzbach A., Gilbert L. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology. 2015;161:516–527. doi: 10.1099/mic.0.000027. PubMed DOI PMC
Burgess E.C., Amundson T.E., Davis J.P., Kaslow R.A., Edelman R. Experimental inoculation of Peromyscus spp. with Borrelia burgdorferi: Evidence of contact transmission. Am. J. Trop. Med. Hyg. 1986;35:355–359. doi: 10.4269/ajtmh.1986.35.355. PubMed DOI
Wright S.D., Nielsen S.W. Experimental infection of the white-footed mouse with Borrelia burgdorferi. Am. J. Vet. Res. 1990;51:1980–1987. PubMed
Moody K.D., Barthold S.W. Relative infectivity of Borrelia burgdorferi in Lewis rats by various routes of inoculation. Am. J. Trop. Med. Hyg. 1991;44:135–139. doi: 10.4269/ajtmh.1991.44.135. PubMed DOI
Woodrum J.E., Oliver J.H. Investigation of venereal, transplacental, and contact transmission of the Lyme disease spirochete, Borrelia burgdorferi, in Syrian hamsters. J. Parasitol. 1999;85:426–430. doi: 10.2307/3285773. PubMed DOI
Gustafson J.M. Ph.D. Thesis. University of Wisconsin; Madison, WI, USA: 1993. The in Utero and Seminal Transmission of Borrelia burgdorferi in Canidae.
Bach G. Recovery of Lyme spirochetes by PCR in semen samples of previously diagnosed Lyme disease patients; Proceedings of the 14th International Scientific Conference on Lyme Disease and Other Tick-Borne Disorders; Hartford, CT, USA. 21–23 April 2001.
Middelveen M.J., Burke J., Sapi E., Bandoski C., Filush K.R., Wang Y., Franco A., Timmaraju A., Schlinger H.A., Mayne P.J., et al. Culture and identification of Borrelia spirochetes in human vaginal and seminal secretions. F1000Research. 2015;3:309. doi: 10.12688/f1000research.5778.3. PubMed DOI PMC
Magnuson H.J., Thomas E.W., Olansky S., Kapplan B.I., de Mello L., Cutler J.C. Inoculation syphilis in human volunteers. Medicine. 1956;35:33–82. doi: 10.1097/00005792-195602000-00002. PubMed DOI
Lafond R.E., Lukehart S.A. Biological basis for syphilis. Clin. Microbiol. Rev. 2006;19:29–49. doi: 10.1128/CMR.19.1.29-49.2006. PubMed DOI PMC
Wagner-Jevseenko O. Fortplanzung bei Ornithodoros moubata und genitale Ubertragung von Borrelia duttoni. Acta Trop. 1958;15:118–168. PubMed
Gaber M.S., Khalil G.M., Hoogstraal H. Borrelia crocidurae: Venereal transfer in Egyptian Ornithodorus erraticus ticks. Exp. Parasitol. 1982;54:182–184. doi: 10.1016/0014-4894(82)90125-4. PubMed DOI
Gaber M.S., Khalil G.M., Hoogstraal H., Aboul-Nasr A.E. Borrelia crocidurae localization and transmission in Ornithodoros erraticus and O. savignyi. Parasitology. 1984;88:403–413. doi: 10.1017/S0031182000054676. PubMed DOI
Alekseev A.N., Dubinina H.V. Exchange of Borrelia burgdorferi between Ixodes persulcatus (Ixodidae, Acarina) sexual partners. J. Med. Entomol. 1996;33:351–354. doi: 10.1093/jmedent/33.3.351. PubMed DOI
Alekseev A.N., Dubinina H.V. Venereal and cannibalistic way of Borrelia burgdorferi sensu lato exchange between males and females of Ixodes persulcatus (Ixodidae, Acarina) Rocz. Akad. Med. Bialymst. 1996;41:103–110. PubMed
Alekseev A.N., Dubinina H.V., Rjipkema S., Schouls L.M. Sexual transmission of Borrelia garinii by male Ixodes persulcatus ticks (Acari, Ixodidae) Exp. Appl. Acarol. 1999;23:165–169. doi: 10.1023/A:1006058728821. PubMed DOI
Rudenko N., Golovchenko M., Honig V., Mallátová N., Krbková L., Mikulášek P., Fedorova N., Belfiore N.M., Grubhoffer L., Lane R.S., et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl. Environ. Microbiol. 2013;79:1444–1453. doi: 10.1128/AEM.02749-12. PubMed DOI PMC
Oschmann P., Dorndorf W., Hornig C., Schäfer C., Wellensiek H.J., Pflughaupt K.W. Stages and syndromes of neuroborreliosis. J. Neurol. 1998;245:262–272. doi: 10.1007/s004150050216. PubMed DOI
Ornstein K., Berglund J., Bergström S., Norrby R., Barbour A.G. Three major Lyme Borrelia genospecies (Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii) identified by PCR in cerebrospinal fluid from patients with neuroborreliosis in Sweden. Scand. J. Infect. Dis. 2002;34:341–346. doi: 10.1080/00365540110080313. PubMed DOI
Ruzić-Sabljić E., Maraspin V., Lotric-Furlan S., Jurca T., Logar M., Pikelj-Pecnik A., Strle F. Characterization of Borrelia burgdorferi sensu lato strains isolated from human material in Slovenia. Wien. Klin. Wochenschr. 2002;114:544–550. PubMed
Grange F., Wechsler J., Guillaume J.C., Tortel. J., Tortel M.C., Audhuy B., Jaulhac B., Cerroni L. Borrelia burgdorferi-associated lymphocytoma cutis simulating a primary cutaneous large B-cell lymphoma. J. Am. Acad. Dermatol. 2002;47:530–534. doi: 10.1067/mjd.2002.120475. PubMed DOI
Van Dam A.P., Kuiper H., Vos K., Widjojokusumo A., de Jongh B.M., Spanjaard L., Ramselaar A.C.P., Kramer M.D., Dankert J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. J. Clin. Infect. Dis. 1993;17:708–717. doi: 10.1093/clinids/17.4.708. PubMed DOI
Picken R.N., Strle F., Picken M.M., Ruzic-Sabljic E., Maraspin V., Lotric-Furlan S., Cimperman J. Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J. Investig. Dermatol. 1998;110:211–214. doi: 10.1046/j.1523-1747.1998.00130.x. PubMed DOI
Smetanick M.T., Zellis S.L., Ermolovich T. Acrodermatitis chronica atrophicans: A case report and review of the literature. Cutis. 2010;85:247–252. PubMed
Rudenko N., Golovchenko M., Mokrácek A., Piskunová N., Růžek D., Mallatová N., Grubhoffer L. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J. Clin. Microbiol. 2008;46:3540–3543. doi: 10.1128/JCM.01032-08. PubMed DOI PMC
Rudenko N., Golovchenko M., Růzek D., Piskunova N., Mallátová N., Grubhoffer L. Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol. Lett. 2009;292:274–281. doi: 10.1111/j.1574-6968.2009.01498.x. PubMed DOI
Petrulionienė A., Radzišauskienė D., Ambrozaitis A., Čaplinskas S., Paulauskas A., Venalis A. Epidemiology of Lyme disease in a highly endemic European zone. Medicina. 2020;56:115. doi: 10.3390/medicina56030115. PubMed DOI PMC
Estrada-Peña A., Ortega C., Sánchez N., Desimone L., Sudre B., Suk J.E., Semenza J.C. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic. Appl. Environ. Microbiol. 2011;77:3838–3845. doi: 10.1128/AEM.00067-11. PubMed DOI PMC
Antonovics J., Wilson A.J., Forbes M.R., Hauffe H.C., Kallio E.R., Leggett H.C., Longdon B., Okamura B., Sait S.M., Webster J.P. The evolution of transmission mode. Philos. Trans. R. Soc. B. 2017;372:20160083. doi: 10.1098/rstb.2016.0083. PubMed DOI PMC