The Degradation of Hyaluronan in the Skin

. 2022 Feb 03 ; 12 (2) : . [epub] 20220203

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35204753

Hyaluronan (HA) comprises a fundamental component of the extracellular matrix and participates in a variety of biological processes. Half of the total amount of HA in the human body is present in the skin. HA exhibits a dynamic turnover; its half-life in the skin is less than one day. Nevertheless, the specific participants in the catabolism of HA in the skin have not yet been described in detail, despite the essential role of HA in cutaneous biology. A deeper knowledge of the processes involved will act to support the development of HA-based topical and implantable materials and enhance the understanding of the various related pathological cutaneous conditions. This study aimed to characterize the distribution and activity of hyaluronidases and the other proteins involved in the degradation of HA in healthy human full-thickness skin, the epidermis and the dermis. Hyaluronidase activity was detected for the first time in healthy human skin. The degradation of HA occurred in lysates at an acidic pH. HA gel zymography revealed a single band corresponding to approximately 50 kDa. This study provided the first comprehensive view of the distribution of canonic HA-degrading proteins (HYAL1 and HYAL2) in human skin employing IHF and IHC. Furthermore, contrary to previous assumptions TMEM2, a novel hyaluronidase, as well as CEMIP, a protein involved in HA degradation, were localized in the human epidermis, as well as in the dermis.

Zobrazit více v PubMed

Kogan G., Šoltés L., Stern R., Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007;29:17–25. doi: 10.1007/s10529-006-9219-z. PubMed DOI

Huerta-Angeles G., Nešporová K., Ambrozova G., Kubala L., Velebný V. An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects. Front. Bioeng Biotechnol. 2018;6:62. doi: 10.3389/fbioe.2018.00062. PubMed DOI PMC

Schnabelrauch M., Scharnweber D., Schiller J. Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr. Med. Chem. 2013;20:2501–2523. doi: 10.2174/0929867311320200001. PubMed DOI

Toole P.B., Wight T.N., Tammi M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200. PubMed DOI

Tammi I.M., Day A.J., Turley E.A. Hyaluronan and homeostasis: A balancing act. J. Biol. Chem. 2002;277:4581–4584. doi: 10.1074/jbc.R100037200. PubMed DOI

Muto J., Sayama K., Gallo R.L., Kimata K. Emerging evidence for the essential role of hyaluronan in cutaneous biology. J. Dermatol. Sci. 2019;94:190–195. doi: 10.1016/j.jdermsci.2019.01.009. PubMed DOI

Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zouboulis C.C. Skin anti-aging strategies. Dermatoendocrinol. 2012;4:308–319. doi: 10.4161/derm.22804. PubMed DOI PMC

Laurent C.T., Fraser J.R. Hyaluronan. FASEB J. 1992;6:2397–2404. doi: 10.1096/fasebj.6.7.1563592. PubMed DOI

Lepperdinger G., Mullegger J., Kreil G. Hyal2—Less active, but more versatile? Matrix Biol. 2001;20:509–514. doi: 10.1016/S0945-053X(01)00170-6. PubMed DOI

Tammi R., Säämänen A.-M., I Maibach H., Tammi M. Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J. Investig. Derm. 1991;97:126–130. doi: 10.1111/1523-1747.ep12478553. PubMed DOI

Erickson M., Stern R. Chain gangs: New aspects of hyaluronan metabolism. Biochem. Res. Int. 2012;2012:893947. doi: 10.1155/2012/893947. PubMed DOI PMC

Reed K.R., Lilja K., Laurent T.C. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand. 1988;134:405–411. doi: 10.1111/j.1748-1716.1988.tb08508.x. PubMed DOI

Stair-Nawy S., Csoka A.B., Stern R. Hyaluronidase expression in human skin fibroblasts. Biochem. Biophys. Res. Commun. 1999;266:268–273. doi: 10.1006/bbrc.1999.1802. PubMed DOI

Afify A.M., Stern M., Guntenhoner M., Stern R. Purification and characterization of human serum hyaluronidase. Arch. Biochem. Biophys. 1993;305:434–441. doi: 10.1006/abbi.1993.1443. PubMed DOI

Lepperdinger G., Strobl B., Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J. Biol. Chem. 1998;273:22466–22470. doi: 10.1074/jbc.273.35.22466. PubMed DOI

Bourguignon L.Y., Singleton P.A., Diedrich F., Stern R., Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 2004;279:26991–27007. doi: 10.1074/jbc.M311838200. PubMed DOI

Stern R., Kogan G., Jedrzejas M.J., Šoltés L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007;25:537–557. doi: 10.1016/j.biotechadv.2007.07.001. PubMed DOI

Andre B., Duterme C., Van Moer K., Mertens-Strijthagen J., Jadot M., Flamion B. Hyal2 is a glycosylphosphatidylinositol-anchored, lipid raft-associated hyaluronidase. Biochem. Biophys. Res. Commun. 2011;411:175–179. doi: 10.1016/j.bbrc.2011.06.125. PubMed DOI

Csoka B.A., Scherer S.W., Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics. 1999;60:356–361. doi: 10.1006/geno.1999.5876. PubMed DOI

Stern R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004;83:317–325. doi: 10.1078/0171-9335-00392. PubMed DOI

Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J. Biol. Chem. 2017;292:7304–7313. doi: 10.1074/jbc.M116.770149. PubMed DOI PMC

Irie F., Tobisawa Y., Murao A., Yamamoto H., Ohyama C., Yamaguchi Y. The cell surface hyaluronidase TMEM2 regulates cell adhesion and migration via degradation of hyaluronan at focal adhesion sites. J. Biol. Chem. 2021;296:100481. doi: 10.1016/j.jbc.2021.100481. PubMed DOI PMC

Yoshino Y., Goto M., Hara H., Inoue S. The role and regulation of TMEM2 (transmembrane protein 2) in HYBID (hyaluronan (HA)-binding protein involved in HA depolymerization/ KIAA1199/CEMIP)-mediated HA depolymerization in human skin fibroblasts. Biochem. Biophys. Res. Commun. 2018;505:74–80. doi: 10.1016/j.bbrc.2018.09.097. PubMed DOI

Yoshida H., Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int. J. Mol. Sci. 2019;20:5804. doi: 10.3390/ijms20225804. PubMed DOI PMC

Yoshida H., Nagaoka A., Nakamura S., Sugiyama Y., Okada Y., Inoue S. Murine homologue of the human KIAA1199 is implicated in hyaluronan binding and depolymerization. FEBS Open Bio. 2013;3:352–356. doi: 10.1016/j.fob.2013.08.003. PubMed DOI PMC

Malaisse J., Evrard C., Feret D., Colombaro V., Dogné S., Haftek M., de Rouvroit C.L., Flamion B., Poumay Y. Hyaluronidase-1 Is Mainly Functional in the Upper Granular Layer, Close to the Epidermal Barrier. J. Investig. Dermatol. 2015;135:3189–3192. doi: 10.1038/jid.2015.299. PubMed DOI

Chowdhury B., Hemming R., Faiyaz S., Triggs-Raine B. Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism. Histochem. Cell Biol. 2016;145:53–66. doi: 10.1007/s00418-015-1373-8. PubMed DOI

Anderegg U., Simon J.C., Averbeck M. More than just a filler-the role of hyaluronan for skin homeostasis. Exp. Dermatol. 2014;23:295–303. doi: 10.1111/exd.12370. PubMed DOI

Dokoshi T., Zhang L.-J., Li F., Nakatsuji T., Butcher A., Yoshida H., Shimoda M., Okada Y., Gallo R.L. Hyaluronan Degradation by Cemip Regulates Host Defense against Staphylococcus aureus Skin Infection. Cell Rep. 2020;30:61–68. doi: 10.1016/j.celrep.2019.12.001. PubMed DOI PMC

Pepeliaev S., Hrudíková R., Jílková J., Pavlík J., Smirnou D., Černý Z., Franke L. Colorimetric enzyme-coupled assay for hyaluronic acid determination in complex samples. Eur. Polym. J. 2017;94:460–470. doi: 10.1016/j.eurpolymj.2017.07.036. DOI

Meyer J.L., Stern R. Age-dependent changes of hyaluronan in human skin. J. Investig. Dermatol. 1994;102:385–389. doi: 10.1111/1523-1747.ep12371800. PubMed DOI

Lin W., Shuster S., Maibach H.I., Stern R. Patterns of hyaluronan staining are modified by fixation techniques. J. Histochem. Cytochem. 1997;45:1157–1163. doi: 10.1177/002215549704500813. PubMed DOI

Cepa M. Segmentation of Total Cell Area in Brightfield Microscopy Images. Methods Protoc. 2018;1:43. doi: 10.3390/mps1040043. PubMed DOI PMC

Sinova R., Žádníková P., Šafránková B., Nešporová K. Anti-HA antibody does not detect hyaluronan. Glycobiology. 2021;31:520–523. doi: 10.1093/glycob/cwaa118. PubMed DOI

Simek M., Hermannová M., Šmejkalová D., Foglová T., Souček K., Binó L., Velebný V. LC-MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Carbohydr. Polym. 2019;209:181–189. doi: 10.1016/j.carbpol.2018.12.104. PubMed DOI

Morgan T.W., Elson L.A. A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem. J. 1934;28:988–995. doi: 10.1042/bj0280988. PubMed DOI PMC

Guntenhoner W.M., Pogrel M.A., Stern R. A substrate-gel assay for hyaluronidase activity. Matrix. 1992;12:388–396. doi: 10.1016/S0934-8832(11)80035-1. PubMed DOI

Steiner B., Cruce D. A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal. Biochem. 1992;200:405–410. doi: 10.1016/0003-2697(92)90487-R. PubMed DOI

Richter W. Non-immunogenicity of purified hyaluronic acid preparations tested by passive cutaneous anaphylaxis. Int. Arch. Allergy Appl. Immunol. 1974;47:211–217. doi: 10.1159/000231214. PubMed DOI

Ripellino J.A., Klinger M.M., Margolis R.U. The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain. J. Histochem. Cytochem. 1985;33:1060–1066. doi: 10.1177/33.10.4045184. PubMed DOI

Tammi R., Ripellino J.A., Margolis R.U., Tammi M. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J. Investig. Dermatol. 1988;90:412–414. doi: 10.1111/1523-1747.ep12456530. PubMed DOI

Atmuri V., Martin D.C., Hemming R., Gutsol A., Byers S., Sahebjam S., Thliveris J.A., Mort J.S., Carmona E., Anderson J.E., et al. Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol. 2008;27:653–660. doi: 10.1016/j.matbio.2008.07.006. PubMed DOI

Hatziri A., Vynios D.H., Panogeorgou T., Bouga H., E Triantaphyllidou I., Naxakis S.S., Stathas T., Aletras A.J., Kourousis C., Mastronikolis N.S. Presence of hyaluronidase isoforms in nasal polyps. Eur. Rev. Med. Pharmacol. Sci. 2013;17:247–252. PubMed

Frost G.I., Csóka T.B., Wong T., Stern R. Purification, cloning, and expression of human plasma hyaluronidase. Biochem. Biophys. Res. Commun. 1997;236:10–15. doi: 10.1006/bbrc.1997.6773. PubMed DOI

Nawy S.S., Csóka A.B., Mio K., Stern R., Iozzo R.V. Hyaluronidase activity and hyaluronidase inhibitors. Assay using a microtiter-based system. Methods Mol. Biol. 2001;171:383–389. PubMed

Boonen M., Puissant E., Gilis F., Flamion B., Jadot M. Mouse liver lysosomes contain enzymatically active processed forms of Hyal-1. Biochem. Biophys. Res. Commun. 2014;446:1155–1160. doi: 10.1016/j.bbrc.2014.03.070. PubMed DOI

Puissant E., Gilis F., Dogné S., Flamion B., Jadot M., Boonen M. Subcellular trafficking and activity of Hyal-1 and its processed forms in murine macrophages. Traffic. 2014;15:500–51548. doi: 10.1111/tra.12162. PubMed DOI

Stern R., Jedrzejas M.J. Hyaluronidases: Their genomics, structures, and mechanisms of action. Chem. Rev. 2006;106:818–839. doi: 10.1021/cr050247k. PubMed DOI PMC

Harada H., Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 2007;282:5597–5607. doi: 10.1074/jbc.M608358200. PubMed DOI

Zhang W., Yin G., Zhao H., Ling H., Xie Z., Xiao C., Chen Y., Lin Y., Jiang T., Jin S., et al. Secreted KIAA1199 promotes the progression of rheumatoid arthritis by mediating hyaluronic acid degradation in an ANXA1-dependent manner. Cell Death Dis. 2021;12:102. doi: 10.1038/s41419-021-03393-5. PubMed DOI PMC

Bourguignon V., Flamion B. Respective roles of hyaluronidases 1 and 2 in endogenous hyaluronan turnover. FASEB J. 2016;30:2108–2114. doi: 10.1096/fj.201500178R. PubMed DOI

Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012;4:253–258. doi: 10.4161/derm.21923. PubMed DOI PMC

Csoka B.A., Frost G.I., Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001;20:499–508. doi: 10.1016/S0945-053X(01)00172-X. PubMed DOI

Ronny R., Mark M.E. Hyaluronan Endocytosis: Mechanisms of Uptake and Biological Functions. In: Ceresa B., editor. Molecular Regulation of Endocytosis. IntechOpen; London, UK: 2012. Chapter 14.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...