The Degradation of Hyaluronan in the Skin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35204753
PubMed Central
PMC8961566
DOI
10.3390/biom12020251
PII: biom12020251
Knihovny.cz E-zdroje
- Klíčová slova
- CEMIP, TMEM2, degradation, hyaluronan, hyaluronidase, skin,
- MeSH
- extracelulární matrix metabolismus MeSH
- hyaluronoglukosaminidasa * metabolismus MeSH
- kůže metabolismus MeSH
- kyselina hyaluronová * chemie MeSH
- lidé MeSH
- proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hyaluronoglukosaminidasa * MeSH
- kyselina hyaluronová * MeSH
- proteiny MeSH
Hyaluronan (HA) comprises a fundamental component of the extracellular matrix and participates in a variety of biological processes. Half of the total amount of HA in the human body is present in the skin. HA exhibits a dynamic turnover; its half-life in the skin is less than one day. Nevertheless, the specific participants in the catabolism of HA in the skin have not yet been described in detail, despite the essential role of HA in cutaneous biology. A deeper knowledge of the processes involved will act to support the development of HA-based topical and implantable materials and enhance the understanding of the various related pathological cutaneous conditions. This study aimed to characterize the distribution and activity of hyaluronidases and the other proteins involved in the degradation of HA in healthy human full-thickness skin, the epidermis and the dermis. Hyaluronidase activity was detected for the first time in healthy human skin. The degradation of HA occurred in lysates at an acidic pH. HA gel zymography revealed a single band corresponding to approximately 50 kDa. This study provided the first comprehensive view of the distribution of canonic HA-degrading proteins (HYAL1 and HYAL2) in human skin employing IHF and IHC. Furthermore, contrary to previous assumptions TMEM2, a novel hyaluronidase, as well as CEMIP, a protein involved in HA degradation, were localized in the human epidermis, as well as in the dermis.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Faculty of Medicine in Hradec Králové Charles University 500 03 Hradec Králové Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University 611 37 Brno Czech Republic
R and D Department Contipro a s 561 02 Dolní Dobrouč Czech Republic
Zobrazit více v PubMed
Kogan G., Šoltés L., Stern R., Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007;29:17–25. doi: 10.1007/s10529-006-9219-z. PubMed DOI
Huerta-Angeles G., Nešporová K., Ambrozova G., Kubala L., Velebný V. An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects. Front. Bioeng Biotechnol. 2018;6:62. doi: 10.3389/fbioe.2018.00062. PubMed DOI PMC
Schnabelrauch M., Scharnweber D., Schiller J. Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr. Med. Chem. 2013;20:2501–2523. doi: 10.2174/0929867311320200001. PubMed DOI
Toole P.B., Wight T.N., Tammi M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002;277:4593–4596. doi: 10.1074/jbc.R100039200. PubMed DOI
Tammi I.M., Day A.J., Turley E.A. Hyaluronan and homeostasis: A balancing act. J. Biol. Chem. 2002;277:4581–4584. doi: 10.1074/jbc.R100037200. PubMed DOI
Muto J., Sayama K., Gallo R.L., Kimata K. Emerging evidence for the essential role of hyaluronan in cutaneous biology. J. Dermatol. Sci. 2019;94:190–195. doi: 10.1016/j.jdermsci.2019.01.009. PubMed DOI
Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zouboulis C.C. Skin anti-aging strategies. Dermatoendocrinol. 2012;4:308–319. doi: 10.4161/derm.22804. PubMed DOI PMC
Laurent C.T., Fraser J.R. Hyaluronan. FASEB J. 1992;6:2397–2404. doi: 10.1096/fasebj.6.7.1563592. PubMed DOI
Lepperdinger G., Mullegger J., Kreil G. Hyal2—Less active, but more versatile? Matrix Biol. 2001;20:509–514. doi: 10.1016/S0945-053X(01)00170-6. PubMed DOI
Tammi R., Säämänen A.-M., I Maibach H., Tammi M. Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J. Investig. Derm. 1991;97:126–130. doi: 10.1111/1523-1747.ep12478553. PubMed DOI
Erickson M., Stern R. Chain gangs: New aspects of hyaluronan metabolism. Biochem. Res. Int. 2012;2012:893947. doi: 10.1155/2012/893947. PubMed DOI PMC
Reed K.R., Lilja K., Laurent T.C. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand. 1988;134:405–411. doi: 10.1111/j.1748-1716.1988.tb08508.x. PubMed DOI
Stair-Nawy S., Csoka A.B., Stern R. Hyaluronidase expression in human skin fibroblasts. Biochem. Biophys. Res. Commun. 1999;266:268–273. doi: 10.1006/bbrc.1999.1802. PubMed DOI
Afify A.M., Stern M., Guntenhoner M., Stern R. Purification and characterization of human serum hyaluronidase. Arch. Biochem. Biophys. 1993;305:434–441. doi: 10.1006/abbi.1993.1443. PubMed DOI
Lepperdinger G., Strobl B., Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J. Biol. Chem. 1998;273:22466–22470. doi: 10.1074/jbc.273.35.22466. PubMed DOI
Bourguignon L.Y., Singleton P.A., Diedrich F., Stern R., Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 2004;279:26991–27007. doi: 10.1074/jbc.M311838200. PubMed DOI
Stern R., Kogan G., Jedrzejas M.J., Šoltés L. The many ways to cleave hyaluronan. Biotechnol. Adv. 2007;25:537–557. doi: 10.1016/j.biotechadv.2007.07.001. PubMed DOI
Andre B., Duterme C., Van Moer K., Mertens-Strijthagen J., Jadot M., Flamion B. Hyal2 is a glycosylphosphatidylinositol-anchored, lipid raft-associated hyaluronidase. Biochem. Biophys. Res. Commun. 2011;411:175–179. doi: 10.1016/j.bbrc.2011.06.125. PubMed DOI
Csoka B.A., Scherer S.W., Stern R. Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics. 1999;60:356–361. doi: 10.1006/geno.1999.5876. PubMed DOI
Stern R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004;83:317–325. doi: 10.1078/0171-9335-00392. PubMed DOI
Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J. Biol. Chem. 2017;292:7304–7313. doi: 10.1074/jbc.M116.770149. PubMed DOI PMC
Irie F., Tobisawa Y., Murao A., Yamamoto H., Ohyama C., Yamaguchi Y. The cell surface hyaluronidase TMEM2 regulates cell adhesion and migration via degradation of hyaluronan at focal adhesion sites. J. Biol. Chem. 2021;296:100481. doi: 10.1016/j.jbc.2021.100481. PubMed DOI PMC
Yoshino Y., Goto M., Hara H., Inoue S. The role and regulation of TMEM2 (transmembrane protein 2) in HYBID (hyaluronan (HA)-binding protein involved in HA depolymerization/ KIAA1199/CEMIP)-mediated HA depolymerization in human skin fibroblasts. Biochem. Biophys. Res. Commun. 2018;505:74–80. doi: 10.1016/j.bbrc.2018.09.097. PubMed DOI
Yoshida H., Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int. J. Mol. Sci. 2019;20:5804. doi: 10.3390/ijms20225804. PubMed DOI PMC
Yoshida H., Nagaoka A., Nakamura S., Sugiyama Y., Okada Y., Inoue S. Murine homologue of the human KIAA1199 is implicated in hyaluronan binding and depolymerization. FEBS Open Bio. 2013;3:352–356. doi: 10.1016/j.fob.2013.08.003. PubMed DOI PMC
Malaisse J., Evrard C., Feret D., Colombaro V., Dogné S., Haftek M., de Rouvroit C.L., Flamion B., Poumay Y. Hyaluronidase-1 Is Mainly Functional in the Upper Granular Layer, Close to the Epidermal Barrier. J. Investig. Dermatol. 2015;135:3189–3192. doi: 10.1038/jid.2015.299. PubMed DOI
Chowdhury B., Hemming R., Faiyaz S., Triggs-Raine B. Hyaluronidase 2 (HYAL2) is expressed in endothelial cells, as well as some specialized epithelial cells, and is required for normal hyaluronan catabolism. Histochem. Cell Biol. 2016;145:53–66. doi: 10.1007/s00418-015-1373-8. PubMed DOI
Anderegg U., Simon J.C., Averbeck M. More than just a filler-the role of hyaluronan for skin homeostasis. Exp. Dermatol. 2014;23:295–303. doi: 10.1111/exd.12370. PubMed DOI
Dokoshi T., Zhang L.-J., Li F., Nakatsuji T., Butcher A., Yoshida H., Shimoda M., Okada Y., Gallo R.L. Hyaluronan Degradation by Cemip Regulates Host Defense against Staphylococcus aureus Skin Infection. Cell Rep. 2020;30:61–68. doi: 10.1016/j.celrep.2019.12.001. PubMed DOI PMC
Pepeliaev S., Hrudíková R., Jílková J., Pavlík J., Smirnou D., Černý Z., Franke L. Colorimetric enzyme-coupled assay for hyaluronic acid determination in complex samples. Eur. Polym. J. 2017;94:460–470. doi: 10.1016/j.eurpolymj.2017.07.036. DOI
Meyer J.L., Stern R. Age-dependent changes of hyaluronan in human skin. J. Investig. Dermatol. 1994;102:385–389. doi: 10.1111/1523-1747.ep12371800. PubMed DOI
Lin W., Shuster S., Maibach H.I., Stern R. Patterns of hyaluronan staining are modified by fixation techniques. J. Histochem. Cytochem. 1997;45:1157–1163. doi: 10.1177/002215549704500813. PubMed DOI
Cepa M. Segmentation of Total Cell Area in Brightfield Microscopy Images. Methods Protoc. 2018;1:43. doi: 10.3390/mps1040043. PubMed DOI PMC
Sinova R., Žádníková P., Šafránková B., Nešporová K. Anti-HA antibody does not detect hyaluronan. Glycobiology. 2021;31:520–523. doi: 10.1093/glycob/cwaa118. PubMed DOI
Simek M., Hermannová M., Šmejkalová D., Foglová T., Souček K., Binó L., Velebný V. LC-MS/MS study of in vivo fate of hyaluronan polymeric micelles carrying doxorubicin. Carbohydr. Polym. 2019;209:181–189. doi: 10.1016/j.carbpol.2018.12.104. PubMed DOI
Morgan T.W., Elson L.A. A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem. J. 1934;28:988–995. doi: 10.1042/bj0280988. PubMed DOI PMC
Guntenhoner W.M., Pogrel M.A., Stern R. A substrate-gel assay for hyaluronidase activity. Matrix. 1992;12:388–396. doi: 10.1016/S0934-8832(11)80035-1. PubMed DOI
Steiner B., Cruce D. A zymographic assay for detection of hyaluronidase activity on polyacrylamide gels and its application to enzymatic activity found in bacteria. Anal. Biochem. 1992;200:405–410. doi: 10.1016/0003-2697(92)90487-R. PubMed DOI
Richter W. Non-immunogenicity of purified hyaluronic acid preparations tested by passive cutaneous anaphylaxis. Int. Arch. Allergy Appl. Immunol. 1974;47:211–217. doi: 10.1159/000231214. PubMed DOI
Ripellino J.A., Klinger M.M., Margolis R.U. The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain. J. Histochem. Cytochem. 1985;33:1060–1066. doi: 10.1177/33.10.4045184. PubMed DOI
Tammi R., Ripellino J.A., Margolis R.U., Tammi M. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J. Investig. Dermatol. 1988;90:412–414. doi: 10.1111/1523-1747.ep12456530. PubMed DOI
Atmuri V., Martin D.C., Hemming R., Gutsol A., Byers S., Sahebjam S., Thliveris J.A., Mort J.S., Carmona E., Anderson J.E., et al. Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol. 2008;27:653–660. doi: 10.1016/j.matbio.2008.07.006. PubMed DOI
Hatziri A., Vynios D.H., Panogeorgou T., Bouga H., E Triantaphyllidou I., Naxakis S.S., Stathas T., Aletras A.J., Kourousis C., Mastronikolis N.S. Presence of hyaluronidase isoforms in nasal polyps. Eur. Rev. Med. Pharmacol. Sci. 2013;17:247–252. PubMed
Frost G.I., Csóka T.B., Wong T., Stern R. Purification, cloning, and expression of human plasma hyaluronidase. Biochem. Biophys. Res. Commun. 1997;236:10–15. doi: 10.1006/bbrc.1997.6773. PubMed DOI
Nawy S.S., Csóka A.B., Mio K., Stern R., Iozzo R.V. Hyaluronidase activity and hyaluronidase inhibitors. Assay using a microtiter-based system. Methods Mol. Biol. 2001;171:383–389. PubMed
Boonen M., Puissant E., Gilis F., Flamion B., Jadot M. Mouse liver lysosomes contain enzymatically active processed forms of Hyal-1. Biochem. Biophys. Res. Commun. 2014;446:1155–1160. doi: 10.1016/j.bbrc.2014.03.070. PubMed DOI
Puissant E., Gilis F., Dogné S., Flamion B., Jadot M., Boonen M. Subcellular trafficking and activity of Hyal-1 and its processed forms in murine macrophages. Traffic. 2014;15:500–51548. doi: 10.1111/tra.12162. PubMed DOI
Stern R., Jedrzejas M.J. Hyaluronidases: Their genomics, structures, and mechanisms of action. Chem. Rev. 2006;106:818–839. doi: 10.1021/cr050247k. PubMed DOI PMC
Harada H., Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 2007;282:5597–5607. doi: 10.1074/jbc.M608358200. PubMed DOI
Zhang W., Yin G., Zhao H., Ling H., Xie Z., Xiao C., Chen Y., Lin Y., Jiang T., Jin S., et al. Secreted KIAA1199 promotes the progression of rheumatoid arthritis by mediating hyaluronic acid degradation in an ANXA1-dependent manner. Cell Death Dis. 2021;12:102. doi: 10.1038/s41419-021-03393-5. PubMed DOI PMC
Bourguignon V., Flamion B. Respective roles of hyaluronidases 1 and 2 in endogenous hyaluronan turnover. FASEB J. 2016;30:2108–2114. doi: 10.1096/fj.201500178R. PubMed DOI
Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinol. 2012;4:253–258. doi: 10.4161/derm.21923. PubMed DOI PMC
Csoka B.A., Frost G.I., Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001;20:499–508. doi: 10.1016/S0945-053X(01)00172-X. PubMed DOI
Ronny R., Mark M.E. Hyaluronan Endocytosis: Mechanisms of Uptake and Biological Functions. In: Ceresa B., editor. Molecular Regulation of Endocytosis. IntechOpen; London, UK: 2012. Chapter 14.