A conditional mutation in a wheat (Triticum aestivum L.) gene regulating root morphology
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021YFH0114
Sichuan Province Science and Technology Support Program
PubMed
38345612
PubMed Central
PMC10861616
DOI
10.1007/s00122-024-04555-7
PII: 10.1007/s00122-024-04555-7
Knihovny.cz E-zdroje
- MeSH
- kořeny rostlin genetika MeSH
- mapování chromozomů MeSH
- mutace MeSH
- pšenice * metabolismus MeSH
- půda * MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
- voda MeSH
Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.
CSIRO Agriculture and Food PO Box 1700 Canberra ACT 2601 Australia
Grains Research and Development Corporation Barton ACT 2600 Australia
James Hutton Institute Invergowrie Dundee DD2 5DA UK
Research School of Biology The Australian National University Canberra ACT 2601 Australia
School of Applied Systems Biology La Trobe University Bundoora VIC Australia
Zobrazit více v PubMed
Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Uauy C. A roadmap for gene functional characterisation in crops with large genomes: lessons from polyploid wheat. Elife. 2020;9:e55646. doi: 10.7554/eLife.55646. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR. A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol. 2003;132:728–731. doi: 10.1104/pp.102.019216. PubMed DOI PMC
Chandler PM, Harding CA. 'Overgrowth' mutants in barley and wheat: new alleles and phenotypes of the 'Green Revolution' DELLA gene. J Exp Bot. 2013;64:1603–1613. doi: 10.1093/jxb/ert022. PubMed DOI PMC
Chen ML, Du YZ, Nomura Y, Zhu GNA, Zhorov BS, Dong K. Alanine to valine substitutions in the pore helix IIIP1 and linker-helix IIIL45 confer cockroach sodium channel resistance to DDT and pyrethroids. Neurotoxicology. 2017;60:197–206. doi: 10.1016/j.neuro.2016.06.009. PubMed DOI PMC
Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA. 2004;101:15249–15254. doi: 10.1073/pnas.0406258101. PubMed DOI PMC
Delhaize E, Ma JF, Ryan PR. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci. 2012;17:341–348. doi: 10.1016/j.tplants.2012.02.008. PubMed DOI
Delhaize E, Rathjen TM, Cavanagh CR. The genetics of rhizosheath size in a multiparent mapping population of wheat. J Exp Bot. 2015;66:4527–4536. doi: 10.1093/jxb/erv223. PubMed DOI PMC
Demina IV, Maity PJ, Nagchowdhury A, Ng JLP, van der Graaff E, Demchenko KN, Roitsch T, Mathesius U, Pawlowski K. Accumulation of and response to auxins in roots and nodules of the actinorhizal plant Datisca glomerata compared to the model legume Medicago truncatula. Front Plant Sci. 2019;10:1085. doi: 10.3389/fpls.2019.01085. PubMed DOI PMC
Diener AC, Li HX, Zhou WX, Whoriskey WJ, Nes WD, Fink GR. STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell. 2000;12:853–870. doi: 10.1105/tpc.12.6.853. PubMed DOI PMC
Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Ann Rev Plant Biol. 2010;61:593–620. doi: 10.1146/annurev-arplant-070109-104628. PubMed DOI
Gahoonia TS, Nielsen NE. Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant Cell Environ. 2003;26:1759–1766. doi: 10.1046/j.1365-3040.2003.01093.x. DOI
Gahoonia TS, Care D, Nielsen NE. Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil. 1997;191:181–188. doi: 10.1023/A:1004270201418. DOI
Gaillochet C, Pena Fernandez A, Goossens V, D'Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, De Saeger J, Develtere W, Audenaert D, De Vleesschauwer D, Meulewaeter F, Jacobs TB. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol. 2023;24:6. doi: 10.1186/s13059-022-02836-2. PubMed DOI PMC
Haas KT, Peaucelle A. From monocots to dicots: the multifold aspect of cell wall expansion. J Exp Bot. 2021;72:1511–1513. doi: 10.1093/jxb/eraa573. PubMed DOI PMC
Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science. 2020;367:1003–1007. doi: 10.1126/science.aaz5103. PubMed DOI PMC
Hedden P. The genes of the Green Revolution. Trends Genet. 2003;19:5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI
Hendriks PW, Ryan PR, Hands P, Rolland V, Gurusinghe S, Weston LA, Rebetzke GJ, Delhaize E. Selection for early shoot vigour in wheat increases root hair length but reduces epidermal cell size of roots and leaves. J Exp Bot. 2022;73:2499–2510. doi: 10.1093/jxb/erac048. PubMed DOI PMC
Horak H, Sierla M, Toldsepp K, Wang C, Wang YS, Nuhkat M, Valk E, Pechter P, Merilo E, Salojarvi J, Overmyer K, Loog B, Brosche A, Schroeder JI, Kangasjarvi J, Kollist H. A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell. 2016;28:2493–2509. doi: 10.1105/tpc.16.00131. PubMed DOI PMC
Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB. High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet. 2008;116:945–952. doi: 10.1007/s00122-008-0726-2. PubMed DOI
International Wheat Genome Sequencing Consortium Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:7191. doi: 10.1126/science.aar7191. PubMed DOI
Itoh Y, Kamata-Sakurai M, Denda-Nagai K, Nagai S, Tsuiji M, Ishii-Schrade K, Okada K, Goto A, Fukayama M, Irimura T. Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiol. 2008;18:74–83. doi: 10.1093/glycob/cwm118. PubMed DOI
Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska AL, Hamant O, Bhalerao RP. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr Biol. 2021;31(1154–1164):e1153. doi: 10.1016/j.cub.2020.12.016. PubMed DOI
Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J. Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci U S A. 2017;114:E913–E921. doi: 10.1073/pnas.1619268114. PubMed DOI PMC
Krasilnikoff G, Gahoonia T, Nielsen NE. Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil. 2003;251:83–91. doi: 10.1023/a:1022934213879. DOI
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–U354. doi: 10.1038/Nmeth.1923. PubMed DOI PMC
Li H, Chen QY, Moss AJ, Robinson J, Goytia V, Perry JC, Vincent GM, Priori SG, Lehmann MH, Denfield SW, Duff D, Kaine S, Shimizu W, Schwartz PJ, Wang Q, Towbin JA. New mutations in the KVLQT1 potassium channel that cause long-QT syndrome. Circulation. 1998;97:1264–1269. doi: 10.1161/01.Cir.97.13.1264. PubMed DOI
Li J, Yang J, Li Y, Ma L. Current strategies and advances in wheat biology. Crop J. 2020;8:879–891. doi: 10.1016/j.cj.2020.03.004. DOI
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88:9828–9832. doi: 10.1073/pnas.88.21.9828. PubMed DOI PMC
Ni P, Zhao Y, Zhou X, Liu Z, Huang Z, Ni Z, Sun Q, Zong Y. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol. 2023;24:156. doi: 10.1186/s13059-023-02990-1. PubMed DOI PMC
Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell. 2005;17:3282–3300. doi: 10.1105/tpc.105.036723. PubMed DOI PMC
Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol. 2009;10:11. doi: 10.1186/1471-2199-10-11. PubMed DOI PMC
Peaucelle A, Braybrook S, Hofte H. Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci. 2012;3:121. doi: 10.3389/fpls.2012.00121. PubMed DOI PMC
Pena-Bautista RJ, Hernandez-Espinosa N, Jones JM, Guzman C, Braun HJ. CIMMYT series on carbohydrates, wheat, grains, and health wheat-based foods: their global and regional importance in the food supply, nutrition, and health. Cereal Food World. 2017;62:231–249. doi: 10.1094/Cfw-62-5-0231. DOI
Pereira CS, Silveira RL, Dupree P, Skaf MS. Effects of xylan side-chain substitutions on xylan-cellulose interactions and implications for thermal pretreatment of cellulosic biomass. Biomacromol. 2017;18:1311–1321. doi: 10.1021/acs.biomac.7b00067. PubMed DOI
Petrova A, Gorshkova T, Kozlova L. Gradients of cell wall nano-mechanical properties along and across elongating primary roots of maize. J Exp Bot. 2021;72:1764–1781. doi: 10.1093/jxb/eraa561. PubMed DOI
Pettolino FA, Walsh C, Fincher GB, Bacic A. Determining the polysaccharide composition of plant cell walls. Nat Protoc. 2012;7:1590–1607. doi: 10.1038/nprot.2012.081. PubMed DOI
Proseus TE, Boyer JS. Calcium pectate chemistry controls growth rate of Chara corallina. J Exp Bot. 2006;57:3989–4002. doi: 10.1093/jxb/erl166. PubMed DOI
Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrana J, Kubalakova M, Krattinger SG, Wicker T, Dolezel J, Keller B, Wulff BBH. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:221. doi: 10.1186/s13059-016-1082-1. PubMed DOI PMC
Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor Appl Genet. 2007;115:451–461. doi: 10.1007/s00122-007-0579-0. PubMed DOI
Temple H, Phyo P, Yang W, Lyczakowski JJ, Echevarria-Poza A, Yakunin I, Parra-Rojas JP, Terrett OM, Saez-Aguayo S, Dupree R, Orellana A, Hong M, Dupree P. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nat Plants. 2022;8:656–669. doi: 10.1038/s41477-022-01156-4. PubMed DOI
Tryfona T, Bourdon M, Delgado Marques R, Busse-Wicher M, Vilaplana F, Stott K, Dupree P. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant J. 2023;113:1004–1020. doi: 10.1111/tpj.16096. PubMed DOI PMC
Uauy C. Wheat genomics comes of age. Curr Opin Plant Biol. 2017;36:142–148. doi: 10.1016/j.pbi.2017.01.007. PubMed DOI
Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, deJager T, Schwartz PJ, Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 1996;12:17–23. doi: 10.1038/ng0196-17. PubMed DOI
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12:787–796. doi: 10.1111/pbi.12183. PubMed DOI PMC
Zhang C, Simpson RJ, Kim CM, Warthmann N, Delhaize E, Dolan L, Byrne ME, Wu Y, Ryan PR. Do longer root hairs improve phosphorus uptake? Testing the hypothesis with transgenic Brachypodium distachyon lines overexpressing endogenous RSL genes. New Phytol. 2018;217:1654–1666. doi: 10.1111/nph.14980. PubMed DOI