An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects

. 2018 ; 6 () : 62. [epub] 20180517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29868577

This review shows the steps toward material selection focalized on the design and development of medical devices based on hyaluronan (HA). The selection is based on chemical and mechanical properties, biocompatibility, sterilization, safety, and scale-up costs. These facts play a vital role in the industrialization process. Approved medical devices containing-HA are illustrated to identify key parameters. The first part of this work involves the steps toward a complete characterization of chemical and mechanical aspects, reproducibility of the processes and scale up. In a second stage, we aimed to describe the preclinical in vitro and in vivo assays and selected examples of clinical trials. Furthermore, it is important to keep in mind the regulatory affairs during the research and development (R&D) using standardization (ISO standards) to achieve the main goal, which is the functionality and safety of the final device. To keep reproducible experimental data to prepare an efficient master file for the device, based on quality and recorded manufacturing data, and a rigorous R&D process may help toward clinical translation. A strong debate is still going on because the denominated basic research in HA field does not pay attention to the purity and quality of the raw materials used during the development. So that, to achieve the next generation of devices is needed to overcome the limitations of state of art in terms of efficacy, biodegradability, and non-toxicity.

Zobrazit více v PubMed

Alfaro V., Cullell-Young M., Tanovic A. (2007). Abbreviated clinical study reports with investigational medicinal products for human use: current guidelines and recommendations. Croat. Med. J. 48, 871–877. 10.3325/cmj.2007.6.871 PubMed DOI PMC

Altman R. D., Bedi A., Karlsson J., Sancheti P., Schemitsch E. (2016). Product differences in intra-articular hyaluronic acids for osteoarthritis of the knee. Am. J. Sports Med. 44, 2158–2165. 10.1177/0363546515609599 PubMed DOI

Anderson J. M., Rodriguez A., Chang D. T. (2008). Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. 10.1016/j.smim.2007.11.004 PubMed DOI PMC

Baeva L. F., Das S. S., Hitchins V. M. (2017). Bacterial endotoxin detection in hyaluronic acid-based medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 1210–1215. 10.1002/jbm.b.33659 PubMed DOI

Bannuru R. R., Natov N. S., Dasi U. R., Schmid C. H., McAlindon T. E. (2011). Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis–meta-analysis. Osteoarthr. Cartil. 19, 611–619. 10.1016/j.joca.2010.09.014 PubMed DOI

Battistini F. D., Tártara L. I., Boiero C., Guzmán M. L., Luciani-Giaccobbe L. C., Palma S. D., et al. . (2017). The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 105, 188–194. 10.1016/j.ejps.2017.05.020 PubMed DOI

Bedi O., Krishan P., Singh G. (2017). Regulatory requirements for medical devices: an insight. Appl. Clin. Res. Clin. Trials Regul. Affairs 4, 16–25. 10.2174/2213476X03666160804153513 DOI

Beldman T. J., Senders M. L., Alaarg A., Pérez-Medina C., Tang J., Zhao Y., et al. . (2017). Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano 11, 5785–5799. 10.1021/acsnano.7b01385 PubMed DOI PMC

Bhojani-Lynch T. (2017). Late-onset inflammatory response to hyaluronic acid dermal fillers. Plastic Reconstr. Surg. Global Open 5:e1532. 10.1097/GOX.0000000000001532 PubMed DOI PMC

Bitterman-Deutsch O., Kogan L., Nasser F. (2015). Delayed immune mediated adverse effects to hyaluronic acid fillers: report of five cases and review of the literature. Dermatol Rep. 7:5851. 10.4081/dr.2015.5851 PubMed DOI PMC

Bonnevie E. D., Galesso D., Secchieri C., Cohen I., Bonassar L. J. (2015). Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS ONE 10:e0143415. 10.1371/journal.pone.0143415 PubMed DOI PMC

Boutefnouchet T., Puranik G., Holmes E., Bell K. M. (2017). Hylan GF-20 viscosupplementation in the treatment of symptomatic osteoarthritis of the knee: clinical effect survivorship at 5 years. Knee Surg. Relat. Res. 29, 129–136. 10.5792/ksrr.16.061 PubMed DOI PMC

Braithwaite G. J., Daley M. J., Toledo-Velasquez D. (2016). Rheological and molecular weight comparisons of approved hyaluronic acid products—preliminary standards for establishing class III medical device equivalence. J. Biomat. Sci. Polym. Ed. 27, 235–246. 10.1080/09205063.2015.1119035 PubMed DOI

Brittberg M. (2014). Knee cartilage repair with hyalograft® (Hyaff-11 scaffold with seeded autologous chondrocytes), in Techniques in Cartilage Repair Surgery, eds Shetty A. A., Kim S. J., Nakamura N., Brittberg M. (Berlin; Heidelberg: Springer Berlin Heidelberg; ), 227–235.

Casas J. W., Lewerenz G. M., Rankin E. A., Willoughby J. A., Sr., Blakeman L. C., McKim J. M., Jr., et al. . (2013). In vitro human skin irritation test for evaluation of medical device extracts. Toxicol. In Vitro 27, 2175–2183. 10.1016/j.tiv.2013.08.006 PubMed DOI

Chen C.-H., Chen S.-H., Mao S.-H., Tsai M.-J., Chou P.-Y., Liao C.-H., et al. . (2017). Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr. Polym. 173, 721–731. 10.1016/j.carbpol.2017.06.019 PubMed DOI

Chen M., Zhang W., Yuan K., Bo M., Chen B., Li L., et al. . (2017). Preclinical evaluation and monitoring of the therapeutic response of a dual targeted hyaluronic acid nanodrug. Contrast Media Mol. Imaging 2017:4972701. 10.1155/2017/4972701 PubMed DOI PMC

Chmelar J., Kotzianova A., Hermannova M., Sulakova R., Smejkalova D., Kulhanek J., et al. (2017). Evaluating the degree of substitution of water-insoluble acyl derivatives of hyaluronan using Raman spectroscopy: method development and comparison with gas chromatography and 1H NMR. Anal. Methods 9, 232–239. 10.1039/C6AY03067J DOI

Choi D. H., Kang S. N., Kim S. M., Gobaa S., Park B. J., Kim I. H., et al. . (2016). Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization. Colloids Surf. B Biointerfaces 141, 602–610. 10.1016/j.colsurfb.2016.01.028 PubMed DOI

Choi J., Kim J.-K., Kim J.-H., Kweon D.-K., Lee J.-W. (2010). Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: a comparative study. Carbohydr. Polym. 79, 1080–1085. 10.1016/j.carbpol.2009.10.041 DOI

Christo S. N., Diener K. R., Bachhuka A., Vasilev K., Hayball J. D. (2015). Innate immunity and biomaterials at the nexus: friends or foes. Biomed. Res. Int. 2015:342304 10.1155/2015/342304 PubMed DOI PMC

Chun C., Lee D. Y., Kim J. T., Kwon M. K., Kim Y. Z., Kim S. S. (2016). Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers. Biomater Res. 20:24. 10.1186/s40824-016-0073-3 PubMed DOI PMC

Coleman K. P., McNamara L. R., Grailer T. P., Willoughby J. A., Keller D. J., Patel P., et al. (2015). Evaluation of an in vitro human dermal sensitization test for use with medical device extracts. Appl. In Vitro Toxicol. 1, 118–130. 10.1089/aivt.2015.0007 DOI

Cowman M. K. (2017). Hyaluronan and hyaluronan fragments. Adv. Carbohydr. Chem. Biochem. 74, 1–59. 10.1016/bs.accb.2017.10.001 PubMed DOI

Cožíková D., Šílová T., Moravcová V., Šmejkalová D., Pepeliaev S., Velebný V., Hermannová M. (2017). Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr. Polym. 160, 134–142. 10.1016/j.carbpol.2016.12.045 PubMed DOI

Cyphert J. M., Trempus C. S., Garantziotis S. (2015). Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int. J. Cell Biol. 2015:563818. 10.1155/2015/563818 PubMed DOI PMC

De Boulle K., Glogau R., Kono T., Nathan M., Tezel A., Roca-Martinez J.-X., et al. . (2013). A review of the metabolism of 1,4-butanediol diglycidyl ether–crosslinked hyaluronic acid dermal fillers. Dermatol. Surg. 39, 1758–1766. 10.1111/dsu.12301 PubMed DOI PMC

D'Agostino A., Stellavato A., Busico T., Papa A., Tirino V., Papaccio G., et al. . (2015). In vitro analysis of the effects on wound healing of high- and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes. BMC Cell Biol. 16:19. 10.1186/s12860-015-0064-6 PubMed DOI PMC

D'Este M., Sprecher C. M., Milz S., Nehrbass D., Dresing I., Zeiter S., et al. . (2016). Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J. Biomed. Mater. Res. A. 104, 1469–1478. 10.1002/jbm.a.35673 PubMed DOI

Diamond M. P., Burns E. L., Accomando B., Mian S., Holmdahl L. (2012). Seprafilm® adhesion barrier: a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 9, 237–245. 10.1007/s10397-012-0741-9 PubMed DOI PMC

Dondossola E., Holzapfel B. M., Alexander S., Filippini S., Hutmacher D. W., Friedl P., et al. . (2016). Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1:0007. 10.1038/s41551-016-0007 PubMed DOI PMC

Doros G., Lavin P. T., Daley M., Miller L. E. (2016). A method for establishing class III medical device equivalence: sodium hyaluronate (GenVisc 850) for the treatment of knee osteoarthritis. Med. Devices 9, 205–211. 10.2147/MDER.S104327 PubMed DOI PMC

Drímalová E., Velebný V., Sasinková V., Hromádková Z., Ebringerová A. (2005). Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating. Carbohydr. Polym. 61, 420–426. 10.1016/j.carbpol.2005.05.035 DOI

Essendoubi M., Gobinet C., Reynaud R., Angiboust J. F., Manfait M., Piot O. (2016). Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 22, 55–62. 10.1111/srt.12228 PubMed DOI

Franz S., Rammelt S., Scharnweber D., Simon J. C. (2011). Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709. 10.1016/j.biomaterials.2011.05.078 PubMed DOI

Geavlete P. A., Georgescu D., Multescu R., Geavlete B. (2016). Chapter 9: Endoscopic approach to intramural ureter pathology, in Endoscopic Diagnosis and Treatment in Urinary Bladder Pathology, ed Geavlete P. A. (San Diego, CA: Academic Press; ), 293–348.

Gibbs P., Brown T. J., Ng R., Jennens R., Cinc E., Pho M., et al. . (2008). A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 55, 49–59. 10.1159/000180339 PubMed DOI

Gigis I., Fotiadis E., Nenopoulos A., Tsitas K., Hatzokos I. (2016). Comparison of two different molecular weight intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia 20, 26–31. PubMed PMC

Gold M. H. (2007). Use of hyaluronic acid fillers for the treatment of the aging face. Clin. Interv. Aging 2, 369–376. 10.2147/CIA.S1244 PubMed DOI PMC

Gomis A., Miralles A., Schmidt R. F., Belmonte C. (2009). Intra-articular injections of hyaluronan solutions of different elastoviscosity reduce nociceptive nerve activity in a model of osteoarthritic knee joint of the guinea pig. Osteoarthr. Cartil. 17, 798–804. 10.1016/j.joca.2008.11.013 PubMed DOI

Gross D., Childs M., Piaton J. M. (2017). Comparison of 0.2% and 0.18% hyaluronate eye drops in patients with moderate to severe dry eye with keratitis or keratoconjunctivitis. Clin. Ophthalmol. 11, 631–638. 10.2147/OPTH.S131384 PubMed DOI PMC

Guarise C., Pavan M., Pirrone L., Renier D. (2012). SEC determination of cross-link efficiency in hyaluronan fillers. Carbohydr. Polym. 88, 428–434. 10.1016/j.carbpol.2011.12.004 DOI

Guo J., Guo S., Wang Y., Yu Y. (2017). Adipose derived stem cells and hyaluronic acid based gel compatibility, studied in vitro. Mol. Med. Rep. 16, 4095–4100. 10.3892/mmr.2017.7055 PubMed DOI

Hauser S., Jung F., Pietzsch J. (2017). Human endothelial cell models in biomaterial research. Trends Biotechnol. 35, 265–277. 10.1016/j.tibtech.2016.09.007 PubMed DOI

Hayden P. J., Michael B., Seyoum A., Silvia L., Yulia K., Mitchell K., et al. (2015). Application of mattek in vitro reconstructed human skin models for safety, efficacy screening, and basic preclinical research. Appl. In Vitro Toxicol. 1, 226–233. 10.1089/aivt.2015.0012 DOI

Highley C. B., Prestwich G. D., Burdick J. A. (2016). Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr. Opin. Biotechnol. 40, 35–40. 10.1016/j.copbio.2016.02.008 PubMed DOI

Huerta-Angeles G., Brandejsová M., Knotková K., Hermannová M., Moravcová M., Šmejkalová D., Velebný V. (2016a). Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers. Carbohydr. Polym. 137, 255–263. 10.1016/j.carbpol.2015.10.077 PubMed DOI

Huerta-Angeles G., Brandejsová M., Kulhánek J., Pavlík V., Šmejkalová D., Vágnerová H., Velebný V. (2016b). Linolenic acid grafted hyaluronan: process development, structural characterization, biological assessing, and stability studies. Carbohydr. Polym. 152, 815–824. 10.1016/j.carbpol.2016.07.030 PubMed DOI

Huerta-Angeles G., Brandejsová M., Nigmatullin R., Kopecká K., Vágnerová H., Šmejkalová D., et al. . (2017). Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). Carbohydr. Polym. 171, 220–228. 10.1016/j.carbpol.2017.05.011 PubMed DOI

Huerta-Angeles G., Šmejkalová D., Chládková D., Ehlová T., Radovan B., Velebný V. (2011). Synthesis of highly substituted amide hyaluronan derivatives with tailored degree of substitution and their crosslinking via click chemistry. Carbohydr. Polym. 84, 1293–1300. 10.1016/j.carbpol.2011.01.021 DOI

Hwang C. J. (2016). Periorbital injectables: understanding and avoiding complications. J. Cutan. Aesthet. Surg. 9, 73–79. 10.4103/0974-2077.184049 PubMed DOI PMC

Iannitti T., Morales-Medina J. C., Coacci A., Palmieri B. (2016). Experimental and clinical efficacy of two hyaluronic acid-based compounds of different cross-linkage and composition in the rejuvenation of the skin. Pharm. Res. 33, 2879–2890. 10.1007/s11095-014-1354-y PubMed DOI

Ibrahim I. H., Chassapis C. (2014). Recent patents on risk management during medical device lifecycle: managing the transition from bench to market. Recent Patents Eng. 8, 133–142. 10.2174/1872212108666140829011303 DOI

Ishikawa M., Yoshioka K., Urano K., Tanaka Y., Hatanaka T., Nii A. (2014). Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthr. Cartil. 22, 1902–1909. 10.1016/j.joca.2014.08.002 PubMed DOI

Kaur M., Jayaraman G. (2016). Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab. Eng. Commun. 3, 15–23. 10.1016/j.meteno.2016.01.003 PubMed DOI PMC

Kawada C., Kimura M., Masuda Y., Nomura Y. (2015). Oral administration of hyaluronan prevents skin dryness and epidermal thickening in ultraviolet irradiated hairless mice. J. Photochem. Photobiol. B. 153, 215–221. 10.1016/j.jphotobiol.2015.09.020 PubMed DOI

Kessler S. P., Obery D. R., Nickerson K. P., Petrey A. C., McDonald C., de la Motte C. A. (2018). Multifunctional role of 35 kilodalton hyaluronan in promoting defense of the intestinal epithelium. J. Histochem. Cytochem. 66, 273–287. 10.1369/0022155417746775 PubMed DOI PMC

Khunmanee S., Jeong Y., Park H. (2017). Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 8. 10.1177/2041731417726464 PubMed DOI PMC

Kim H., Jeong H., Han S., Beack S., Hwang B. W., Shin M., et al. . (2017). Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 123, 155–171. 10.1016/j.biomaterials.2017.01.029 PubMed DOI

Kim J.-T., Lee D. Y., Kim E.-J., Jang J.-W., Cho N.-I. (2014a). Tissue response to implants of hyaluronic acid hydrogel prepared by microbeads. Tissue Eng. Regener. Med. 11, 32–38. 10.1007/s13770-013-1106-9 DOI

Kim J.-T., Lee D. Y., Kim T.-H., Song Y.-S., Cho N.-I. (2014b). Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads. Metals Mater. Internat. 20, 555–563. 10.1007/s12540-014-3022-5 DOI

Kimura M., Maeshima T., Kubota T., Kurihara H., Masuda Y., Nomura Y. (2016). Absorption of orally administered hyaluronan. J. Med. Food 19, 1172–1179. 10.1089/jmf.2016.3725 PubMed DOI

Kong B., Seog J. H., Graham L. M., Lee S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6, 929–941. 10.2217/nnm.11.77 PubMed DOI PMC

Kuehl C., Zhang T., Kaminskas L. M., Porter C. J. H., Davies N. M., Forrest L., et al. . (2016). Hyaluronic acid molecular weight determines lung clearance and biodistribution after instillation. Mol. Pharm. 13, 1904–1914. 10.1021/acs.molpharmaceut.6b00069 PubMed DOI PMC

La Gatta A., De Rosa M., Frezza M. A., Catalano C., Meloni M., Schiraldi C. (2016). Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: a scientific rationale to specific clinical indications. Mater. Sci. Eng. C 68, 565–572. 10.1016/j.msec.2016.06.008 PubMed DOI

Larrañeta E., Henry M., Irwin N. J., Trotter J., Perminova A. A., Donnelly R. F. (2018). Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym. 181, 1194–1205. 10.1016/j.carbpol.2017.12.015 PubMed DOI PMC

Laszlo H., Robert S., Piotr L., Wojciech Z., Endre L., Eva D., et al. (2017). Intraarticular injection of a cross-linked sodium hyaluronate combined with triamcinolone hexacetonide (Cingal) to provide symptomatic relief of osteoarthritis of the knee: a randomized, double-blind, placebo-controlled multicenter clinical trial. Cartilage 1:1947603517703732 10.1177/1947603517703732 PubMed DOI PMC

Li J., Feng X., Liu B., Yu Y., Sun L., Liu T., et al. . (2017). Polymer materials for prevention of postoperative adhesion. Acta Biomater. 61, 21–40. 10.1016/j.actbio.2017.08.002 PubMed DOI

Li W., Zhou J., Xu Y. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep 3, 617–620. 10.3892/br.2015.481 PubMed DOI PMC

Liu X. M., Heiler D. J., Menzel T., Brongo A., Burke S. E., Cummins K. (2012). Sterile Hyaluronic Acid Solutions. US 8283463 B2.

Liu Y., Zheng Shu X., Prestwich G. D. (2005). Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 26, 4737–4746. 10.1016/j.biomaterials.2005.01.003 PubMed DOI

Loebel C., Szczesny S. E., Cosgrove B. D., Alini M., Zenobi-Wong M., Mauck R. L., et al. . (2017). Cross-linking chemistry of tyramine-modified hyaluronan hydrogels alters mesenchymal stem cell early attachment and behavior. Biomacromolecules 18, 855–864. 10.1021/acs.biomac.6b01740 PubMed DOI

Longinotti C. (2014). The use of hyaluronic acid based dressings to treat burns: a review. Burns Trauma 2, 162–168. 10.4103/2321-3868.142398 PubMed DOI PMC

Markel D. C., Jackson N. M., Esquivel A. O., Ren W., Flynn J. C. (2014). Immunological response to bolus versus multiple injections of hylan G-F 20 (Synvisc®) in a murine biocompatibility model. J. Biomed. Mat. Res. B Appl. Biomat. 102, 1375–1380. 10.1002/jbm.b.33116 PubMed DOI

Matarasso S. L., Carruthers J. D., Jewell M. L. (2006). Consensus recommendations for soft-tissue augmentation with nonanimal stabilized hyaluronic acid (Restylane). Plast Reconstr. Surg. 117(3 Suppl.), 3S–34S; discussion 35S−43S. 10.1097/01.prs.0000204759.76865.39 PubMed DOI

Migliore A., Procopio S. (2015). Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin. Cases Min. Bone Metab. 12, 31–33. 10.11138/ccmbm/2015.12.1.031 PubMed DOI PMC

Migliore A., Giovannangeli F., Granata M., Laganà B. (2010). Hylan G-F 20: review of its safety and efficacy in the management of joint pain in osteoarthritis. Clin. Med. Insights Arthr. Musculoskelet. Disord. 3, 55–68. 10.1177/117954411000300001 PubMed DOI PMC

Morais J. M., Papadimitrakopoulos F., Burgess D. J. (2010). Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196. 10.1208/s12248-010-9175-3 PubMed DOI PMC

Morse A. N., Hammer R. A., Cornella J. L., Loftus J. C. (2005). Validation of a mouse adhesion reduction model using seprafilm®. J. Gynecol. Surg. 21, 147–153. 10.1089/gyn.2005.21.147 DOI

Nih L. R., Carmichael S. T., Segura T. (2016). Hydrogels for brain repair after stroke: an emerging treatment option. Curr. Opin. Biotechnol. 40, 155–163. 10.1016/j.copbio.2016.04.021 PubMed DOI PMC

Oe M., Tashiro T., Yoshida H., Nishiyama H., Masuda Y., Maruyama K., et al. . (2016). Oral hyaluronan relieves knee pain: a review. Nutr. J. 15:11. 10.1186/s12937-016-0128-2 PubMed DOI PMC

Olejnik A., Goscianska J., Zielinska A., Nowak I. (2015). Stability determination of the formulations containing hyaluronic acid. Int. J. Cosmet. Sci. 37, 401–407. 10.1111/ics.12210 PubMed DOI

Oliveira M. Z., Albano M. B., Namba M. M., da Cunha L. A. M., de Lima Gonçalves R. R., Trindade E. S., et al. . (2014). Effect of hyaluronic acids as chondroprotective in experimental model of osteoarthrosis. Rev. Bras. Ortop. 49, 62–68. 10.1016/j.rbo.2013.04.006 PubMed DOI PMC

Papakonstantinou E., Roth M., Karakiulakis G. (2012). Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 4, 253–258. 10.4161/derm.21923 PubMed DOI PMC

Pavesio A., Abatangelo G., Borrione A., Brocchetta D., Hollander A. P., Kon E., et al. . (2003). Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp. 249, 203–217; discussion 229–233, 234–208, 239–241. 10.1002/0470867973.ch15 PubMed DOI

Pavicic T., Gauglitz G. G., Lersch P., Schwach-Abdellaoui K., Malle B., Korting H. C., et al. . (2011). Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J. Drugs Dermatol. 10, 990–1000. PubMed

Pedrosa T. D. N., Catarino C. M., Pennacchi P. C., Assis S. R., Gimenes F., Consolaro M. E. L., et al. . (2017). A new reconstructed human epidermis for in vitro skin irritation testing. Toxicol. In Vitro 42, 31–37. 10.1016/j.tiv.2017.03.010 PubMed DOI

Pérez-Pérez L., García-Gavín J., Wortsman X., Santos-Briz Á. (2017). Delayed adverse subcutaneous reaction to a new family of hyaluronic acid dermal fillers with clinical, ultrasound, and histologic correlation. Dermatol. Surg. 43, 605–608. 10.1097/DSS.0000000000000945 PubMed DOI

Phillips K. S., Wang Y. (2017). U.S. Food and drug administration authors publish articles on dermal filler materials, injections, methods, and skin preparation. Plast Reconstr. Surg. 140, 632e−633e. 10.1097/PRS.0000000000003723 PubMed DOI

Pi S., Choi Y. J., Hwang S., Lee D. W., Yook J. I., Kim K. H., et al. . (2017). Local injection of hyaluronic acid filler improves open gingival embrasure: validation through a rat model. J. Periodontol. 88, 1221–1230. 10.1902/jop.2017.170101 PubMed DOI

Picotti F., Fabbian M., Gianni R., Sechi A., Stucchi L., Bosco M. (2013). Hyaluronic acid lipoate: synthesis and physicochemical properties. Carbohydr. Polym. 93, 273–278. 10.1016/j.carbpol.2012.04.009 PubMed DOI

Priano F. (2017). Early efficacy of intra-articular HYADD® 4 (Hymovis®) injections for symptomatic knee osteoarthritis. Joints 5, 79–84. 10.1055/s-0037-1603677 PubMed DOI PMC

Quinones J. P., Jokinen J., Keinänen S., Covas C. P., Brüggemann O., Ossipov D. (2018). Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. Eur. Polym. J. 99, 384–393. 10.1016/j.eurpolymj.2017.12.043 DOI

Rayahin J. E., Gemeinhart R. A. (2017). Activation of Macrophages in response to biomaterials, in Macrophages: Origin, Functions and Biointervention, ed Kloc M. (Cham: Springer International Publishing; ), 317–351. PubMed

Romagnoli M., Belmontesi M. (2008). Hyaluronic acid-based fillers: theory and practice. Clin. Dermatol. 26, 123–159. 10.1016/j.clindermatol.2007.09.001 PubMed DOI

Sacco P., Sechi A., Trevisan A., Picotti F., Gianni R., Stucchi L., et al. . (2016). A silver complex of hyaluronan–lipoate (SHLS12): synthesis, characterization and biological properties. Carbohydr. Polym. 136, 418–426. 10.1016/j.carbpol.2015.09.057 PubMed DOI

Šafránková B., Hermannová M., Nešporová K., Velebný V., Kubala L. (2018). Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro. Int. J. Biol. Macromol. 107, 1–8. 10.1016/j.ijbiomac.2017.08.131 PubMed DOI

Salzillo R., Schiraldi C., Corsuto L., D'Agostino A., Filosa R., De Rosa M., et al. . (2016). Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 153, 275–283. 10.1016/j.carbpol.2016.07.106 PubMed DOI

Shiedlin A., Bigelow R., Christopher W., Arbabi S., Yang L., Maier R. V., et al. . (2004). Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 5, 2122–2127. 10.1021/bm0498427 PubMed DOI

Shin Y. S., Kwon W. J., Cho E. B., Park E. J., Kim K. H., Kim K. J. (2018). A case of cellulitis-like foreign body reaction after hyaluronic acid dermal filler injection. Dermatol. Sin. 36, 46–49. 10.1016/j.dsi.2017.06.004 DOI

Sigen A., Xu Q., McMichael P., Gao Y., Li X., Wang X., et al. (2018). A facile one-pot synthesis of acrylated hyaluronic acid. Chem. Commun. 54, 1081–1084. 10.1039/C7CC08648B PubMed DOI

Simon-Walker R., Cavicchia J., Prawel D. A., Dasi L. P., James S. P., Popat K. C. (2017). Hemocompatibility of hyaluronan enhanced linear low density polyethylene for blood contacting applications. J. Biomed. Mater. Res. B Appl. Biomater. [Epub ahead of print]. 10.1002/jbm.b.34010 PubMed DOI PMC

Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., et al. . (2017). Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 156, 86–96. 10.1016/j.carbpol.2016.09.013 PubMed DOI

Smejkalová D., Nešporová K., Hermannová M., Huerta-Angeles G., Cožiková D., Vištejnova L., et al. . (2014). Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int. J. Pharm. 466, 147–155. 10.1016/j.ijpharm.2014.03.024 PubMed DOI

Smith M. M., Cake M. A., Ghosh P., Schiavinato A., Read R. A., Little C. B. (2008). Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology 47, 1172–1178. 10.1093/rheumatology/ken219 PubMed DOI PMC

Stellavato A., La Noce M., Corsuto L., Pirozzi A. V. A., De Rosa M., Papaccio G., et al. . (2017). Hybrid complexes of high and low molecular weight hyaluronans highly enhance HASCs differentiation: implication for facial bioremodelling. Cell. Physiol. Biochem. 44, 1078–1092. 10.1159/000485414 PubMed DOI

Strand V., Baraf H. S. B., Lavin P. T., Lim S., Hosokawa H. (2012). A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200, a new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthr. Cartil. 20, 350–356. 10.1016/j.joca.2012.01.013 PubMed DOI

Sun F., Niu H., Wang D., Wu Y., Mu H., Ma L., et al. . (2017). Novel moisture-preserving derivatives of hyaluronan resistant to hyaluronidase and protective to UV light. Carbohydr. Polym. 157, 1198–1204. 10.1016/j.carbpol.2016.10.086 PubMed DOI

Tolg C., Telmer P., Turley E. (2014). Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair. PLoS ONE 9:e88479. 10.1371/journal.pone.0088479 PubMed DOI PMC

Tran C., Carraux P., Micheels P., Kaya G., Salomon D. (2014). In vivo bio-integration of three hyaluronic acid fillers in human skin: a histological study. Dermatology 228, 47–54. 10.1159/000354384 PubMed DOI

Turner N. J., Kielty C. M., Walker M. G., Canfield A. E. (2004). A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25, 5955–5964. 10.1016/j.biomaterials.2004.02.002 PubMed DOI

Urdiales-Gálvez F., Delgado N. E., Figueiredo V., Lajo-Plaza J. V., Mira M., Moreno A., et al. . (2018). Treatment of soft tissue filler complications: expert consensus recommendations. Aesthetic Plast. Surg. 42, 498–510. 10.1007/s00266-017-1063-0 PubMed DOI PMC

Van Norman G. A. (2016). Drugs and devices: comparison of European and U.S. approval processes. JACC 1, 399–412. 10.1016/j.jacbts.2016.06.003 PubMed DOI PMC

Vasconcelos D. M., Cortez J., Lamghari M. (2016). Technical Standards and Legislation for Implants and Implantable Medical Devices Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier.

Wang J., Witte F., Xi T., Zheng Y., Yang K., Yang Y., et al. . (2015). Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 21, 237–249. 10.1016/j.actbio.2015.04.011 PubMed DOI

Wehling P., Evans C., Wehling J., Maixner W. (2017). Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Ther. Adv. Musculoskelet. Dis. 9, 183–196. 10.1177/1759720X17712695 PubMed DOI PMC

Wende F. J., Gohil S., Mojarradi H., Gerfaud T., Nord L. I., Karlsson A., et al. . (2016). Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods. Carbohydr. Polym. 136, 1348–1357. 10.1016/j.carbpol.2015.09.112 PubMed DOI

Wende F. J., Gohil S., Nord L. I., Helander Kenne A., Sandström C. (2017). 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohydr. Polym. 157, 1525–1530. 10.1016/j.carbpol.2016.11.029 PubMed DOI

Wiegand C., Hipler U. C. (2009). Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Skin Pharmacol. Physiol. 22, 74–82. 10.1159/000178866 PubMed DOI

Wong T. Y., Chang C.-H., Yu C.-H., Huang L. L. H. (2017). Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell 16, 451–460. 10.1111/acel.12567 PubMed DOI PMC

Wortman R. S., Merritt K., Brown S. A. (1983). The use of the mouse peritoneal cavity for screening for biocompatibility of polymers. Biomater. Med. Devices Artif. Organs 11, 103–114. 10.3109/10731198309118799 PubMed DOI

Wu L., Liu X., Jian X., Wu X., Xu N., Dou X., et al. . (2017). Delayed allergic hypersensitivity to hyaluronidase during the treatment of granulomatous hyaluronic acid reactions. J. Cosmet. Dermatol. [Epub ahead of print]. 10.1111/jocd.12461 PubMed DOI

Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. (2017). A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J. Biol. Chem. 292, 7304–7313. 10.1074/jbc.M116.770149 PubMed DOI PMC

Zamboni F., Keays M., Hayes S., Albadarin A. B., Walker G. M., Kiely P. A., et al. . (2017). Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels. Int. J. Pharm. 532, 595–602. 10.1016/j.ijpharm.2017.09.053 PubMed DOI

Zhang Y., Rossi F., Papa S., Violatto M. B., Bigini P., Sorbona M., et al. . (2016). Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater. 30, 188–198. 10.1016/j.actbio.2015.11.053 PubMed DOI

Zhao H., Liu H., Liang X., Li Y., Wang J., Liu C. (2016). Hylan G-F 20 versus low molecular weight hyaluronic acids for knee osteoarthritis: a meta-analysis. BioDrugs 30, 387–396. 10.1007/s40259-016-0186-1 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...