An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29868577
PubMed Central
PMC5966713
DOI
10.3389/fbioe.2018.00062
Knihovny.cz E-zdroje
- Klíčová slova
- FDA, chemical modification, clinical data, cross-linked, hyaluronan, hydrogel, preclinical data, risk management,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review shows the steps toward material selection focalized on the design and development of medical devices based on hyaluronan (HA). The selection is based on chemical and mechanical properties, biocompatibility, sterilization, safety, and scale-up costs. These facts play a vital role in the industrialization process. Approved medical devices containing-HA are illustrated to identify key parameters. The first part of this work involves the steps toward a complete characterization of chemical and mechanical aspects, reproducibility of the processes and scale up. In a second stage, we aimed to describe the preclinical in vitro and in vivo assays and selected examples of clinical trials. Furthermore, it is important to keep in mind the regulatory affairs during the research and development (R&D) using standardization (ISO standards) to achieve the main goal, which is the functionality and safety of the final device. To keep reproducible experimental data to prepare an efficient master file for the device, based on quality and recorded manufacturing data, and a rigorous R&D process may help toward clinical translation. A strong debate is still going on because the denominated basic research in HA field does not pay attention to the purity and quality of the raw materials used during the development. So that, to achieve the next generation of devices is needed to overcome the limitations of state of art in terms of efficacy, biodegradability, and non-toxicity.
Department of Research and Development Contipro a s Dolní Dobrouč Czechia
Free Radical Pathophysiology Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Alfaro V., Cullell-Young M., Tanovic A. (2007). Abbreviated clinical study reports with investigational medicinal products for human use: current guidelines and recommendations. Croat. Med. J. 48, 871–877. 10.3325/cmj.2007.6.871 PubMed DOI PMC
Altman R. D., Bedi A., Karlsson J., Sancheti P., Schemitsch E. (2016). Product differences in intra-articular hyaluronic acids for osteoarthritis of the knee. Am. J. Sports Med. 44, 2158–2165. 10.1177/0363546515609599 PubMed DOI
Anderson J. M., Rodriguez A., Chang D. T. (2008). Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. 10.1016/j.smim.2007.11.004 PubMed DOI PMC
Baeva L. F., Das S. S., Hitchins V. M. (2017). Bacterial endotoxin detection in hyaluronic acid-based medical devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 1210–1215. 10.1002/jbm.b.33659 PubMed DOI
Bannuru R. R., Natov N. S., Dasi U. R., Schmid C. H., McAlindon T. E. (2011). Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis–meta-analysis. Osteoarthr. Cartil. 19, 611–619. 10.1016/j.joca.2010.09.014 PubMed DOI
Battistini F. D., Tártara L. I., Boiero C., Guzmán M. L., Luciani-Giaccobbe L. C., Palma S. D., et al. . (2017). The role of hyaluronan as a drug carrier to enhance the bioavailability of extended release ophthalmic formulations. Hyaluronan-timolol ionic complexes as a model case. Eur. J. Pharm. Sci. 105, 188–194. 10.1016/j.ejps.2017.05.020 PubMed DOI
Bedi O., Krishan P., Singh G. (2017). Regulatory requirements for medical devices: an insight. Appl. Clin. Res. Clin. Trials Regul. Affairs 4, 16–25. 10.2174/2213476X03666160804153513 DOI
Beldman T. J., Senders M. L., Alaarg A., Pérez-Medina C., Tang J., Zhao Y., et al. . (2017). Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano 11, 5785–5799. 10.1021/acsnano.7b01385 PubMed DOI PMC
Bhojani-Lynch T. (2017). Late-onset inflammatory response to hyaluronic acid dermal fillers. Plastic Reconstr. Surg. Global Open 5:e1532. 10.1097/GOX.0000000000001532 PubMed DOI PMC
Bitterman-Deutsch O., Kogan L., Nasser F. (2015). Delayed immune mediated adverse effects to hyaluronic acid fillers: report of five cases and review of the literature. Dermatol Rep. 7:5851. 10.4081/dr.2015.5851 PubMed DOI PMC
Bonnevie E. D., Galesso D., Secchieri C., Cohen I., Bonassar L. J. (2015). Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS ONE 10:e0143415. 10.1371/journal.pone.0143415 PubMed DOI PMC
Boutefnouchet T., Puranik G., Holmes E., Bell K. M. (2017). Hylan GF-20 viscosupplementation in the treatment of symptomatic osteoarthritis of the knee: clinical effect survivorship at 5 years. Knee Surg. Relat. Res. 29, 129–136. 10.5792/ksrr.16.061 PubMed DOI PMC
Braithwaite G. J., Daley M. J., Toledo-Velasquez D. (2016). Rheological and molecular weight comparisons of approved hyaluronic acid products—preliminary standards for establishing class III medical device equivalence. J. Biomat. Sci. Polym. Ed. 27, 235–246. 10.1080/09205063.2015.1119035 PubMed DOI
Brittberg M. (2014). Knee cartilage repair with hyalograft® (Hyaff-11 scaffold with seeded autologous chondrocytes), in Techniques in Cartilage Repair Surgery, eds Shetty A. A., Kim S. J., Nakamura N., Brittberg M. (Berlin; Heidelberg: Springer Berlin Heidelberg; ), 227–235.
Casas J. W., Lewerenz G. M., Rankin E. A., Willoughby J. A., Sr., Blakeman L. C., McKim J. M., Jr., et al. . (2013). In vitro human skin irritation test for evaluation of medical device extracts. Toxicol. In Vitro 27, 2175–2183. 10.1016/j.tiv.2013.08.006 PubMed DOI
Chen C.-H., Chen S.-H., Mao S.-H., Tsai M.-J., Chou P.-Y., Liao C.-H., et al. . (2017). Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr. Polym. 173, 721–731. 10.1016/j.carbpol.2017.06.019 PubMed DOI
Chen M., Zhang W., Yuan K., Bo M., Chen B., Li L., et al. . (2017). Preclinical evaluation and monitoring of the therapeutic response of a dual targeted hyaluronic acid nanodrug. Contrast Media Mol. Imaging 2017:4972701. 10.1155/2017/4972701 PubMed DOI PMC
Chmelar J., Kotzianova A., Hermannova M., Sulakova R., Smejkalova D., Kulhanek J., et al. (2017). Evaluating the degree of substitution of water-insoluble acyl derivatives of hyaluronan using Raman spectroscopy: method development and comparison with gas chromatography and 1H NMR. Anal. Methods 9, 232–239. 10.1039/C6AY03067J DOI
Choi D. H., Kang S. N., Kim S. M., Gobaa S., Park B. J., Kim I. H., et al. . (2016). Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization. Colloids Surf. B Biointerfaces 141, 602–610. 10.1016/j.colsurfb.2016.01.028 PubMed DOI
Choi J., Kim J.-K., Kim J.-H., Kweon D.-K., Lee J.-W. (2010). Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: a comparative study. Carbohydr. Polym. 79, 1080–1085. 10.1016/j.carbpol.2009.10.041 DOI
Christo S. N., Diener K. R., Bachhuka A., Vasilev K., Hayball J. D. (2015). Innate immunity and biomaterials at the nexus: friends or foes. Biomed. Res. Int. 2015:342304 10.1155/2015/342304 PubMed DOI PMC
Chun C., Lee D. Y., Kim J. T., Kwon M. K., Kim Y. Z., Kim S. S. (2016). Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers. Biomater Res. 20:24. 10.1186/s40824-016-0073-3 PubMed DOI PMC
Coleman K. P., McNamara L. R., Grailer T. P., Willoughby J. A., Keller D. J., Patel P., et al. (2015). Evaluation of an in vitro human dermal sensitization test for use with medical device extracts. Appl. In Vitro Toxicol. 1, 118–130. 10.1089/aivt.2015.0007 DOI
Cowman M. K. (2017). Hyaluronan and hyaluronan fragments. Adv. Carbohydr. Chem. Biochem. 74, 1–59. 10.1016/bs.accb.2017.10.001 PubMed DOI
Cožíková D., Šílová T., Moravcová V., Šmejkalová D., Pepeliaev S., Velebný V., Hermannová M. (2017). Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr. Polym. 160, 134–142. 10.1016/j.carbpol.2016.12.045 PubMed DOI
Cyphert J. M., Trempus C. S., Garantziotis S. (2015). Size matters: molecular weight specificity of hyaluronan effects in cell biology. Int. J. Cell Biol. 2015:563818. 10.1155/2015/563818 PubMed DOI PMC
De Boulle K., Glogau R., Kono T., Nathan M., Tezel A., Roca-Martinez J.-X., et al. . (2013). A review of the metabolism of 1,4-butanediol diglycidyl ether–crosslinked hyaluronic acid dermal fillers. Dermatol. Surg. 39, 1758–1766. 10.1111/dsu.12301 PubMed DOI PMC
D'Agostino A., Stellavato A., Busico T., Papa A., Tirino V., Papaccio G., et al. . (2015). In vitro analysis of the effects on wound healing of high- and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes. BMC Cell Biol. 16:19. 10.1186/s12860-015-0064-6 PubMed DOI PMC
D'Este M., Sprecher C. M., Milz S., Nehrbass D., Dresing I., Zeiter S., et al. . (2016). Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J. Biomed. Mater. Res. A. 104, 1469–1478. 10.1002/jbm.a.35673 PubMed DOI
Diamond M. P., Burns E. L., Accomando B., Mian S., Holmdahl L. (2012). Seprafilm® adhesion barrier: a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 9, 237–245. 10.1007/s10397-012-0741-9 PubMed DOI PMC
Dondossola E., Holzapfel B. M., Alexander S., Filippini S., Hutmacher D. W., Friedl P., et al. . (2016). Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1:0007. 10.1038/s41551-016-0007 PubMed DOI PMC
Doros G., Lavin P. T., Daley M., Miller L. E. (2016). A method for establishing class III medical device equivalence: sodium hyaluronate (GenVisc 850) for the treatment of knee osteoarthritis. Med. Devices 9, 205–211. 10.2147/MDER.S104327 PubMed DOI PMC
Drímalová E., Velebný V., Sasinková V., Hromádková Z., Ebringerová A. (2005). Degradation of hyaluronan by ultrasonication in comparison to microwave and conventional heating. Carbohydr. Polym. 61, 420–426. 10.1016/j.carbpol.2005.05.035 DOI
Essendoubi M., Gobinet C., Reynaud R., Angiboust J. F., Manfait M., Piot O. (2016). Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 22, 55–62. 10.1111/srt.12228 PubMed DOI
Franz S., Rammelt S., Scharnweber D., Simon J. C. (2011). Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709. 10.1016/j.biomaterials.2011.05.078 PubMed DOI
Geavlete P. A., Georgescu D., Multescu R., Geavlete B. (2016). Chapter 9: Endoscopic approach to intramural ureter pathology, in Endoscopic Diagnosis and Treatment in Urinary Bladder Pathology, ed Geavlete P. A. (San Diego, CA: Academic Press; ), 293–348.
Gibbs P., Brown T. J., Ng R., Jennens R., Cinc E., Pho M., et al. . (2008). A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 55, 49–59. 10.1159/000180339 PubMed DOI
Gigis I., Fotiadis E., Nenopoulos A., Tsitas K., Hatzokos I. (2016). Comparison of two different molecular weight intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia 20, 26–31. PubMed PMC
Gold M. H. (2007). Use of hyaluronic acid fillers for the treatment of the aging face. Clin. Interv. Aging 2, 369–376. 10.2147/CIA.S1244 PubMed DOI PMC
Gomis A., Miralles A., Schmidt R. F., Belmonte C. (2009). Intra-articular injections of hyaluronan solutions of different elastoviscosity reduce nociceptive nerve activity in a model of osteoarthritic knee joint of the guinea pig. Osteoarthr. Cartil. 17, 798–804. 10.1016/j.joca.2008.11.013 PubMed DOI
Gross D., Childs M., Piaton J. M. (2017). Comparison of 0.2% and 0.18% hyaluronate eye drops in patients with moderate to severe dry eye with keratitis or keratoconjunctivitis. Clin. Ophthalmol. 11, 631–638. 10.2147/OPTH.S131384 PubMed DOI PMC
Guarise C., Pavan M., Pirrone L., Renier D. (2012). SEC determination of cross-link efficiency in hyaluronan fillers. Carbohydr. Polym. 88, 428–434. 10.1016/j.carbpol.2011.12.004 DOI
Guo J., Guo S., Wang Y., Yu Y. (2017). Adipose derived stem cells and hyaluronic acid based gel compatibility, studied in vitro. Mol. Med. Rep. 16, 4095–4100. 10.3892/mmr.2017.7055 PubMed DOI
Hauser S., Jung F., Pietzsch J. (2017). Human endothelial cell models in biomaterial research. Trends Biotechnol. 35, 265–277. 10.1016/j.tibtech.2016.09.007 PubMed DOI
Hayden P. J., Michael B., Seyoum A., Silvia L., Yulia K., Mitchell K., et al. (2015). Application of mattek in vitro reconstructed human skin models for safety, efficacy screening, and basic preclinical research. Appl. In Vitro Toxicol. 1, 226–233. 10.1089/aivt.2015.0012 DOI
Highley C. B., Prestwich G. D., Burdick J. A. (2016). Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr. Opin. Biotechnol. 40, 35–40. 10.1016/j.copbio.2016.02.008 PubMed DOI
Huerta-Angeles G., Brandejsová M., Knotková K., Hermannová M., Moravcová M., Šmejkalová D., Velebný V. (2016a). Synthesis of photo-crosslinkable hyaluronan with tailored degree of substitution suitable for production of water resistant nanofibers. Carbohydr. Polym. 137, 255–263. 10.1016/j.carbpol.2015.10.077 PubMed DOI
Huerta-Angeles G., Brandejsová M., Kulhánek J., Pavlík V., Šmejkalová D., Vágnerová H., Velebný V. (2016b). Linolenic acid grafted hyaluronan: process development, structural characterization, biological assessing, and stability studies. Carbohydr. Polym. 152, 815–824. 10.1016/j.carbpol.2016.07.030 PubMed DOI
Huerta-Angeles G., Brandejsová M., Nigmatullin R., Kopecká K., Vágnerová H., Šmejkalová D., et al. . (2017). Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). Carbohydr. Polym. 171, 220–228. 10.1016/j.carbpol.2017.05.011 PubMed DOI
Huerta-Angeles G., Šmejkalová D., Chládková D., Ehlová T., Radovan B., Velebný V. (2011). Synthesis of highly substituted amide hyaluronan derivatives with tailored degree of substitution and their crosslinking via click chemistry. Carbohydr. Polym. 84, 1293–1300. 10.1016/j.carbpol.2011.01.021 DOI
Hwang C. J. (2016). Periorbital injectables: understanding and avoiding complications. J. Cutan. Aesthet. Surg. 9, 73–79. 10.4103/0974-2077.184049 PubMed DOI PMC
Iannitti T., Morales-Medina J. C., Coacci A., Palmieri B. (2016). Experimental and clinical efficacy of two hyaluronic acid-based compounds of different cross-linkage and composition in the rejuvenation of the skin. Pharm. Res. 33, 2879–2890. 10.1007/s11095-014-1354-y PubMed DOI
Ibrahim I. H., Chassapis C. (2014). Recent patents on risk management during medical device lifecycle: managing the transition from bench to market. Recent Patents Eng. 8, 133–142. 10.2174/1872212108666140829011303 DOI
Ishikawa M., Yoshioka K., Urano K., Tanaka Y., Hatanaka T., Nii A. (2014). Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthr. Cartil. 22, 1902–1909. 10.1016/j.joca.2014.08.002 PubMed DOI
Kaur M., Jayaraman G. (2016). Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab. Eng. Commun. 3, 15–23. 10.1016/j.meteno.2016.01.003 PubMed DOI PMC
Kawada C., Kimura M., Masuda Y., Nomura Y. (2015). Oral administration of hyaluronan prevents skin dryness and epidermal thickening in ultraviolet irradiated hairless mice. J. Photochem. Photobiol. B. 153, 215–221. 10.1016/j.jphotobiol.2015.09.020 PubMed DOI
Kessler S. P., Obery D. R., Nickerson K. P., Petrey A. C., McDonald C., de la Motte C. A. (2018). Multifunctional role of 35 kilodalton hyaluronan in promoting defense of the intestinal epithelium. J. Histochem. Cytochem. 66, 273–287. 10.1369/0022155417746775 PubMed DOI PMC
Khunmanee S., Jeong Y., Park H. (2017). Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 8. 10.1177/2041731417726464 PubMed DOI PMC
Kim H., Jeong H., Han S., Beack S., Hwang B. W., Shin M., et al. . (2017). Hyaluronate and its derivatives for customized biomedical applications. Biomaterials 123, 155–171. 10.1016/j.biomaterials.2017.01.029 PubMed DOI
Kim J.-T., Lee D. Y., Kim E.-J., Jang J.-W., Cho N.-I. (2014a). Tissue response to implants of hyaluronic acid hydrogel prepared by microbeads. Tissue Eng. Regener. Med. 11, 32–38. 10.1007/s13770-013-1106-9 DOI
Kim J.-T., Lee D. Y., Kim T.-H., Song Y.-S., Cho N.-I. (2014b). Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads. Metals Mater. Internat. 20, 555–563. 10.1007/s12540-014-3022-5 DOI
Kimura M., Maeshima T., Kubota T., Kurihara H., Masuda Y., Nomura Y. (2016). Absorption of orally administered hyaluronan. J. Med. Food 19, 1172–1179. 10.1089/jmf.2016.3725 PubMed DOI
Kong B., Seog J. H., Graham L. M., Lee S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6, 929–941. 10.2217/nnm.11.77 PubMed DOI PMC
Kuehl C., Zhang T., Kaminskas L. M., Porter C. J. H., Davies N. M., Forrest L., et al. . (2016). Hyaluronic acid molecular weight determines lung clearance and biodistribution after instillation. Mol. Pharm. 13, 1904–1914. 10.1021/acs.molpharmaceut.6b00069 PubMed DOI PMC
La Gatta A., De Rosa M., Frezza M. A., Catalano C., Meloni M., Schiraldi C. (2016). Biophysical and biological characterization of a new line of hyaluronan-based dermal fillers: a scientific rationale to specific clinical indications. Mater. Sci. Eng. C 68, 565–572. 10.1016/j.msec.2016.06.008 PubMed DOI
Larrañeta E., Henry M., Irwin N. J., Trotter J., Perminova A. A., Donnelly R. F. (2018). Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym. 181, 1194–1205. 10.1016/j.carbpol.2017.12.015 PubMed DOI PMC
Laszlo H., Robert S., Piotr L., Wojciech Z., Endre L., Eva D., et al. (2017). Intraarticular injection of a cross-linked sodium hyaluronate combined with triamcinolone hexacetonide (Cingal) to provide symptomatic relief of osteoarthritis of the knee: a randomized, double-blind, placebo-controlled multicenter clinical trial. Cartilage 1:1947603517703732 10.1177/1947603517703732 PubMed DOI PMC
Li J., Feng X., Liu B., Yu Y., Sun L., Liu T., et al. . (2017). Polymer materials for prevention of postoperative adhesion. Acta Biomater. 61, 21–40. 10.1016/j.actbio.2017.08.002 PubMed DOI
Li W., Zhou J., Xu Y. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep 3, 617–620. 10.3892/br.2015.481 PubMed DOI PMC
Liu X. M., Heiler D. J., Menzel T., Brongo A., Burke S. E., Cummins K. (2012). Sterile Hyaluronic Acid Solutions. US 8283463 B2.
Liu Y., Zheng Shu X., Prestwich G. D. (2005). Biocompatibility and stability of disulfide-crosslinked hyaluronan films. Biomaterials 26, 4737–4746. 10.1016/j.biomaterials.2005.01.003 PubMed DOI
Loebel C., Szczesny S. E., Cosgrove B. D., Alini M., Zenobi-Wong M., Mauck R. L., et al. . (2017). Cross-linking chemistry of tyramine-modified hyaluronan hydrogels alters mesenchymal stem cell early attachment and behavior. Biomacromolecules 18, 855–864. 10.1021/acs.biomac.6b01740 PubMed DOI
Longinotti C. (2014). The use of hyaluronic acid based dressings to treat burns: a review. Burns Trauma 2, 162–168. 10.4103/2321-3868.142398 PubMed DOI PMC
Markel D. C., Jackson N. M., Esquivel A. O., Ren W., Flynn J. C. (2014). Immunological response to bolus versus multiple injections of hylan G-F 20 (Synvisc®) in a murine biocompatibility model. J. Biomed. Mat. Res. B Appl. Biomat. 102, 1375–1380. 10.1002/jbm.b.33116 PubMed DOI
Matarasso S. L., Carruthers J. D., Jewell M. L. (2006). Consensus recommendations for soft-tissue augmentation with nonanimal stabilized hyaluronic acid (Restylane). Plast Reconstr. Surg. 117(3 Suppl.), 3S–34S; discussion 35S−43S. 10.1097/01.prs.0000204759.76865.39 PubMed DOI
Migliore A., Procopio S. (2015). Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin. Cases Min. Bone Metab. 12, 31–33. 10.11138/ccmbm/2015.12.1.031 PubMed DOI PMC
Migliore A., Giovannangeli F., Granata M., Laganà B. (2010). Hylan G-F 20: review of its safety and efficacy in the management of joint pain in osteoarthritis. Clin. Med. Insights Arthr. Musculoskelet. Disord. 3, 55–68. 10.1177/117954411000300001 PubMed DOI PMC
Morais J. M., Papadimitrakopoulos F., Burgess D. J. (2010). Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196. 10.1208/s12248-010-9175-3 PubMed DOI PMC
Morse A. N., Hammer R. A., Cornella J. L., Loftus J. C. (2005). Validation of a mouse adhesion reduction model using seprafilm®. J. Gynecol. Surg. 21, 147–153. 10.1089/gyn.2005.21.147 DOI
Nih L. R., Carmichael S. T., Segura T. (2016). Hydrogels for brain repair after stroke: an emerging treatment option. Curr. Opin. Biotechnol. 40, 155–163. 10.1016/j.copbio.2016.04.021 PubMed DOI PMC
Oe M., Tashiro T., Yoshida H., Nishiyama H., Masuda Y., Maruyama K., et al. . (2016). Oral hyaluronan relieves knee pain: a review. Nutr. J. 15:11. 10.1186/s12937-016-0128-2 PubMed DOI PMC
Olejnik A., Goscianska J., Zielinska A., Nowak I. (2015). Stability determination of the formulations containing hyaluronic acid. Int. J. Cosmet. Sci. 37, 401–407. 10.1111/ics.12210 PubMed DOI
Oliveira M. Z., Albano M. B., Namba M. M., da Cunha L. A. M., de Lima Gonçalves R. R., Trindade E. S., et al. . (2014). Effect of hyaluronic acids as chondroprotective in experimental model of osteoarthrosis. Rev. Bras. Ortop. 49, 62–68. 10.1016/j.rbo.2013.04.006 PubMed DOI PMC
Papakonstantinou E., Roth M., Karakiulakis G. (2012). Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 4, 253–258. 10.4161/derm.21923 PubMed DOI PMC
Pavesio A., Abatangelo G., Borrione A., Brocchetta D., Hollander A. P., Kon E., et al. . (2003). Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp. 249, 203–217; discussion 229–233, 234–208, 239–241. 10.1002/0470867973.ch15 PubMed DOI
Pavicic T., Gauglitz G. G., Lersch P., Schwach-Abdellaoui K., Malle B., Korting H. C., et al. . (2011). Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J. Drugs Dermatol. 10, 990–1000. PubMed
Pedrosa T. D. N., Catarino C. M., Pennacchi P. C., Assis S. R., Gimenes F., Consolaro M. E. L., et al. . (2017). A new reconstructed human epidermis for in vitro skin irritation testing. Toxicol. In Vitro 42, 31–37. 10.1016/j.tiv.2017.03.010 PubMed DOI
Pérez-Pérez L., García-Gavín J., Wortsman X., Santos-Briz Á. (2017). Delayed adverse subcutaneous reaction to a new family of hyaluronic acid dermal fillers with clinical, ultrasound, and histologic correlation. Dermatol. Surg. 43, 605–608. 10.1097/DSS.0000000000000945 PubMed DOI
Phillips K. S., Wang Y. (2017). U.S. Food and drug administration authors publish articles on dermal filler materials, injections, methods, and skin preparation. Plast Reconstr. Surg. 140, 632e−633e. 10.1097/PRS.0000000000003723 PubMed DOI
Pi S., Choi Y. J., Hwang S., Lee D. W., Yook J. I., Kim K. H., et al. . (2017). Local injection of hyaluronic acid filler improves open gingival embrasure: validation through a rat model. J. Periodontol. 88, 1221–1230. 10.1902/jop.2017.170101 PubMed DOI
Picotti F., Fabbian M., Gianni R., Sechi A., Stucchi L., Bosco M. (2013). Hyaluronic acid lipoate: synthesis and physicochemical properties. Carbohydr. Polym. 93, 273–278. 10.1016/j.carbpol.2012.04.009 PubMed DOI
Priano F. (2017). Early efficacy of intra-articular HYADD® 4 (Hymovis®) injections for symptomatic knee osteoarthritis. Joints 5, 79–84. 10.1055/s-0037-1603677 PubMed DOI PMC
Quinones J. P., Jokinen J., Keinänen S., Covas C. P., Brüggemann O., Ossipov D. (2018). Self-assembled hyaluronic acid-testosterone nanocarriers for delivery of anticancer drugs. Eur. Polym. J. 99, 384–393. 10.1016/j.eurpolymj.2017.12.043 DOI
Rayahin J. E., Gemeinhart R. A. (2017). Activation of Macrophages in response to biomaterials, in Macrophages: Origin, Functions and Biointervention, ed Kloc M. (Cham: Springer International Publishing; ), 317–351. PubMed
Romagnoli M., Belmontesi M. (2008). Hyaluronic acid-based fillers: theory and practice. Clin. Dermatol. 26, 123–159. 10.1016/j.clindermatol.2007.09.001 PubMed DOI
Sacco P., Sechi A., Trevisan A., Picotti F., Gianni R., Stucchi L., et al. . (2016). A silver complex of hyaluronan–lipoate (SHLS12): synthesis, characterization and biological properties. Carbohydr. Polym. 136, 418–426. 10.1016/j.carbpol.2015.09.057 PubMed DOI
Šafránková B., Hermannová M., Nešporová K., Velebný V., Kubala L. (2018). Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro. Int. J. Biol. Macromol. 107, 1–8. 10.1016/j.ijbiomac.2017.08.131 PubMed DOI
Salzillo R., Schiraldi C., Corsuto L., D'Agostino A., Filosa R., De Rosa M., et al. . (2016). Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 153, 275–283. 10.1016/j.carbpol.2016.07.106 PubMed DOI
Shiedlin A., Bigelow R., Christopher W., Arbabi S., Yang L., Maier R. V., et al. . (2004). Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 5, 2122–2127. 10.1021/bm0498427 PubMed DOI
Shin Y. S., Kwon W. J., Cho E. B., Park E. J., Kim K. H., Kim K. J. (2018). A case of cellulitis-like foreign body reaction after hyaluronic acid dermal filler injection. Dermatol. Sin. 36, 46–49. 10.1016/j.dsi.2017.06.004 DOI
Sigen A., Xu Q., McMichael P., Gao Y., Li X., Wang X., et al. (2018). A facile one-pot synthesis of acrylated hyaluronic acid. Chem. Commun. 54, 1081–1084. 10.1039/C7CC08648B PubMed DOI
Simon-Walker R., Cavicchia J., Prawel D. A., Dasi L. P., James S. P., Popat K. C. (2017). Hemocompatibility of hyaluronan enhanced linear low density polyethylene for blood contacting applications. J. Biomed. Mater. Res. B Appl. Biomater. [Epub ahead of print]. 10.1002/jbm.b.34010 PubMed DOI PMC
Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., et al. . (2017). Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 156, 86–96. 10.1016/j.carbpol.2016.09.013 PubMed DOI
Smejkalová D., Nešporová K., Hermannová M., Huerta-Angeles G., Cožiková D., Vištejnova L., et al. . (2014). Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int. J. Pharm. 466, 147–155. 10.1016/j.ijpharm.2014.03.024 PubMed DOI
Smith M. M., Cake M. A., Ghosh P., Schiavinato A., Read R. A., Little C. B. (2008). Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology 47, 1172–1178. 10.1093/rheumatology/ken219 PubMed DOI PMC
Stellavato A., La Noce M., Corsuto L., Pirozzi A. V. A., De Rosa M., Papaccio G., et al. . (2017). Hybrid complexes of high and low molecular weight hyaluronans highly enhance HASCs differentiation: implication for facial bioremodelling. Cell. Physiol. Biochem. 44, 1078–1092. 10.1159/000485414 PubMed DOI
Strand V., Baraf H. S. B., Lavin P. T., Lim S., Hosokawa H. (2012). A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200, a new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthr. Cartil. 20, 350–356. 10.1016/j.joca.2012.01.013 PubMed DOI
Sun F., Niu H., Wang D., Wu Y., Mu H., Ma L., et al. . (2017). Novel moisture-preserving derivatives of hyaluronan resistant to hyaluronidase and protective to UV light. Carbohydr. Polym. 157, 1198–1204. 10.1016/j.carbpol.2016.10.086 PubMed DOI
Tolg C., Telmer P., Turley E. (2014). Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair. PLoS ONE 9:e88479. 10.1371/journal.pone.0088479 PubMed DOI PMC
Tran C., Carraux P., Micheels P., Kaya G., Salomon D. (2014). In vivo bio-integration of three hyaluronic acid fillers in human skin: a histological study. Dermatology 228, 47–54. 10.1159/000354384 PubMed DOI
Turner N. J., Kielty C. M., Walker M. G., Canfield A. E. (2004). A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25, 5955–5964. 10.1016/j.biomaterials.2004.02.002 PubMed DOI
Urdiales-Gálvez F., Delgado N. E., Figueiredo V., Lajo-Plaza J. V., Mira M., Moreno A., et al. . (2018). Treatment of soft tissue filler complications: expert consensus recommendations. Aesthetic Plast. Surg. 42, 498–510. 10.1007/s00266-017-1063-0 PubMed DOI PMC
Van Norman G. A. (2016). Drugs and devices: comparison of European and U.S. approval processes. JACC 1, 399–412. 10.1016/j.jacbts.2016.06.003 PubMed DOI PMC
Vasconcelos D. M., Cortez J., Lamghari M. (2016). Technical Standards and Legislation for Implants and Implantable Medical Devices Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier.
Wang J., Witte F., Xi T., Zheng Y., Yang K., Yang Y., et al. . (2015). Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 21, 237–249. 10.1016/j.actbio.2015.04.011 PubMed DOI
Wehling P., Evans C., Wehling J., Maixner W. (2017). Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Ther. Adv. Musculoskelet. Dis. 9, 183–196. 10.1177/1759720X17712695 PubMed DOI PMC
Wende F. J., Gohil S., Mojarradi H., Gerfaud T., Nord L. I., Karlsson A., et al. . (2016). Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods. Carbohydr. Polym. 136, 1348–1357. 10.1016/j.carbpol.2015.09.112 PubMed DOI
Wende F. J., Gohil S., Nord L. I., Helander Kenne A., Sandström C. (2017). 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohydr. Polym. 157, 1525–1530. 10.1016/j.carbpol.2016.11.029 PubMed DOI
Wiegand C., Hipler U. C. (2009). Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Skin Pharmacol. Physiol. 22, 74–82. 10.1159/000178866 PubMed DOI
Wong T. Y., Chang C.-H., Yu C.-H., Huang L. L. H. (2017). Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell 16, 451–460. 10.1111/acel.12567 PubMed DOI PMC
Wortman R. S., Merritt K., Brown S. A. (1983). The use of the mouse peritoneal cavity for screening for biocompatibility of polymers. Biomater. Med. Devices Artif. Organs 11, 103–114. 10.3109/10731198309118799 PubMed DOI
Wu L., Liu X., Jian X., Wu X., Xu N., Dou X., et al. . (2017). Delayed allergic hypersensitivity to hyaluronidase during the treatment of granulomatous hyaluronic acid reactions. J. Cosmet. Dermatol. [Epub ahead of print]. 10.1111/jocd.12461 PubMed DOI
Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. (2017). A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J. Biol. Chem. 292, 7304–7313. 10.1074/jbc.M116.770149 PubMed DOI PMC
Zamboni F., Keays M., Hayes S., Albadarin A. B., Walker G. M., Kiely P. A., et al. . (2017). Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels. Int. J. Pharm. 532, 595–602. 10.1016/j.ijpharm.2017.09.053 PubMed DOI
Zhang Y., Rossi F., Papa S., Violatto M. B., Bigini P., Sorbona M., et al. . (2016). Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater. 30, 188–198. 10.1016/j.actbio.2015.11.053 PubMed DOI
Zhao H., Liu H., Liang X., Li Y., Wang J., Liu C. (2016). Hylan G-F 20 versus low molecular weight hyaluronic acids for knee osteoarthritis: a meta-analysis. BioDrugs 30, 387–396. 10.1007/s40259-016-0186-1 PubMed DOI