Recent Advances of Hyaluronan for Skin Delivery: From Structure to Fabrication Strategies and Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GAUK 332821
Charles University
PubMed
36432961
PubMed Central
PMC9694326
DOI
10.3390/polym14224833
PII: polym14224833
Knihovny.cz E-zdroje
- Klíčová slova
- amphiphiles, hyaluronan, self-assembly, skin penetration, stratum corneum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hyaluronan (HA) plays a fundamental role in maintaining the homeostasis on skin health. Furthermore, the effect of HA in skin inflammatory diseases is worth studying in the next future. HA and its conjugates change the solubility of active pharmaceutical ingredients, improve emulsion properties, prolong stability, reduce immunogenicity, and provide targeting. HA penetrates to deeper layers of the skin via several mechanisms, which depend on the macromolecular structure and composition of the formulation. The cellular and molecular mechanisms involved in epidermal dysfunction and skin aging are not well understood. Nevertheless, HA is known to selectively activate CD44-mediated keratinocyte signaling that regulates its proliferation, migration, and differentiation. The molecular size of HA is critical for molecular mechanisms and interactions with receptors. High molecular weight HA is used in emulsions and low molecular weight is used to form nanostructured lipid carriers, polymeric micelles, bioconjugates, and nanoparticles. In the fabrication of microneedles, HA is combined with other polymers to enhance mechanical properties for piercing the skin. Hence, this review aims to provide an overview of the current state of the art and last reported ways of processing, and applications in skin drug delivery, which will advocate for their broadened use in the future.
Zobrazit více v PubMed
Sarango-Granda P., Espinoza L.C., Díaz-Garrido N., Alvarado H., Rodríguez-Lagunas M.J., Baldomá L., Calpena A. Calpena, Effect of Penetration Enhancers and Safety on the Transdermal Delivery of Apremilast in Skin. Pharmaceutics. 2022;14:1011. doi: 10.3390/pharmaceutics14051011. PubMed DOI PMC
Wang Y., Tang Z., Guo X., Zhao Y., Ren S., Zhang Z., Lv H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm. 2022;623:121916. doi: 10.1016/j.ijpharm.2022.121916. PubMed DOI
De Vita F., Ferravante A., Vecchi G., Nobile V., Giori A.M. Evaluation of the Efficacy of IALUSET VITAL® Cream in Helping the Improvement of the Atopic Dermatitis Symptoms in Adults: A Randomized, Double Blind, Vehicle-Controlled Clinical Trial. Allergies. 2021;1:195–205. doi: 10.3390/allergies1040018. DOI
Du H.Y., Liu P., Zhu J.J., Lan J.J., Li Y., Zhang L.B., Zhu J.T., Tao J. Hyaluronic Acid-Based Dissolving Microneedle Patch Loaded with Methotrexate for Improved Treatment of Psoriasis. ACS Appl. Mater. Interfaces. 2019;11:43588–43598. doi: 10.1021/acsami.9b15668. PubMed DOI
Jacobus B.S., De Villa D., Maschmann Inácio L.A., Davies S., Zatta K.C., Guterres S.S., Külkamp-Guerreiro I.C. Azelaic acid-loaded nanoemulsion with hyaluronic acid—A new strategy to treat hyperpigmentary skin disorders. Drug Dev. Ind. Pharm. 2019;45:642–650. doi: 10.1080/03639045.2019.1569032. PubMed DOI
Huerta-Angeles G., Brandejsova M., Stepan P., Pavlik V., Starigazdova J., Orzol P., Kopecka K., Halamkova P., Kulhanek J., Velebny V. Retinoic acid grafted to hyaluronan for skin delivery: Synthesis, stability studies, and biological evaluation. Carbohydr. Polym. 2020;231:115733. doi: 10.1016/j.carbpol.2019.115733. PubMed DOI
Ulrich M., Pellacani G., Ferrandiz C., Lear J.T. Evidence for field cancerisation treatment of actinic keratoses with topical diclofenac in hyaluronic acid. Eur. J. Dermatol. 2014;24:158–167. doi: 10.1684/ejd.2014.2286. PubMed DOI
Zhu J.J., Dong L.Y., Du H.Y., Mao J.Z., Xie Y., Wang H., Lan J.J., Lou Y.C., Fu Y.X., Wen J.J., et al. 5-Aminolevulinic Acid-Loaded Hyaluronic Acid Dissolving Microneedles for Effective Photodynamic Therapy of Superficial Tumors with Enhanced Long-Term Stability. Adv. Healthc. Mater. 2019;8:1900896. doi: 10.1002/adhm.201900896. PubMed DOI
Evrard C., Lambert de Rouvroit C., Poumay Y. Epidermal Hyaluronan in Barrier Alteration-Related Disease. Cells. 2021;10:3096. doi: 10.3390/cells10113096. PubMed DOI PMC
Huerta-Angeles G., Nesporova K., Ambrozova G., Kubala L., Velebny V. An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects. Front. Bioeng. Biotechnol. 2018;6:62. doi: 10.3389/fbioe.2018.00062. PubMed DOI PMC
Reed R.K., Lilja K., Laurent T.C. Hyaluronan in the rat with special reference to the skin. Acta Physiol. Scand. 1988;134:405–411. doi: 10.1111/j.1748-1716.1988.tb08508.x. PubMed DOI
Sadeghi Ghadi Z., Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: Preparation, characterisation and in vitro/in vivo evaluation. J. Microencapsul. 2019;36:169–179. doi: 10.1080/02652048.2019.1617360. PubMed DOI
Lu B., Huang Y., Chen Z., Ye J., Xu H., Chen W., Long X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules. 2019;24:2322. doi: 10.3390/molecules24122322. PubMed DOI PMC
Zhang Y., Xia Q., Li Y., He Z., Li Z., Guo T., Wu Z., Feng N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics. 2019;9:48–64. doi: 10.7150/thno.29715. PubMed DOI PMC
Xie J., Ji Y., Xue W., Ma D., Hu Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids Surf. B Biointerfaces. 2018;172:323–329. doi: 10.1016/j.colsurfb.2018.08.061. PubMed DOI
Yuan M., Niu J., Xiao Q., Ya H., Zhang Y., Fan Y., Li L., Li X. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 2022;29:1232–1242. doi: 10.1080/10717544.2022.2053761. PubMed DOI PMC
Kong M., Hou L., Wang J., Feng C., Liu Y., Cheng X., Chen X. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. 2015;51:1453–1456. doi: 10.1039/C4CC08746A. PubMed DOI
Avadhani K.S., Manikkath J., Tiwari M., Chandrasekhar M., Godavarthi A., Vidya S.M., Hariharapura R.C., Kalthur G., Udupa N., Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017;24:61–74. doi: 10.1080/10717544.2016.1228718. PubMed DOI PMC
Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/j.carbpol.2016.09.013. PubMed DOI
Cheng Z., Lin H., Wang Z., Yang X., Zhang M., Liu X., Wang B., Wu Z., Chen D. Preparation and characterization of dissolving hyaluronic acid composite microneedles loaded micelles for delivery of curcumin. Drug Deliv Transl. Res. 2020;10:1520–1530. doi: 10.1007/s13346-020-00735-2. PubMed DOI
Kang H., Zuo Z., Lin R., Yao M., Han Y., Han J. The most promising microneedle device: Present and future of hyaluronic acid microneedle patch. Drug Deliv. 2022;29:3087–3110. doi: 10.1080/10717544.2022.2125600. PubMed DOI PMC
Witting M., Boreham A., Brodwolf R., Vávrová K., Alexiev U., Friess W., Hedtrich S. Interactions of Hyaluronic Acid with the Skin and Implications for the Dermal Delivery of Biomacromolecules. Mol. Pharm. 2015;12:1391–1401. doi: 10.1021/mp500676e. PubMed DOI
Martins M., Azoia N.G., Shimanovich U., Matamá T., Gomes A.C., Silva C., Cavaco-Paulo A. Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Mol. Pharm. 2014;11:1479–1488. doi: 10.1021/mp400657g. PubMed DOI
Bourguignon L.Y.W. Matrix Hyaluronan-Activated CD44 Signaling Promotes Keratinocyte Activities and Improves Abnormal Epidermal Functions. Am. J. Pathol. 2014;184:1912–1919. doi: 10.1016/j.ajpath.2014.03.010. PubMed DOI PMC
Cyphert J.M., Trempus C.S., Garantziotis S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015;2015:563818. doi: 10.1155/2015/563818. PubMed DOI PMC
Wong T.Y., Chang C.H., Yu C.H., Huang L.L.H. Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell. 2017;16:451–460. doi: 10.1111/acel.12567. PubMed DOI PMC
Draelos Z.D., Diaz I., Namkoong J., Wu J., Boyd T. Efficacy Evaluation of a Topical Hyaluronic Acid Serum in Facial Photoaging. Dermatol. Ther. 2021;11:1385–1394. doi: 10.1007/s13555-021-00566-0. PubMed DOI PMC
Lierova A., Kasparova J., Filipova A., Cizkova J., Pekarova L., Korecka L., Mannova N., Bilkova Z., Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics. 2022;14:838. doi: 10.3390/pharmaceutics14040838. PubMed DOI PMC
Lee B.M., Park S.J., Noh I., Kim C.-H. The effects of the molecular weights of hyaluronic acid on the immune responses. Biomater. Res. 2021;25:27. doi: 10.1186/s40824-021-00228-4. PubMed DOI PMC
Radrezza S., Baron G., Nukala S.B., Depta G., Aldini G., Carini M., D’Amato A. Advanced quantitative proteomics to evaluate molecular effects of low-molecular-weight hyaluronic acid in human dermal fibroblasts. J. Pharm. Biomed. Anal. 2020;185:113199. doi: 10.1016/j.jpba.2020.113199. PubMed DOI
Žádníková P., Šínová R., Pavlík V., Šimek M., Šafránková B., Hermannová M., Nešporová K., Velebný V. The Degradation of Hyaluronan in the Skin. Biomolecules. 2022;12:251. doi: 10.3390/biom12020251. PubMed DOI PMC
Funt D.K. Treatment of Delayed-onset Inflammatory Reactions to Hyaluronic Acid Filler: An Algorithmic Approach. Plast. Reconstr. Surg. Glob. Open. 2022;10:e4362. doi: 10.1097/GOX.0000000000004362. PubMed DOI PMC
Jouy F., Lohmann N., Wandel E., Ruiz-Gómez G., Pisabarro M.T., Beck-Sickinger A.G., Schnabelrauch M., Möller S., Simon J.C., Kalkhof S., et al. Sulfated hyaluronan attenuates inflammatory signaling pathways in macrophages involving induction of antioxidants. Proteomics. 2017;17:1700082. doi: 10.1002/pmic.201700082. PubMed DOI
Gao Y., Sun Y., Yang H., Qiu P., Cong Z., Zou Y., Song L., Guo J., Anastassiades T.P. A Low Molecular Weight Hyaluronic Acid Derivative Accelerates Excisional Wound Healing by Modulating Pro-Inflammation, Promoting Epithelialization and Neovascularization, and Remodeling Collagen. Int. J. Mol. Sci. 2019;20:3722. doi: 10.3390/ijms20153722. PubMed DOI PMC
Hauck S., Zager P., Halfter N., Wandel E., Torregrossa M., Kakpenova A., Rother S., Ordieres M., Räthel S., Berg A., et al. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact. Mater. 2021;6:4342–4359. doi: 10.1016/j.bioactmat.2021.04.026. PubMed DOI PMC
Bos J.D., Meinardi M.M.H.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 2000;9:165–169. doi: 10.1034/j.1600-0625.2000.009003165.x. PubMed DOI
Brown T.J., Alcorn D., Fraser J.R.E. Absorption of Hyaluronan Applied to the Surface of Intact Skin. J. Investig. Dermatol. 1999;113:740–746. doi: 10.1046/j.1523-1747.1999.00745.x. PubMed DOI
Tokudome Y., Komi T., Omata A., Sekita M. A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method. Sci. Rep. 2018;8:2336. doi: 10.1038/s41598-018-20805-3. PubMed DOI PMC
Shigefuji M., Tokudome Y. Nanoparticulation of hyaluronic acid: A new skin penetration enhancing polyion complex formulation: Mechanism and future potential. Materialia. 2020;14:100879. doi: 10.1016/j.mtla.2020.100879. DOI
Starigazdová J., Nešporová K., Čepa M., Šínová R., Šmejkalová D., Huerta-Angeles G., Velebný V. In vitro investigation of hyaluronan-based polymeric micelles for drug delivery into the skin: The internalization pathway. Eur. J. Pharm. Sci. 2020;143:105168. doi: 10.1016/j.ejps.2019.105168. PubMed DOI
Supe S., Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol. 2021;27:299–308. doi: 10.1111/srt.12968. PubMed DOI
Organization for Economic Cooperation and Development Guidance document for the conduct of skin absorption studies. Env/Jm/Mono. 2004;2:1–31.
Organization for Economic Cooperation and Development . Test No. 428: Skin Absorption: In Vitro Method, OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing; Paris, France: 2004. DOI
Essendoubi M., Gobinet C., Reynaud R., Angiboust J.F., Manfait M., Piot O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 2016;22:55–62. doi: 10.1111/srt.12228. PubMed DOI
Zsikó S., Csányi E., Kovács A., Budai-Szűcs M., Gácsi A., Berkó S. Methods to Evaluate Skin Penetration In Vitro. Sci. Pharm. 2019;87:19. doi: 10.3390/scipharm87030019. PubMed DOI
Abd E., Namjoshi S., Mohammed Y.H., Roberts M.S., Grice J.E. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen. J. Pharm. Sci. 2016;105:212–220. doi: 10.1002/jps.24699. PubMed DOI
Kozaka S., Kashima A., Wakabayashi R., Nakata T., Ueda T., Goto M. Effective Transcutaneous Delivery of Hyaluronic Acid Using an Easy-to-Prepare Reverse Micelle Formulation. Cosmetics. 2020;7:52. doi: 10.3390/cosmetics7030052. DOI
de Oliveira J.K., Ueda-Nakamura T., Corrêa A.G., Petrilli R., Lopez R.F.V., Nakamura C.V., Auzely-Velty R. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Mater. Sci. Eng. C. 2020;110:110720. doi: 10.1016/j.msec.2020.110720. PubMed DOI
Tolentino S., Pereira M.N., Cunha-Filho M., Gratieri T., Gelfuso G.M. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr. Polym. 2021;253:117295. doi: 10.1016/j.carbpol.2020.117295. PubMed DOI
Pandey M., Choudhury H., Gunasegaran T.A.P., Nathan S.S., Md S., Gorain B., Tripathy M., Hussain Z. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: Fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv. Transl. Res. 2019;9:520–533. doi: 10.1007/s13346-018-0480-1. PubMed DOI
Yue Y., Zhao D., Yin Q. Hyaluronic acid modified nanostructured lipid carriers for transdermal bupivacaine delivery: In vitro and in vivo anesthesia evaluation. Biomed. Pharmacother. 2018;98:813–820. doi: 10.1016/j.biopha.2017.12.103. PubMed DOI
Sundaram H., Cegielska A., Wojciechowska A., Delobel P. Prospective, Randomized, Investigator-Blinded, Split-Face Evaluation of a Topical Crosslinked Hyaluronic Acid Serum for Post-Procedural Improvement of Skin Quality and Biomechanical Attributes. J. Drugs Dermatol. 2018;17:442–450. PubMed
Bhardwaj V., Namkoong J., Tartar O., Diaz I., Mao J., Wu J. In Vitro and Ex Vivo Mechanistic Understanding and Clinical Evidence of a Novel Anti-Wrinkle Technology in Single-Arm, Monocentric, Open-Label Observational Studies. Cosmetics. 2022;9:80. doi: 10.3390/cosmetics9040080. DOI
van der Fits L., Mourits S., Voerman J.S., Kant M., Boon L., Laman J.D., Cornelissen F., Mus A.M., Florencia E., Prens E.P., et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009;182:5836–5845. doi: 10.4049/jimmunol.0802999. PubMed DOI
Summerfield A., Meurens F., Ricklin M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015;66:14–21. doi: 10.1016/j.molimm.2014.10.023. PubMed DOI
Yin Q., Wang R., Yang S., Wu Z., Guo S., Dai X., Qiao Y., Shi X. Influence of Temperature on Transdermal Penetration Enhancing Mechanism of Borneol: A Multi-Scale Study. Int. J. Mol. Sci. 2017;18:195. doi: 10.3390/ijms18010195. PubMed DOI PMC
Henry L., Delsuc N., Laugel C., Lambert F., Sandt C., Hostachy S., Bernard A.-S., Bertrand H.C., Grimaud L., Baillet-Guffroy A., et al. Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconj. Chem. 2018;29:987–991. doi: 10.1021/acs.bioconjchem.7b00825. PubMed DOI
Zhang C., Zhang K., Zhang J., Ou H., Duan J., Zhang S., Wang D., Mitragotri S., Chen M. Skin delivery of hyaluronic acid by the combined use of sponge spicules and flexible liposomes. Biomater. Sci. 2019;7:1299–1310. doi: 10.1039/C8BM01555D. PubMed DOI
Desai P., Patlolla R.R., Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol. 2010;27:247–259. doi: 10.3109/09687688.2010.522203. PubMed DOI PMC
Pavlík V., Machalová V., Čepa M., Šínová R., Šafránková B., Kulhánek J., Drmota T., Kubala L., Huerta-Ángeles G., Velebný V., et al. Retinoic Acid Grafted to Hyaluronic Acid Activates Retinoid Gene Expression and Removes Cholesterol from Cellular Membranes. Biomolecules. 2022;12:200. doi: 10.3390/biom12020200. PubMed DOI PMC
Albash R., Fahmy A.M., Hamed M.I.A., Darwish K.M., El-Dahmy R.M. Spironolactone hyaluronic acid enriched cerosomes (HAECs) for topical management of hirsutism: In silico studies, statistical optimization, ex vivo, and in vivo studies. Drug Deliv. 2021;28:2289–2300. doi: 10.1080/10717544.2021.1989089. PubMed DOI PMC
Son S.U., Lim J.-w., Kang T., Jung J., Lim E.-K. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders. Nanomaterials. 2017;7:427. doi: 10.3390/nano7120427. PubMed DOI PMC
Yang Y., Qiu D., Liu Y., Chao L. Topical anesthetic analgesic therapy using the combination of ropivacaine and dexmedetomidine: Hyaluronic acid modified long-acting nanostructured lipid carriers containing a skin penetration enhancer. Drug Des. Devel. Ther. 2019;13:3307–3319. doi: 10.2147/DDDT.S211443. PubMed DOI PMC
Chiu Y.-H., Chen M.-C., Wan S.-W. Sodium Hyaluronate/Chitosan Composite Microneedles as a Single-Dose Intradermal Immunization System. Biomacromolecules. 2018;19:2278–2285. doi: 10.1021/acs.biomac.8b00441. PubMed DOI
Zhuo F., Abourehab M.A.S., Hussain Z. Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr. Polym. 2018;197:478–489. doi: 10.1016/j.carbpol.2018.06.023. PubMed DOI
El-Refaie W.M., Elnaggar Y.S.R., El-Massik M.A., Abdallah O.Y. Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: Development, in-vitro appraisal and in-vivo studies. Int. J. Pharm. 2015;486:88–98. doi: 10.1016/j.ijpharm.2015.03.052. PubMed DOI
Elhalmoushy P.M., Elsheikh M.A., Matar N.A., El-Hadidy W.F., Kamel M.A., Omran G.A., Elnaggar Y.S.R. Novel berberine-loaded hyalurosomes as a promising nanodermatological treatment for vitiligo: Biochemical, biological and gene expression studies. Int. J. Pharm. 2022;615:121523. doi: 10.1016/j.ijpharm.2022.121523. PubMed DOI
Wongprasert P., Dreiss C.A., Murray G. Evaluating hyaluronic acid dermal fillers: A critique of current characterization methods. Dermatol. Ther. 2022;35:e15453. doi: 10.1111/dth.15453. PubMed DOI PMC
Kühne U., Esmann J., von Heimburg D., Imhof M., Weissenberger P., Sattler G. Safety and performance of cohesive polydensified matrix hyaluronic acid fillers with lidocaine in the clinical setting—An open-label, multicenter study. Clin. Cosmet. Investig. Dermatol. 2016;9:373–381. doi: 10.2147/CCID.S115256. PubMed DOI PMC
Kim B.W., Moon I.J., Yun W.J., Chung B.Y., Kim S.D., Lee G.Y., Chang S.E. A Randomized, Evaluator-Blinded, Split-Face Comparison Study of the Efficacy and Safety of a Novel Mannitol Containing Monophasic Hyaluronic Acid Dermal Filler for the Treatment of Moderate to Severe Nasolabial Folds. Ann. Dermatol. 2016;28:297–303. doi: 10.5021/ad.2016.28.3.297. PubMed DOI PMC
Van Dyke S., Hays G.P., Caglia A.E., Caglia M. Severe Acute Local Reactions to a Hyaluronic Acid-derived Dermal Filler. J. Clin. Aesthetic Dermatol. 2010;3:32–35. PubMed PMC
Boen M., Alhaddad M., Wu D.C., Goldman M.P. A Prospective Double-blind, Placebo-controlled Clinical Trial Evaluating the Efficacy of a Novel Combination of Hyaluronic Acid Serum and Antioxidant Cream for Rejuvenation of the Aging Neck. J. Clin. Aesthetic Dermatol. 2020;13:13–18. PubMed PMC
Avcil M., Akman G., Klokkers J., Jeong D., Çelik A. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study. J. Cosmet. Dermatol. 2020;19:328–337. doi: 10.1111/jocd.13009. PubMed DOI
Tan C.W.X., Tan W.D., Srivastava R., Yow A.P., Wong D.W.K., Tey H.L. Dissolving Triamcinolone-Embedded Microneedles for the Treatment of Keloids: A Single-Blinded Intra-Individual Controlled Clinical Trial. Dermatol. Ther. 2019;9:601–611. doi: 10.1007/s13555-019-00316-3. PubMed DOI PMC
Puviani M., Campione E., Offidani A.M., De Grandi R., Bianchi L., Bobyr I., Giannoni M., Campanati A., Bottagisio M., Bidossi A., et al. Effects of a cream containing 5% hyaluronic acid mixed with a bacterial-wall-derived glycoprotein, glycyrretinic acid, piroctone olamine and climbazole on signs, symptoms and skin bacterial microbiota in subjects with seborrheic dermatitis of the face. Clin. Cosmet. Investig. Dermatol. 2019;12:285–293. doi: 10.2147/CCID.S205904. PubMed DOI PMC
Schlesinger T., Rowland Powell C. Efficacy and safety of a low-molecular weight hyaluronic Acid topical gel in the treatment of facial seborrheic dermatitis. J. Clin. Aesthetic Dermatol. 2012;5:20–23. PubMed PMC
Baldwin H., Alexis A.F., Andriessen A., Berson D.S., Farris P., Harper J., Lain E., Marchbein S., Stein Gold L., Tan J. Evidence of Barrier Deficiency in Rosacea and the Importance of Integrating OTC Skincare Products into Treatment Regimens. J. Drugs Dermatol. 2021;20:384–392. doi: 10.36849/JDD.5861. PubMed DOI
Lee S.G., Yoon M.S., Kim D.H., Shin J.U., Lee H.J. Hyaluronan Oligosaccharides Improve Rosacea-Like Phenotype through Anti-Inflammatory and Epidermal Barrier-Improving Effects. Ann. Dermatol. 2020;32:189–196. doi: 10.5021/ad.2020.32.3.189. PubMed DOI PMC
Maggioni D., Cimicata A., Praticò A., Villa R., Bianchi F.M., Busoli Badiale S., Angelinetta C. A Preliminary Clinical Evaluation of a Topical Product for Reducing Slight Rosacea Imperfections. Clin. Cosmet. Investig. Dermatol. 2020;13:299–308. doi: 10.2147/CCID.S240784. PubMed DOI PMC
Bertolotti A., Leone G., Taïeb A., Soriano E., Pascal M., Maillard H., van Geel N. Assessment of Non-cultured Autologous Epidermal Cell Grafting Resuspended in Hyaluronic Acid for Repigmenting Vitiligo and Piebaldism Lesions: A Randomized Clinical Trial. Acta Derm. Venereol. 2021;101:adv00506. doi: 10.2340/00015555-3870. PubMed DOI PMC
Stern R., Maibach H.I. Hyaluronan in skin: Aspects of aging and its pharmacologic modulation. Clin. Dermatol. 2008;26:106–122. doi: 10.1016/j.clindermatol.2007.09.013. PubMed DOI
Papakonstantinou E., Roth M., Karakiulakis G. Hyaluronic acid: A key molecule in skin aging. Derm. Endocrinol. 2012;4:253–258. doi: 10.4161/derm.21923. PubMed DOI PMC
Šínová R., Pavlík V., Ondrej M., Velebný V., Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp. Dermatol. 2022;31:442–458. doi: 10.1111/exd.14491. PubMed DOI
Hergesell K., Valentová K., Velebný V., Vávrová K., Dolečková I. Common Cosmetic Compounds Can Reduce Air Pollution-Induced Oxidative Stress and Pro-Inflammatory Response in the Skin. Skin Pharmacol. Physiol. 2022;35:156–165. doi: 10.1159/000522276. PubMed DOI
Che Marzuki N.H., Wahab R.A., Abdul Hamid M. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip. 2019;33:779–797. doi: 10.1080/13102818.2019.1620124. DOI
Hwang D., Kim H., Shin H., Jeong H., Kim J., Kim D. Cosmetic effects of Prunus padus bark extract. Korean J. Chem. Eng. 2014;31:2280–2285. doi: 10.1007/s11814-014-0146-8. DOI
Kupper S., Kłosowska-Chomiczewska I., Szumała P. Collagen and hyaluronic acid hydrogel in water-in-oil microemulsion delivery systems. Carbohydr. Polym. 2017;175:347–354. doi: 10.1016/j.carbpol.2017.08.010. PubMed DOI
Kleinubing S.A., Outuki P.M., Hoscheid J., Pelegrini B.L., Antonio da Silva E., Renata de Almeida Canoff J., Miriam de Souza Lima M., Carvalho Cardoso M.L. Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. Fruit oil for topical drug delivery. Biocatal. Agric. Biotechnol. 2021;32:101939. doi: 10.1016/j.bcab.2021.101939. DOI
Kibbelaar H.V.M., Deblais A., Velikov K.P., Bonn D., Shahidzadeh N. Stringiness of hyaluronic acid emulsions. Int. J. Cosmet. Sci. 2021;43:458–465. doi: 10.1111/ics.12711. PubMed DOI PMC
Liu W., Ding L., Xu J., Shang Y., Wang Z., Liu H. Synthesis of sinapic acid modified sodium hyaluronate particles and the one-step processing of multiple Pickering emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2022;644:128785. doi: 10.1016/j.colsurfa.2022.128785. DOI
Dubuisson P., Picard C., Grisel M., Savary G. How does composition influence the texture of cosmetic emulsions? Colloids Surf. A Physicochem. Eng. Asp. 2018;536:38–46. doi: 10.1016/j.colsurfa.2017.08.001. DOI
Lanigan R.S., Yamarik T.A. Final report on the safety assessment of BHT(1) Int. J. Toxicol. 2002;21((Suppl. S2)):19–94. doi: 10.1080/10915810290096513. PubMed DOI
Wichayapreechar P., Anuchapreeda S., Phongpradist R., Rungseevijitprapa W., Ampasavate C. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. J. Liposome Res. 2020;30:197–207. doi: 10.1080/08982104.2019.1614952. PubMed DOI
Sadeghi Ghadi Z., Dinarvand R., Asemi N., Talebpour Amiri F., Ebrahimnejad P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur. J. Pharm. Sci. 2019;130:234–246. doi: 10.1016/j.ejps.2019.01.035. PubMed DOI
Sguizzato M., Mariani P., Ferrara F., Drechsler M., Hallan S.S., Huang N., Simelière F., Khunti N., Cortesi R., Marchetti N., et al. Nanoparticulate Gels for Cutaneous Administration of Caffeic Acid. Nanomaterials. 2020;10:961. doi: 10.3390/nano10050961. PubMed DOI PMC
Huerta-Angeles G., Brandejsová M., Novotný J., Kopecká K., Šógorková J., Šmejkalová D., Velebný V. Grafting of steroids to hyaluronan towards the design of delivery systems for antioxidants: The role of hydrophobic core. Carbohydr. Polym. 2018;193:383–392. doi: 10.1016/j.carbpol.2018.04.021. PubMed DOI
Wang Y., Fu S., Lu Y., Lai R., Liu Z., Luo W., Xu Y. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis. Carbohydr. Polym. 2022;277:118819. doi: 10.1016/j.carbpol.2021.118819. PubMed DOI
Franzé S., Rama F., Rocco P., Debernardi M., Bincoletto V., Arpicco S., Cilurzo F. Rationalizing the Design of Hyaluronic Acid-Decorated Liposomes for Targeting Epidermal Layers: A Combination of Molecular Dynamics and Experimental Evidence. Mol. Pharm. 2021;18:3979–3989. doi: 10.1021/acs.molpharmaceut.1c00235. PubMed DOI
El Kechai N., Bochot A., Huang N., Nguyen Y., Ferrary E., Agnely F. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int. J. Pharm. 2015;487:187–196. doi: 10.1016/j.ijpharm.2015.04.019. PubMed DOI
Castangia I., Caddeo C., Manca M.L., Casu L., Latorre A.C., Díez-Sales O., Ruiz-Saurí A., Bacchetta G., Fadda A.M., Manconi M. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohydr. Polym. 2015;134:657–663. doi: 10.1016/j.carbpol.2015.08.037. PubMed DOI
Franzé S., Marengo A., Stella B., Minghetti P., Arpicco S., Cilurzo F. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration. Int. J. Pharm. 2018;535:333–339. doi: 10.1016/j.ijpharm.2017.11.028. PubMed DOI
Wan T., Pan W., Long Y., Yu K., Liu S., Ruan W., Pan J., Qin M., Wu C., Xu Y. Effects of nanoparticles with hydrotropic nicotinamide on tacrolimus: Permeability through psoriatic skin and antipsoriatic and antiproliferative activities. Int. J. Nanomed. 2017;12:1485–1497. doi: 10.2147/IJN.S126210. PubMed DOI PMC
Kim H., Lee S., Ki C.S. Modular formation of hyaluronic acid/β-glucan hybrid nanogels for topical dermal delivery targeting skin dendritic cells. Carbohydr. Polym. 2021;252:117132. doi: 10.1016/j.carbpol.2020.117132. PubMed DOI
Wang M.-Z., Niu J., Ma H.-J., Dad H.A., Shao H.-T., Yuan T.-J., Peng L.-H. Transdermal siRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J. Control Release. 2020;322:95–107. doi: 10.1016/j.jconrel.2020.03.023. PubMed DOI
Nasiri M.I., Vora L.K., Ershaid J.A., Peng K., Tekko I.A., Donnelly R.F. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv. Transl. Res. 2021;12:881–896. doi: 10.1007/s13346-021-01107-0. PubMed DOI PMC
Bonfante G., Lee H., Bao L., Park J., Takama N., Kim B. Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst. Lett. 2020;8:13. doi: 10.1186/s40486-020-00113-0. DOI
Jang M., Baek S., Kang G., Yang H., Kim S., Jung H. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. Int. J. Cosmet. Sci. 2020;42:302–309. doi: 10.1111/ics.12617. PubMed DOI
Fonseca D.F.S., Vilela C., Pinto R.J.B., Bastos V., Oliveira H., Catarino J., Faísca P., Rosado C., Silvestre A.J.D., Freire C.S.R. Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: In vitro and in vivo evaluation. Mater. Sci. Eng. C. 2021;118:111350. doi: 10.1016/j.msec.2020.111350. PubMed DOI
Leone M., Romeijn S., Slütter B., O’Mahony C., Kersten G., Bouwstra J.A. Hyaluronan molecular weight: Effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen. Eur. J. Pharm. Sci. 2020;146:105269. doi: 10.1016/j.ejps.2020.105269. PubMed DOI
Xie Y., Wang H., Mao J., Li Y., Hussain M., Zhu J., Li Y., Zhang L., Tao J., Zhu J. Enhanced in vitro efficacy for inhibiting hypertrophic scar by bleomycin-loaded dissolving hyaluronic acid microneedles. J. Mater. Chem. B. 2019;7:6604–6611. doi: 10.1039/C9TB01449G. PubMed DOI
Han S.-K., Lee S.-J., Ha H.-Y. Skin Moisturizing Effects of a Microneedle Patch Containing Hyaluronic Acid and Lonicerae flos. Processes. 2021;9:321. doi: 10.3390/pr9020321. DOI
He J., Zhang Z., Zheng X., Li L., Qi J., Wu W., Lu Y. Design and Evaluation of Dissolving Microneedles for Enhanced Dermal Delivery of Propranolol Hydrochloride. Pharmaceutics. 2021;13:579. doi: 10.3390/pharmaceutics13040579. PubMed DOI PMC
Kim Y., Bhattaccharjee S.A., Beck-Broichsitter M., Banga A.K. Fabrication and characterization of hyaluronic acid microneedles to enhance delivery of magnesium ascorbyl phosphate into skin. Biomed. Microdevices. 2019;21:104. doi: 10.1007/s10544-019-0455-0. PubMed DOI
Ning X., Wiraja C., Lio D.C.S., Xu C. A Double-Layered Microneedle Platform Fabricated through Frozen Spray-Coating. Adv. Healthc. Mater. 2020;9:2000147. doi: 10.1002/adhm.202000147. PubMed DOI
Lee J.H., Jung Y.S., Kim G.M., Bae J.M. A hyaluronic acid-based microneedle patch to treat psoriatic plaques: A pilot open trial. Br. J. Dermatol. 2018;178:e24–e25. doi: 10.1111/bjd.15779. PubMed DOI
Yu W., Jiang G., Zhang Y., Liu D., Xu B., Zhou J. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater. Sci. Eng. C. 2017;80:187–196. doi: 10.1016/j.msec.2017.05.143. PubMed DOI
Chi Y., Huang Y., Kang Y., Dai G., Liu Z., Xu K., Zhong W. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. Eur. J. Pharm. Sci. 2022;168:106075. doi: 10.1016/j.ejps.2021.106075. PubMed DOI
Jung H.S., Kong W.H., Sung D.K., Lee M.-Y., Beack S.E., Keum D.H., Kim K.S., Yun S.H., Hahn S.K. Nanographene Oxide–Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano. 2014;8:260–268. doi: 10.1021/nn405383a. PubMed DOI
Pan W., Qin M., Zhang G., Long Y., Ruan W., Pan J., Wu Z., Wan T., Wu C., Xu Y. Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery. Int. J. Nanomed. 2016;11:4037–4050. PubMed PMC
Maroda M., Bodnár M., Berkó S., Bakó J., Erős G., Csányi E., Szabó-Révész P., Hartmann J.F., Kemény L., Borbély J. Preparation and investigation of a cross-linked hyaluronan nanoparticles system. Carbohydr. Polym. 2011;83:1322–1329. doi: 10.1016/j.carbpol.2010.09.039. DOI
Lin L.-H., Chen C.-W., Zhu Y.-Q. Synthesis and cytotoxicity of quercetin/hyaluronic acid containing ether block segment. Colloids Surf. A. 2020;586:124230. doi: 10.1016/j.colsurfa.2019.124230. DOI
Duan Y., Li K., Wang H., Wu T., Zhao Y., Li H., Tang H., Yang W. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr. Polym. 2020;238:116195. doi: 10.1016/j.carbpol.2020.116195. PubMed DOI
Krishnan V., Peng K., Sarode A., Prakash S., Zhao Z., Filippov S.K., Todorova K., Sell B.R., Lujano O., Bakre S., et al. Hyaluronic acid conjugates for topical treatment of skin cancer lesions. Sci. Adv. 2021;7:eabe6627. doi: 10.1126/sciadv.abe6627. PubMed DOI PMC
Huang R.-Y., Lin Y.-H., Lin S.-Y., Li Y.-N., Chiang C.-S., Chang C.-W. Magnetic ternary nanohybrids for nonviral gene delivery of stem cells and applications on cancer therapy. Theranostics. 2019;9:2411–2423. doi: 10.7150/thno.29326. PubMed DOI PMC
Ho Y.-J., Hsu H.-C., Kang S.-T., Fan C.-H., Chang C.-W., Yeh C.-K. Ultrasonic Transdermal Delivery System with Acid–Base Neutralization-Generated CO2 Microbubble Cavitation. ACS Appl. Bio Mater. 2020;3:1968–1975. doi: 10.1021/acsabm.9b01126. PubMed DOI