Retinoic Acid Grafted to Hyaluronic Acid Activates Retinoid Gene Expression and Removes Cholesterol from Cellular Membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35204701
PubMed Central
PMC8961547
DOI
10.3390/biom12020200
PII: biom12020200
Knihovny.cz E-zdroje
- Klíčová slova
- Delcore, HyRetin, amphiphilic hyaluronan, cholesterol, hyaluronic acid, nanocarrier, retinoic acid,
- MeSH
- cholesterol metabolismus MeSH
- exprese genu MeSH
- kyselina hyaluronová farmakologie MeSH
- retinoidy * farmakologie MeSH
- tretinoin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- kyselina hyaluronová MeSH
- retinoidy * MeSH
- tretinoin * MeSH
All-trans-retinoic acid (atRA) is a potent ligand that regulates gene expression and is used to treat several skin disorders. Hyaluronic acid (HA) was previously conjugated with atRA (HA-atRA) to obtain a novel amphiphilic compound. HA-atRA forms micelles that incorporate hydrophobic molecules and facilitate their transport through the skin. The aim of this study was to determine the influence of HA-atRA on gene expression in skin cells and to compare it with that of unbound atRA. Gene expression was investigated using microarrays and a luciferase system with a canonical atRA promoter. HA-atRA upregulated gene expression similarly to atRA. However, HA-atRA activated the expression of cholesterol metabolism genes, unlike atRA. Further investigation using HPLC and filipin III staining suggested that the treated cells induced cholesterol synthesis to replenish the cholesterol removed from the cells by HA-atRA. HA modified with oleate (HA-C18:1) removed cholesterol from the cells similarly to HA-atRA, suggesting that the cholesterol removal stemmed from the amphiphilic nature of the two derivatives. HA-atRA induces retinoid signaling. Thus, HA-atRA could be used to treat skin diseases, such as acne and psoriasis, where the combined action of atRA signaling and anti-inflammatory cholesterol removal may be potentially beneficial.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
R and D Department Contipro a s 562 04 Dolní Dobrouč Czech Republic
Zobrazit více v PubMed
Cunningham T.J., Duester G. Mechanisms of Retinoic Acid Signalling and Its Roles in Organ and Limb Development. Nat. Rev. Mol. Cell Biol. 2015;16:110–123. doi: 10.1038/nrm3932. PubMed DOI PMC
Al Tanoury Z., Piskunov A., Rochette-Egly C. Vitamin A and Retinoid Signaling: Genomic and Nongenomic Effects. J. Lipid Res. 2013;54:1761–1775. doi: 10.1194/jlr.R030833. PubMed DOI PMC
Beckenbach L., Baron J.M., Merk H.F., Löffler H., Amann P.M. Retinoid Treatment of Skin Diseases. Eur. J. Dermatol. 2015;25:384–391. doi: 10.1684/ejd.2015.2544. PubMed DOI
Bensa V., Calarco E., Giusto E., Perri P., Corrias M.V., Ponzoni M., Brignole C., Pastorino F. Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals. 2021;14:854. doi: 10.3390/ph14090854. PubMed DOI PMC
Aubert J., Piwnica D., Bertino B., Blanchet-Réthoré S., Carlavan I., Déret S., Dreno B., Gamboa B., Jomard A., Luzy A.P., et al. Nonclinical and Human Pharmacology of the Potent and Selective Topical Retinoic Acid Receptor-γ Agonist Trifarotene. Br. J. Dermatol. 2018;179:442–456. doi: 10.1111/bjd.16719. PubMed DOI
Kong R., Cui Y., Fisher G.J., Wang X., Chen Y., Schneider L.M., Majmudar G. A Comparative Study of the Effects of Retinol and Retinoic Acid on Histological, Molecular, and Clinical Properties of Human Skin. J. Cosmet. Dermatol. 2016;15:49–57. doi: 10.1111/jocd.12193. PubMed DOI
EU Commission Regulation (EU) 2021/1099. European Union; Maastricht, The Netherlands: 2021. L 238/29.
Cowman M.K., Lee H.-G., Schwertfeger K.L., McCarthy J.B., Turley E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015;6:261. doi: 10.3389/fimmu.2015.00261. PubMed DOI PMC
Pratt R.L. Hyaluronan and the Fascial Frontier. Int. J. Mol. Sci. 2021;22:6845. doi: 10.3390/ijms22136845. PubMed DOI PMC
Šínová R., Pavlík V., Ondrej M., Velebný V., Nešporová K. Hyaluronan: A Key Player or Just a Bystander in Skin Photoaging? Exp. Dermatol. 2021 doi: 10.1111/exd.14491. PubMed DOI
Essendoubi M., Gobinet C., Reynaud R., Angiboust J.F., Manfait M., Piot O. Human Skin Penetration of Hyaluronic Acid of Different Molecular Weights as Probed by Raman Spectroscopy. Skin Res. Technol. 2016;22:55–62. doi: 10.1111/srt.12228. PubMed DOI
He H., Li W., Tseng D.Y., Zhang S., Chen S.-Y., Day A.J., Tseng S.C.G. Biochemical Characterization and Function of Complexes Formed by Hyaluronan and the Heavy Chains of Inter-α-Inhibitor (HC·HA) Purified from Extracts of Human Amniotic Membrane. J. Biol. Chem. 2009;284:20136–20146. doi: 10.1074/jbc.M109.021881. PubMed DOI PMC
Štrympl O., Vohlídal J., Hermannová M., Maldonado-Domínguez M., Brandejsová M., Kopecká K., Velebný V., Huerta-Ángeles G. Oleate-Modified Hyaluronan: Controlling the Number and Distribution of Side Chains by Varying the Reaction Conditions. Carbohydr. Polym. 2021;267:118197. doi: 10.1016/j.carbpol.2021.118197. PubMed DOI
Huerta-Angeles G., Bobek M., Příkopová E., Šmejkalová D., Velebný V. Novel Synthetic Method for the Preparation of Amphiphilic Hyaluronan by Means of Aliphatic Aromatic Anhydrides. Carbohydr. Polym. 2014;111:883–891. doi: 10.1016/j.carbpol.2014.05.035. PubMed DOI
Huerta-Ángeles G., Brandejsová M., Štěpán P., Pavlík V., Starigazdová J., Orzol P., Kopecká K., Halamková P., Kulhánek J., Velebný V. Retinoic Acid Grafted to Hyaluronan for Skin Delivery: Synthesis, Stability Studies, and Biological Evaluation. Carbohydr. Polym. 2020;231:115733. doi: 10.1016/j.carbpol.2019.115733. PubMed DOI
Ventura C., Cantoni S., Bianchi F., Lionetti V., Cavallini C., Scarlata I., Foroni L., Maioli M., Bonsi L., Alviano F., et al. Hyaluronan Mixed Esters of Butyric and Retinoic Acid Drive Cardiac and Endothelial Fate in Term Placenta Human Mesenchymal Stem Cells and Enhance Cardiac Repair in Infarcted Rat Hearts. J. Biol. Chem. 2007;282:14243–14252. doi: 10.1074/jbc.M609350200. PubMed DOI
Konopka R., Hýzdalová M., Kubala L., Pacherník J. New Luminescence-Based Approach to Measurement of Luciferase Gene Expression Reporter Activity and Adenosine Triphosphate-Based Determination of Cell Viability. Folia. Biol. (Praha.) 2010;56:66–71. PubMed
Konopka R., Kubala L., Lojek A., Pacherník J. Alternation of Retinoic Acid Induced Neural Differentiation of P19 Embryonal Carcinoma Cells by Reduction of Reactive Oxygen Species Intracellular Production. Neuro Endocrinol. Lett. 2008;29:770–774. PubMed
R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019.
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic. Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update) Nucleic. Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Haeseleer F., Huang J., Lebioda L., Saari J.C., Palczewski K. Molecular Characterization of a Novel Short-Chain Dehydrogenase/Reductase That Reduces All-Trans-Retinal. J. Biol. Chem. 1998;273:21790–21799. doi: 10.1074/jbc.273.34.21790. PubMed DOI
Oldridge E.E., Walker H.F., Stower M.J., Simms M.S., Mann V.M., Collins A.T., Pellacani D., Maitland N.J. Retinoic Acid Represses Invasion and Stem Cell Phenotype by Induction of the Metastasis Suppressors RARRES1 and LXN. Oncogenesis. 2013;2:e45. doi: 10.1038/oncsis.2013.6. PubMed DOI PMC
Shimano H., Sato R. SREBP-Regulated Lipid Metabolism: Convergent Physiology—Divergent Pathophysiology. Nat. Rev. Endocrinol. 2017;13:710–730. doi: 10.1038/nrendo.2017.91. PubMed DOI
Adams C.M., Reitz J., De Brabander J.K., Feramisco J.D., Li L., Brown M.S., Goldstein J.L. Cholesterol and 25-Hydroxycholesterol Inhibit Activation of SREBPs by Different Mechanisms, Both Involving SCAP and Insigs. J. Biol. Chem. 2004;279:52772–52780. doi: 10.1074/jbc.M410302200. PubMed DOI
Lu F., Liang Q., Abi-Mosleh L., Das A., De Brabander J.K., Goldstein J.L., Brown M.S. Identification of NPC1 as the Target of U18666A, an Inhibitor of Lysosomal Cholesterol Export and Ebola Infection. eLife. 2015;4:e12177. doi: 10.7554/eLife.12177. PubMed DOI PMC
Phillips M.C. Molecular Mechanisms of Cellular Cholesterol Efflux. J. Biol. Chem. 2014;289:24020–24029. doi: 10.1074/jbc.R114.583658. PubMed DOI PMC
O’Byrne S.M., Blaner W.S. Retinol and Retinyl Esters: Biochemistry and Physiology. J. Lipid Res. 2013;54:1731–1743. doi: 10.1194/jlr.R037648. PubMed DOI PMC
Bjerke D.L., Li R., Price J.M., Dobson R.L.M., Rodrigues M., Tey C., Vires L., Adams R.L., Sherrill J.D., Styczynski P.B., et al. The Vitamin A Ester Retinyl Propionate Has a Unique Metabolic Profile and Higher Retinoid-Related Bioactivity over Retinol and Retinyl Palmitate in Human Skin Models. Exp. Dermatol. 2021;30:226–236. doi: 10.1111/exd.14219. PubMed DOI
Schreiber R., Taschler U., Preiss-landl K., Wongsiriroj N., Zimmermann R., Lass A. Retinyl Ester Hydrolases and Their Roles in Vitamin A Homeostasis. Biochim. Biophys. Acta. 2011;1821:113–123. doi: 10.1016/j.bbalip.2011.05.001. PubMed DOI PMC
Lee D.-D., Stojadinovic O., Krzyzanowska A., Vouthounis C., Blumenberg M., Tomic-Canic M. Retinoid-Responsive Transcriptional Changes in Epidermal Keratinocytes. J. Cell Physiol. 2009;220:427–439. doi: 10.1002/jcp.21784. PubMed DOI PMC
Hu Y.-W., Wang Q., Ma X., Li X.-X., Liu X.-H., Xiao J., Liao D.-F., Xiang J., Tang C.-K. TGF-Beta1 up-Regulates Expression of ABCA1, ABCG1 and SR-BI through Liver X Receptor Alpha Signaling Pathway in THP-1 Macrophage-Derived Foam Cells. J. Atheroscler Thromb. 2010;17:493–502. doi: 10.5551/jat.3152. PubMed DOI
Kostopoulou F., Gkretsi V., Malizos K., Iliopoulos D., Oikonomou P., Poultsides L., Tsezou A. Central Role of SREBP-2 in the Pathogenesis of Osteoarthritis. PLoS ONE. 2012;7:e35753. doi: 10.1371/journal.pone.0035753. PubMed DOI PMC
Najafi-Shoushtari S.H., Kristo F., Li Y., Shioda T., Cohen D.E., Gerszten R.E., Näär A.M. MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis. Science. 2010;328 doi: 10.1126/science.1189123. PubMed DOI PMC
Zhao Y., He L., Wang T., Zhu L., Yan N. 2-Hydroxypropyl-β-Cyclodextrin Regulates the Epithelial to Mesenchymal Transition in Breast Cancer Cells by Modulating Cholesterol Homeostasis and Endoplasmic Reticulum Stress. Metabolites. 2021;11:562. doi: 10.3390/metabo11080562. PubMed DOI PMC
Atger V.M., de la Llera Moya M., Stoudt G.W., Rodrigueza W.V., Phillips M.C., Rothblat G.H. Cyclodextrins as Catalysts for the Removal of Cholesterol from Macrophage Foam Cells. J. Clin. Investig. 1997;99:773–780. doi: 10.1172/JCI119223. PubMed DOI PMC
Nešporová K., Šógorková J., Šmejkalová D., Kulhánek J., Huerta-Angeles G., Kubala L., Velebný V. Influence of Serum Albumin on Intracellular Delivery of Drug-Loaded Hyaluronan Polymeric Micelles. Int. J. Pharm. 2016;511:638–647. doi: 10.1016/j.ijpharm.2016.07.057. PubMed DOI
Starigazdová J., Nešporová K., Čepa M., Šínová R., Šmejkalová D., Huerta-Angeles G., Velebný V. In Vitro Investigation of Hyaluronan-Based Polymeric Micelles for Drug Delivery into the Skin: The Internalization Pathway. Eur. J. Pharm. Sci. 2020;143:105168. doi: 10.1016/j.ejps.2019.105168. PubMed DOI
Zidovetzki R., Levitan I. Use of Cyclodextrins to Manipulate Plasma Membrane Cholesterol Content: Evidence, Misconceptions and Control Strategies. Biochim. Biophys. Acta (BBA) Biomembr. 2007;1768:1311–1324. doi: 10.1016/j.bbamem.2007.03.026. PubMed DOI PMC
Kline M.A., O’Connor Butler E.S., Hinzey A., Sliman S., Kotha S.R., Marsh C.B., Uppu R.M., Parinandi N.L. A Simple Method for Effective and Safe Removal of Membrane Cholesterol from Lipid Rafts in Vascular Endothelial Cells: Implications in Oxidant-Mediated Lipid Signaling. Methods Mol. Biol. 2010;610:201–211. doi: 10.1007/978-1-60327-029-8_12. PubMed DOI
Brunaldi K., Huang N., Hamilton J.A. Fatty Acids Are Rapidly Delivered to and Extracted from Membranes by Methyl-β-Cyclodextrin. J. Lipid Res. 2010;51:120–131. doi: 10.1194/jlr.M900200-JLR200. PubMed DOI PMC
Brown A., Patel S., Ward C., Lorenz A., Ortiz M., DuRoss A., Wieghardt F., Esch A., Otten E.G., Heiser L.M., et al. PEG-Lipid Micelles Enable Cholesterol Efflux in Niemann-Pick Type C1 Disease-Based Lysosomal Storage Disorder. Sci. Rep. 2016;6:31750. doi: 10.1038/srep31750. PubMed DOI PMC
Yvan-Charvet L., Wang N., Tall A.R. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses. Arterioscler. Thromb. Vasc. Biol. 2010;30:139–143. doi: 10.1161/ATVBAHA.108.179283. PubMed DOI PMC
Kim H., Kumar S., Kang D.-W., Jo H., Park J.-H. Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy. ACS Nano. 2020;14:6519–6531. doi: 10.1021/acsnano.9b08216. PubMed DOI PMC
Šimek M., Hermannová M., Šmejkalová D., Foglová T., Souček K., Binó L., Velebný V. LC-MS/MS Study of In Vivo Fate of Hyaluronan Polymeric Micelles Carrying Doxorubicin. Carbohydr. Polym. 2019;209:181–189. doi: 10.1016/j.carbpol.2018.12.104. PubMed DOI