Hyaluronic Acid: Known for Almost a Century, but Still in Vogue

. 2022 Apr 11 ; 14 (4) : . [epub] 20220411

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456670

Grantová podpora
Long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defense Ministry of Defence
Specific research project no: SV/FVZ201805 Ministry of Education, Youth and Sport

Odkazy

PubMed 35456670
PubMed Central PMC9029726
DOI 10.3390/pharmaceutics14040838
PII: pharmaceutics14040838
Knihovny.cz E-zdroje

Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.

Zobrazit více v PubMed

Cowman M.K. Hyaluronan and Hyaluronan Fragments. Adv. Carbohydr. Chem. Biochem. 2017;74:1–59. doi: 10.1016/bs.accb.2017.10.001. PubMed DOI

Laurent T.C. Hyaluronan Research in Uppsala*. Upsala J. Med. Sci. 2007;112:123–142. doi: 10.3109/2000-1967-188. PubMed DOI

Couchman J.R., Pataki C.A. An Introduction to Proteoglycans and Their Localization. J. Histochem. Cytochem. 2012;60:885–897. doi: 10.1369/0022155412464638. PubMed DOI PMC

Iozzo R.V., Schaefer L. Proteoglycan Form and Function: A Comprehensive Nomenclature of Proteoglycans. Matrix Biol. 2015;42:11–55. doi: 10.1016/j.matbio.2015.02.003. PubMed DOI PMC

Kakehi K., Kinoshita M., Yasueda S. Hyaluronic Acid: Separation and Biological Implications. J. Chromatogr. B. 2003;797:347–355. doi: 10.1016/S1570-0232(03)00479-3. PubMed DOI

Necas J., Bartosikova L., Brauner P., Kolář J. Hyaluronic Acid (Hyaluronan): A Review. Vet. Med. 2008;53:397–411. doi: 10.17221/1930-VETMED. DOI

Liao Y.-H., Jones S.A., Forbes B., Martin G.P., Brown M.B. Hyaluronan: Pharmaceutical Characterization and Drug Delivery. Drug Deliv. 2005;12:327–342. doi: 10.1080/10717540590952555. PubMed DOI

Meyer K., Palmer J.W. The Polysaccharide of the Vitreous Humor. J. Biol. Chem. 1934;107:629–634. doi: 10.1016/S0021-9258(18)75338-6. DOI

Levene P.A., López-Suárez J. Mucins and Mucoids. J. Biol. Chem. 1918;36:105–126. doi: 10.1016/S0021-9258(18)86425-0. DOI

Weissmann B., Meyer K. The Structure of Hyalobiuronic Acid and of Hyaluronic Acid from Umbilical Cord1,2. J. Am. Chem. Soc. 1954;76:1753–1757. doi: 10.1021/ja01636a010. DOI

Chen W.Y., Abatangelo G. Functions of Hyaluronan in Wound Repair. Wound Repair Regen. 1999;7:79–89. doi: 10.1046/j.1524-475X.1999.00079.x. PubMed DOI

Hargittai I., Hargittai M. Molecular Structure of Hyaluronan: An Introduction. Struct. Chem. 2008;19:697–717. doi: 10.1007/s11224-008-9370-3. DOI

Valcarcel J., Novoa-Carballal R., Pérez-Martín R.I., Reis R.L., Vázquez J.A. Glycosaminoglycans from Marine Sources as Therapeutic Agents. Biotechnol. Adv. 2017;35:711–725. doi: 10.1016/j.biotechadv.2017.07.008. PubMed DOI

Sze J.H., Brownlie J.C., Love C.A. Biotechnological Production of Hyaluronic Acid: A Mini Review. 3 Biotech. 2016;6:67. doi: 10.1007/s13205-016-0379-9. PubMed DOI PMC

Almond A. Hyaluronan. Cell. Mol. Life Sci. 2007;64:1591–1596. doi: 10.1007/s00018-007-7032-z. PubMed DOI PMC

Dechert T.A., Ducale A.E., Ward S.I., Yager D.R. Hyaluronan in Human Acute and Chronic Dermal Wounds. Wound Repair Regen. 2006;14:252–258. doi: 10.1111/j.1743-6109.2006.00119.x. PubMed DOI

Rah M.J. A Review of Hyaluronan and Its Ophthalmic Applications. Optom. J. Am. Optom. Assoc. 2011;82:38–43. doi: 10.1016/j.optm.2010.08.003. PubMed DOI

Khunmanee S., Jeong Y., Park H. Crosslinking Method of Hyaluronic-Based Hydrogel for Biomedical Applications. J. Tissue Eng. 2017;8:2041731417726464. doi: 10.1177/2041731417726464. PubMed DOI PMC

Jouon N., Rinaudo M., Milas M., Desbrières J. Hydration of Hyaluronic Acid as a Function of the Counterion Type and Relative Humidity. Carbohydr. Polym. 1995;26:69–73. doi: 10.1016/0144-8617(95)98837-7. DOI

Nakamura M., Hikida M., Nakano T., Ito S., Hamano T., Kinoshita S. Characterization of Water Retentive Properties of Hyaluronan. Cornea. 1993;12:433–436. doi: 10.1097/00003226-199309000-00010. PubMed DOI

Huang H., Du W., Brekken R.A. Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxid. Redox Signal. 2017;27:774–784. doi: 10.1089/ars.2017.7305. PubMed DOI

Waddington R.J., Moseley R., Embery G. Periodontal Disease Mechanisms: Reactive Oxygen Species: A Potential Role in the Pathogenesis of Periodontal Diseases. Oral Dis. 2000;6:138–151. doi: 10.1111/j.1601-0825.2000.tb00325.x. PubMed DOI

Moseley R., Leaver M., Walker M., Waddington R.J., Parsons D., Chen W.Y.J., Embery G. Comparison of the Antioxidant Properties of HYAFF®-11p75, AQUACEL® and Hyaluronan towards Reactive Oxygen Species in Vitro. Biomaterials. 2002;23:2255–2264. doi: 10.1016/S0142-9612(01)00360-X. PubMed DOI

Choi K.Y., Saravanakumar G., Park J.H., Park K. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer. Colloids Surf. B Biointerfac. 2012;99:82–94. doi: 10.1016/j.colsurfb.2011.10.029. PubMed DOI PMC

Rodemann H.P., Blaese M.A. Responses of Normal Cells to Ionizing Radiation. Semin. Radiat. Oncol. 2007;17:81–88. doi: 10.1016/j.semradonc.2006.11.005. PubMed DOI

DeAngelis P.L. Hyaluronan Synthases: Fascinating Glycosyltransferases from Vertebrates, Bacterial Pathogens, and Algal Viruses. Cell. Mol. Life Sci. 1999;56:670–682. doi: 10.1007/s000180050461. PubMed DOI PMC

DeAngelis P.L., Papaconstantinou J., Weigel P.H. Molecular Cloning, Identification, and Sequence of the Hyaluronan Synthase Gene from Group A Streptococcus Pyogenes. J. Biol. Chem. 1993;268:19181–19184. doi: 10.1016/S0021-9258(19)36494-4. PubMed DOI

DeAngelis P.L., Papaconstantinou J., Weigel P.H. Isolation of a Streptococcus Pyogenes Gene Locus That Directs Hyaluronan Biosynthesis in Acapsular Mutants and in Heterologous Bacteria. J. Biol. Chem. 1993;268:14568–14571. doi: 10.1016/S0021-9258(18)82366-3. PubMed DOI

DeAngelis P.L., Jing W., Drake R.R., Achyuthan A.M. Identification and Molecular Cloning of a Unique Hyaluronan Synthase from Pasteurella Multocida. J. Biol. Chem. 1998;273:8454–8458. doi: 10.1074/jbc.273.14.8454. PubMed DOI

Weigel P.H. Functional Characteristics and Catalytic Mechanisms of the Bacterial Hyaluronan Synthases. IUBMB Life. 2002;54:201–211. doi: 10.1080/15216540214931. PubMed DOI

Weigel P.H., DeAngelis P.L. Hyaluronan Synthases: A Decade-plus of Novel Glycosyltransferases. J. Biol. Chem. 2007;282:36777–36781. doi: 10.1074/jbc.R700036200. PubMed DOI

Weigel P.H. Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior. Int. J. Cell Biol. 2015;2015:367579. doi: 10.1155/2015/367579. PubMed DOI PMC

Siiskonen H., Oikari S., Pasonen-Seppänen S., Rilla K. Hyaluronan Synthase 1: A Mysterious Enzyme with Unexpected Functions. Front. Immunol. 2015;6:43. doi: 10.3389/fimmu.2015.00043. PubMed DOI PMC

Reitinger S., Müllegger J., Lepperdinger G. Xenopus Kidney Hyaluronidase-1 (XKH1), a Novel Type of Membrane-Bound Hyaluronidase Solely Degrades Hyaluronan at Neutral PH. FEBS Lett. 2001;505:213–216. doi: 10.1016/S0014-5793(01)02813-7. PubMed DOI

Tsepilov R.N., Beloded A.V. Hyaluronic Acid-an “Old” Molecule with “New” Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. Biochem. Mosc. 2015;80:1093–1108. doi: 10.1134/S0006297915090011. PubMed DOI

Spicer A.P., McDonald J.A. Characterization and Molecular Evolution of a Vertebrate Hyaluronan Synthase Gene Family. J. Biol. Chem. 1998;273:1923–1932. doi: 10.1074/jbc.273.4.1923. PubMed DOI

Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018;10:701. doi: 10.3390/polym10070701. PubMed DOI PMC

Itano N., Kimata K. Mammalian Hyaluronan Synthases. IUBMB Life. 2002;54:195–199. doi: 10.1080/15216540214929. PubMed DOI

Lee J.Y., Spicer A.P. Hyaluronan: A Multifunctional, MegaDalton, Stealth Molecule. Curr. Opin. Cell Biol. 2000;12:581–586. doi: 10.1016/S0955-0674(00)00135-6. PubMed DOI

Bai K.-J., Spicer A.P., Mascarenhas M.M., Yu L., Ochoa C.D., Garg H.G., Quinn D.A. The Role of Hyaluronan Synthase 3 in Ventilator-Induced Lung Injury. Am. J. Respir. Crit. Care Med. 2005;172:92–98. doi: 10.1164/rccm.200405-652OC. PubMed DOI PMC

Itano N., Sawai T., Yoshida M., Lenas P., Yamada Y., Imagawa M., Shinomura T., Hamaguchi M., Yoshida Y., Ohnuki Y., et al. Three Isoforms of Mammalian Hyaluronan Synthases Have Distinct Enzymatic Properties. J. Biol. Chem. 1999;274:25085–25092. doi: 10.1074/jbc.274.35.25085. PubMed DOI

Camenisch T.D., Spicer A.P., Brehm-Gibson T., Biesterfeldt J., Augustine M.L., Calabro A., Kubalak S., Klewer S.E., McDonald J.A. Disruption of Hyaluronan Synthase-2 Abrogates Normal Cardiac Morphogenesis and Hyaluronan-Mediated Transformation of Epithelium to Mesenchyme. J. Clin. Investig. 2000;106:349–360. doi: 10.1172/JCI10272. PubMed DOI PMC

Tien J.Y.L., Spicer A.P. Three Vertebrate Hyaluronan Synthases Are Expressed during Mouse Development in Distinct Spatial and Temporal Patterns. Dev. Dyn. 2005;233:130–141. doi: 10.1002/dvdy.20328. PubMed DOI

Laurent T.C., Fraser J.R. Hyaluronan. FASEB J. 1992;6:2397–2404. doi: 10.1096/fasebj.6.7.1563592. PubMed DOI

Vigetti D., Viola M., Karousou E., De Luca G., Passi A. Metabolic Control of Hyaluronan Synthases. Matrix Biol. 2014;35:8–13. doi: 10.1016/j.matbio.2013.10.002. PubMed DOI

Vigetti D., Karousou E., Viola M., Passi A. Analysis of Hyaluronan Synthase Activity. In: Balagurunathan K., Nakato H., Desai U.R., editors. Glycosaminoglycans: Chemistry and Biology. Springer; New York, NY, USA: 2015. pp. 201–208. Methods in Molecular Biology. PubMed

Cowman M.K., Matsuoka S. Experimental Approaches to Hyaluronan Structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Tammi R.H., Passi A.G., Rilla K., Karousou E., Vigetti D., Makkonen K., Tammi M.I. Transcriptional and Post-Translational Regulation of Hyaluronan Synthesis. FEBS J. 2011;278:1419–1428. doi: 10.1111/j.1742-4658.2011.08070.x. PubMed DOI

Jacobson A., Brinck J., Briskin M.J., Spicer A.P., Heldin P. Expression of Human Hyaluronan Synthases in Response to External Stimuli. Biochem. J. 2000;348:29–35. doi: 10.1042/bj3480029. PubMed DOI PMC

Tlapak-Simmons V.L., Baron C.A., Gotschall R., Haque D., Canfield W.M., Weigel P.H. Hyaluronan Biosynthesis by Class I Streptococcal Hyaluronan Synthases Occurs at the Reducing End. J. Biol. Chem. 2005;280:13012–13018. doi: 10.1074/jbc.M409788200. PubMed DOI PMC

Deen A.J., Rilla K., Oikari S., Kärnä R., Bart G., Häyrinen J., Bathina A.R., Ropponen A., Makkonen K., Tammi R.H., et al. Rab10-Mediated Endocytosis of the Hyaluronan Synthase HAS3 Regulates Hyaluronan Synthesis and Cell Adhesion to Collagen. J. Biol. Chem. 2014;289:8375–8389. doi: 10.1074/jbc.M114.552133. PubMed DOI PMC

Karousou E., Kamiryo M., Skandalis S.S., Ruusala A., Asteriou T., Passi A., Yamashita H., Hellman U., Heldin C.-H., Heldin P. The Activity of Hyaluronan Synthase 2 Is Regulated by Dimerization and Ubiquitination. J. Biol. Chem. 2010;285:23647–23654. doi: 10.1074/jbc.M110.127050. PubMed DOI PMC

Bart G., Vico N.O., Hassinen A., Pujol F.M., Deen A.J., Ruusala A., Tammi R.H., Squire A., Heldin P., Kellokumpu S., et al. Fluorescence Resonance Energy Transfer (FRET) and Proximity Ligation Assays Reveal Functionally Relevant Homo-and Heteromeric Complexes among Hyaluronan Synthases HAS1, HAS2, and HAS3. J. Biol. Chem. 2015;290:11479–11490. doi: 10.1074/jbc.M115.640581. PubMed DOI PMC

Marcellin E., Steen J.A., Nielsen L.K. Insight into Hyaluronic Acid Molecular Weight Control. Appl. Microbiol. Biotechnol. 2014;98:6947–6956. doi: 10.1007/s00253-014-5853-x. PubMed DOI

Ferrer V.P., de Mari T.L., Gremski L.H., Trevisan Silva D., da Silveira R.B., Gremski W., Chaim O.M., Senff-Ribeiro A., Nader H.B., Veiga S.S. A Novel Hyaluronidase from Brown Spider (Loxosceles Intermedia) Venom (Dietrich’s Hyaluronidase): From Cloning to Functional Characterization. PLoS Negl. Trop. Dis. 2013;7:e2206. doi: 10.1371/journal.pntd.0002206. PubMed DOI PMC

Kogan G., Šoltés L., Stern R., Gemeiner P. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2007;29:17–25. doi: 10.1007/s10529-006-9219-z. PubMed DOI

Takeo S., Fujise M., Akiyama T., Habuchi H., Itano N., Matsuo T., Aigaki T., Kimata K., Nakato H. In Vivo Hyaluronan Synthesis upon Expression of the Mammalian Hyaluronan Synthase Gene in Drosophila. J. Biol. Chem. 2004;279:18920–18925. doi: 10.1074/jbc.M314293200. PubMed DOI

Shiedlin A., Bigelow R., Christopher W., Arbabi S., Yang L., Maier R.V., Wainwright N., Childs A., Miller R.J. Evaluation of Hyaluronan from Different Sources: Streptococcus Zooepidemicus, Rooster Comb, Bovine Vitreous, and Human Umbilical Cord. Biomacromolecules. 2004;5:2122–2127. doi: 10.1021/bm0498427. PubMed DOI

Cowman M.K., Lee H.-G., Schwertfeger K.L., McCarthy J.B., Turley E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015;6:261. doi: 10.3389/fimmu.2015.00261. PubMed DOI PMC

Papakonstantinou E., Karakiulakis G. The “sweet” and “Bitter” Involvement of Glycosaminoglycans in Lung Diseases: Pharmacotherapeutic Relevance. Br. J. Pharmacol. 2009;157:1111–1127. doi: 10.1111/j.1476-5381.2009.00279.x. PubMed DOI PMC

Laurent C., Johnson-Wells G., Hellström S., Engström-Laurent A., Wells A.F. Localization of Hyaluronan in Various Muscular Tissues. Cell Tissue Res. 1991;263:201–205. doi: 10.1007/BF00318761. PubMed DOI

Armstrong S.E., Bell D.R. Relationship between Lymph and Tissue Hyaluronan in Skin and Skeletal Muscle. Am. J. Physiol. Heart Circ. Physiol. 2002;283:H2485–H2494. doi: 10.1152/ajpheart.00385.2002. PubMed DOI

George J., Stern R. Serum Hyaluronan and Hyaluronidase: Very Early Markers of Toxic Liver Injury. Clin. Chim. Acta. 2004;348:189–197. doi: 10.1016/j.cccn.2004.05.018. PubMed DOI

Toole B.P. Hyaluronan and Its Binding Proteins, the Hyaladherins. Curr. Opin. Cell Biol. 1990;2:839–844. doi: 10.1016/0955-0674(90)90081-O. PubMed DOI

Allison D.D., Grande-Allen K.J. Review. Hyaluronan: A Powerful Tissue Engineering Tool. Tissue Eng. 2006;12:2131–2140. doi: 10.1089/ten.2006.12.2131. PubMed DOI

Tiwari S., Bahadur P. Modified Hyaluronic Acid Based Materials for Biomedical Applications. Int. J. Biol. Macromol. 2019;121:556–571. doi: 10.1016/j.ijbiomac.2018.10.049. PubMed DOI

Pomin V.H., Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals. 2018;11:27. doi: 10.3390/ph11010027. PubMed DOI PMC

Hardingham T.E., Muir H. The Specific Interaction of Hyaluronic Acid with Cartilage Proteoglycans. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1972;279:401–405. doi: 10.1016/0304-4165(72)90160-2. PubMed DOI

Hascall V.C., Heinegård D. Aggregation of Cartilage Proteoglycans I. The Role of Hyaluronic Acid. J. Biol. Chem. 1974;249:4232–4241. doi: 10.1016/S0021-9258(19)42507-6. PubMed DOI

Laurent U.B.G., Reed R.K. Turnover of Hyaluronan in the Tissues. Adv. Drug Deliv. Rev. 1991;7:237–256. doi: 10.1016/0169-409X(91)90004-V. DOI

Triggs-Raine B., Natowicz M.R. Biology of Hyaluronan: Insights from Genetic Disorders of Hyaluronan Metabolism. World J. Biol. Chem. 2015;6:110–120. doi: 10.4331/wjbc.v6.i3.110. PubMed DOI PMC

Buhren B.A., Schrumpf H., Hoff N.-P., Bölke E., Hilton S., Gerber P.A. Hyaluronidase: From Clinical Applications to Molecular and Cellular Mechanisms. Eur. J. Med. Res. 2016;21:5. doi: 10.1186/s40001-016-0201-5. PubMed DOI PMC

Stern R., Jedrzejas M.J. The Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action. Chem. Rev. 2006;106:818–839. doi: 10.1021/cr050247k. PubMed DOI PMC

Rigden D.J., Jedrzejas M.J. Structures of Streptococcus Pneumoniae Hyaluronate Lyase in Complex with Chondroitin and Chondroitin Sulfate Disaccharides. Insights into Specificity and Mechanism of Action. J. Biol. Chem. 2003;278:50596–50606. doi: 10.1074/jbc.M307596200. PubMed DOI

Meyer K. 11 Hyaluronidases. In: Boyer P.D., editor. The Enzymes. Volume 5. Academic Press; Cambridge, MA, USA: 1971. pp. 307–320.

Jedrzejas M.J. Structural and Functional Comparison of Polysaccharide-Degrading Enzymes. Crit. Rev. Biochem. Mol. Biol. 2000;35:221–251. doi: 10.1080/10409230091169195. PubMed DOI

Khan N., Niazi Z.R., Rehman F.U., Akhtar A., Khan M.M., Khan S., Baloch N., Khan S. Hyaluronidases: A Therapeutic Enzyme. [(accessed on 2 April 2019)]. Available online: https://www.ingentaconnect.com/content/ben/ppl/2018/00000025/00000007/art00010. PubMed

Stern R. Devising a Pathway for Hyaluronan Catabolism: Are We There Yet? Glycobiology. 2003;13:105R–115R. doi: 10.1093/glycob/cwg112. PubMed DOI

Kreil G. Hyaluronidases-A Group of Neglected Enzymes. Protein Sci. 1995;4:1666–1669. doi: 10.1002/pro.5560040902. PubMed DOI PMC

Csóka A.B., Scherer S.W., Stern R. Expression Analysis of Six Paralogous Human Hyaluronidase Genes Clustered on Chromosomes 3p21 and 7q31. Genomics. 1999;60:356–361. doi: 10.1006/geno.1999.5876. PubMed DOI

Csóka A.B., Frost G.I., Wong T., Stern R., Csóka T.B. Purification and Microsequencing of Hyaluronidase Isozymes from Human Urine. FEBS Lett. 1997;417:307–310. doi: 10.1016/S0014-5793(97)01309-4. PubMed DOI

Frost G.I., Csóka A.B., Wong T., Stern R., Csóka T.B. Purification, Cloning, and Expression of Human Plasma Hyaluronidase. Biochem. Biophys. Res. Commun. 1997;236:10–15. doi: 10.1006/bbrc.1997.6773. PubMed DOI

Frost G.I., Mohapatra G., Wong T.M., Csóka A.B., Gray J.W., Stern R. HYAL1LUCA-1, a Candidate Tumor Suppressor Gene on Chromosome 3p21.3, Is Inactivated in Head and Neck Squamous Cell Carcinomas by Aberrant Splicing of Pre-MRNA. Oncogene. 2000;19:870–877. doi: 10.1038/sj.onc.1203317. PubMed DOI

Lepperdinger G., Müllegger J., Kreil G. Hyal2-Less Active, but More Versatile? Matrix Biol. 2001;20:509–514. doi: 10.1016/S0945-053X(01)00170-6. PubMed DOI

Rodén L., Campbell P., Fraser J.R., Laurent T.C., Pertoft H., Thompson J.N. Enzymic Pathways of Hyaluronan Catabolism. Ciba Found. Symp. 1989;143:60–76; discussion 76–86, 281–285. PubMed

Lepperdinger G., Strobl B., Kreil G. HYAL2, a Human Gene Expressed in Many Cells, Encodes a Lysosomal Hyaluronidase with a Novel Type of Specificity. J. Biol. Chem. 1998;273:22466–22470. doi: 10.1074/jbc.273.35.22466. PubMed DOI

Vigetti D., Karousou E., Viola M., Deleonibus S., De Luca G., Passi A. Hyaluronan: Biosynthesis and Signaling. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2014;1840:2452–2459. doi: 10.1016/j.bbagen.2014.02.001. PubMed DOI

Stern R. Hyaluronidases in Cancer Biology. Semin. Cancer Biol. 2008;18:275–280. doi: 10.1016/j.semcancer.2008.03.017. PubMed DOI

Stern R. Hyaluronan Catabolism: A New Metabolic Pathway. Eur. J. Cell Biol. 2004;83:317–325. doi: 10.1078/0171-9335-00392. PubMed DOI

Erickson M., Stern R. Chain Gangs: New Aspects of Hyaluronan Metabolism. Biochem. Res. Int. 2011;2012:e893947. doi: 10.1155/2012/893947. PubMed DOI PMC

Lin Y., Mahan K., Lathrop W.F., Myles D.G., Primakoff P. A Hyaluronidase Activity of the Sperm Plasma Membrane Protein PH-20 Enables Sperm to Penetrate the Cumulus Cell Layer Surrounding the Egg. J. Cell Biol. 1994;125:1157–1163. doi: 10.1083/jcb.125.5.1157. PubMed DOI PMC

Maciej-Hulme M.L. New Insights into Human Hyaluronidase 4/Chondroitin Sulphate Hydrolase. Front. Cell Dev. Biol. 2021;9:1–7. doi: 10.3389/fcell.2021.767924. PubMed DOI PMC

Yamamoto H., Tobisawa Y., Inubushi T., Irie F., Ohyama C., Yamaguchi Y. A Mammalian Homolog of the Zebrafish Transmembrane Protein 2 (TMEM2) Is the Long-Sought-after Cell-Surface Hyaluronidase. J. Biol. Chem. 2017;292:7304–7313. doi: 10.1074/jbc.M116.770149. PubMed DOI PMC

Stern R., Maibach H.I. Hyaluronan in Skin: Aspects of Aging and Its Pharmacologic Modulation. Clin. Dermatol. 2008;26:106–122. doi: 10.1016/j.clindermatol.2007.09.013. PubMed DOI

Stern R., Kogan G., Jedrzejas M.J., Soltés L. The Many Ways to Cleave Hyaluronan. Biotechnol. Adv. 2007;25:537–557. doi: 10.1016/j.biotechadv.2007.07.001. PubMed DOI

Monzon M.E., Fregien N., Schmid N., Falcon N.S., Campos M., Casalino-Matsuda S.M., Forteza R.M. Reactive Oxygen Species and Hyaluronidase 2 Regulate Airway Epithelial Hyaluronan Fragmentation. J. Biol. Chem. 2010;285:26126–26134. doi: 10.1074/jbc.M110.135194. PubMed DOI PMC

Salwowska N.M., Bebenek K.A., Żądło D.A., Wcisło-Dziadecka D.L. Physiochemical Properties and Application of Hyaluronic Acid: A Systematic Review. J. Cosmet. Derm. 2016;15:520–526. doi: 10.1111/jocd.12237. PubMed DOI

Heitzmann E., Thumm D., Baudouin C. A Review of the Efficacy, Safety and Tolerability of Lacrycon® Eye Drops for the Treatment of Dry Eye Syndrome. J. Français D’Ophtalmologie. 2019;42:642–654. doi: 10.1016/j.jfo.2018.08.008. PubMed DOI

López-Ruiz E., Jiménez G., Álvarez de Cienfuegos L., Antic C., Sabata R., Marchal J.A., Gálvez-Martín P. Advances of Hyaluronic Acid in Stem Cell Therapy and Tissue Engineering, Including Current Clinical Trials. Eur. Cell. Mater. 2019;37:186–213. doi: 10.22203/eCM.v037a12. PubMed DOI

Huang G., Huang H. Hyaluronic Acid-Based Biopharmaceutical Delivery and Tumor-Targeted Drug Delivery System. J. Control. Release. 2018;278:122–126. doi: 10.1016/j.jconrel.2018.04.015. PubMed DOI

Kim J.H., Moon M.J., Kim D.Y., Heo S.H., Jeong Y.Y. Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers. 2018;10:1133. doi: 10.3390/polym10101133. PubMed DOI PMC

Toole B.P. Hyaluronan: From Extracellular Glue to Pericellular Cue. Nat. Rev. Cancer. 2004;4:528–539. doi: 10.1038/nrc1391. PubMed DOI

Šafránková B., Hermannová M., Nešporová K., Velebný V., Kubala L. Absence of Differences among Low, Middle, and High Molecular Weight Hyaluronan in Activating Murine Immune Cells in Vitro. Int. J. Biol. Macromol. 2018;107:1–8. doi: 10.1016/j.ijbiomac.2017.08.131. PubMed DOI

Yuan H., Amin R., Ye X., De La Motte C.A., Cowman M.K. Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk. Anal. Biochem. 2015;474:78–88. doi: 10.1016/j.ab.2014.12.020. PubMed DOI PMC

Balazs E.A. Viscoelastic Properties of Hyaluronic Acid and Biological Lubrication. [(accessed on 20 February 2022)];Univ. Mich. Med. Cent. J. 1968 :255–259. Available online: https://pubmed.ncbi.nlm.nih.gov/5728249/ PubMed

Lokeshwar V.B., Selzer M.G. Differences in Hyaluronic Acid-Mediated Functions and Signaling in Arterial, Microvessel, and Vein-Derived Human Endothelial Cells. J. Biol. Chem. 2000;275:27641–27649. doi: 10.1074/jbc.M003084200. PubMed DOI

West D.C., Kumar S. The Effect of Hyaluronate and Its Oligosaccharides on Endothelial Cell Proliferation and Monolayer Integrity. Exp. Cell Res. 1989;183:179–196. doi: 10.1016/0014-4827(89)90428-X. PubMed DOI

Lesley J., Hascall V.C., Tammi M., Hyman R. Hyaluronan Binding by Cell Surface CD44. J. Biol. Chem. 2000;275:26967–26975. doi: 10.1016/S0021-9258(19)61467-5. PubMed DOI

Day A.J., de la Motte C.A. Hyaluronan Cross-Linking: A Protective Mechanism in Inflammation? Trends Immunol. 2005;26:637–643. doi: 10.1016/j.it.2005.09.009. PubMed DOI

Bano F., Banerji S., Howarth M., Jackson D.G., Richter R.P. A Single Molecule Assay to Probe Monovalent and Multivalent Bonds between Hyaluronan and Its Key Leukocyte Receptor CD44 under Force. Sci. Rep. 2016;6:34176. doi: 10.1038/srep34176. PubMed DOI PMC

Suzuki T., Suzuki M., Ogino S., Umemoto R., Nishida N., Shimada I. Mechanical Force Effect on the Two-State Equilibrium of the Hyaluronan-Binding Domain of CD44 in Cell Rolling. Proc. Natl. Acad. Sci. USA. 2015;112:6991–6996. doi: 10.1073/pnas.1423520112. PubMed DOI PMC

Neuman M.G., Nanau R.M., Oruña-Sanchez L., Coto G. Hyaluronic Acid and Wound Healing. J. Pharm. Pharm. Sci. 2015;18:53–60. doi: 10.18433/J3K89D. PubMed DOI

Delmage J.M., Powars D.R., Jaynes P.K., Allerton S.E. The Selective Suppression of Immunogenicity by Hyaluronic Acid. Ann. Clin. Lab. Sci. 1986;16:303–310. PubMed

Nakamura K., Yokohama S., Yoneda M., Okamoto S., Tamaki Y., Ito T., Okada M., Aso K., Makino I. High, but Not Low, Molecular Weight Hyaluronan Prevents T-Cell-Mediated Liver Injury by Reducing Proinflammatory Cytokines in Mice. J. Gastroenterol. 2004;39:346–354. doi: 10.1007/s00535-003-1301-x. PubMed DOI

Liu Y.-Y., Lee C.-H., Dedaj R., Zhao H., Mrabat H., Sheidlin A., Syrkina O., Huang P.-M., Garg H.G., Hales C.A., et al. High-Molecular-Weight Hyaluronan-a Possible New Treatment for Sepsis-Induced Lung Injury: A Preclinical Study in Mechanically Ventilated Rats. Crit. Care. 2008;12:R102. doi: 10.1186/cc6982. PubMed DOI PMC

Jiang D., Liang J., Fan J., Yu S., Chen S., Luo Y., Prestwich G.D., Mascarenhas M.M., Garg H.G., Quinn D.A., et al. Regulation of Lung Injury and Repair by Toll-like Receptors and Hyaluronan. Nat. Med. 2005;11:1173–1179. doi: 10.1038/nm1315. PubMed DOI

Miki Y., Teramura T., Tomiyama T., Onodera Y., Matsuoka T., Fukuda K., Hamanishi C. Hyaluronan Reversed Proteoglycan Synthesis Inhibited by Mechanical Stress: Possible Involvement of Antioxidant Effect. Inflamm. Res. 2010;59:471–477. doi: 10.1007/s00011-009-0147-y. PubMed DOI

Cooper C.A., Brown K.K., Meletis C.D., Zabriskie N. Inflammation and Hyaluronic Acid. Altern. Complement. Ther. 2008;14:78–84. doi: 10.1089/act.2008.14201. DOI

Stern R. Hyaluronan Metabolism: A Major Paradox in Cancer Biology. Pathol. Biol. 2005;53:372–382. doi: 10.1016/j.patbio.2004.12.021. PubMed DOI

Auvinen P., Rilla K., Tumelius R., Tammi M., Sironen R., Soini Y., Kosma V.-M., Mannermaa A., Viikari J., Tammi R. Hyaluronan Synthases (HAS1–3) in Stromal and Malignant Cells Correlate with Breast Cancer Grade and Predict Patient Survival. Breast Cancer Res. Treat. 2014;143:277–286. doi: 10.1007/s10549-013-2804-7. PubMed DOI

Paiva P., Van Damme M.-P., Tellbach M., Jones R.L., Jobling T., Salamonsen L.A. Expression Patterns of Hyaluronan, Hyaluronan Synthases and Hyaluronidases Indicate a Role for Hyaluronan in the Progression of Endometrial Cancer. Gynecol. Oncol. 2005;98:193–202. doi: 10.1016/j.ygyno.2005.02.031. PubMed DOI

Udabage L., Brownlee G.R., Nilsson S.K., Brown T.J. The Over-Expression of HAS2, Hyal-2 and CD44 Is Implicated in the Invasiveness of Breast Cancer. Exp. Cell Res. 2005;310:205–217. doi: 10.1016/j.yexcr.2005.07.026. PubMed DOI

Cyphert J.M., Trempus C.S., Garantziotis S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015;2015:563818. doi: 10.1155/2015/563818. PubMed DOI PMC

Monslow J., Govindaraju P., Puré E. Hyaluronan-A Functional and Structural Sweet Spot in the Tissue Microenvironment. Front. Immunol. 2015;6:231. doi: 10.3389/fimmu.2015.00231. PubMed DOI PMC

Rayahin J.E., Buhrman J.S., Zhang Y., Koh T.J., Gemeinhart R.A. High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng. 2015;1:481–493. doi: 10.1021/acsbiomaterials.5b00181. PubMed DOI PMC

Pardue E.L., Ibrahim S., Ramamurthi A. Role of Hyaluronan in Angiogenesis and Its Utility to Angiogenic Tissue Engineering. Organogenesis. 2008;4:203–214. doi: 10.4161/org.4.4.6926. PubMed DOI PMC

Petrey A.C., de la Motte C.A. Hyaluronan, a Crucial Regulator of Inflammation. Front. Immunol. 2014;5:101. doi: 10.3389/fimmu.2014.00101. PubMed DOI PMC

Ruppert S.M., Hawn T.R., Arrigoni A., Wight T.N., Bollyky P.L. Tissue Integrity Signals Communicated by High-Molecular Weight Hyaluronan and the Resolution of Inflammation. Immunol. Res. 2014;58:186–192. doi: 10.1007/s12026-014-8495-2. PubMed DOI PMC

Scheibner K.A., Lutz M.A., Boodoo S., Fenton M.J., Powell J.D., Horton M.R. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2. J. Immunol. 2006;177:1272–1281. doi: 10.4049/jimmunol.177.2.1272. PubMed DOI

Termeer C., Benedix F., Sleeman J., Fieber C., Voith U., Ahrens T., Miyake K., Freudenberg M., Galanos C., Simon J.C. Oligosaccharides of Hyaluronan Activate Dendritic Cells via Toll-like Receptor 4. J. Exp. Med. 2002;195:99–111. doi: 10.1084/jem.20001858. PubMed DOI PMC

Campo G.M., Avenoso A., Campo S., D’Ascola A., Nastasi G., Calatroni A. Molecular Size Hyaluronan Differently Modulates Toll-like Receptor-4 in LPS-Induced Inflammation in Mouse Chondrocytes. Biochimie. 2010;92:204–215. doi: 10.1016/j.biochi.2009.10.006. PubMed DOI

Takahashi Y., Li L., Kamiryo M., Asteriou T., Moustakas A., Yamashita H., Heldin P. Hyaluronan Fragments Induce Endothelial Cell Differentiation in a CD44-and CXCL1/GRO1-Dependent Manner. J. Biol. Chem. 2005;280:24195–24204. doi: 10.1074/jbc.M411913200. PubMed DOI

Ohno S., Im H.-J., Knudson C.B., Knudson W. Hyaluronan Oligosaccharide-Induced Activation of Transcription Factors in Bovine Articular Chondrocytes. Arthritis Rheum. 2005;52:800–809. doi: 10.1002/art.20937. PubMed DOI PMC

Ohno S., Im H.-J., Knudson C.B., Knudson W. Hyaluronan Oligosaccharides Induce Matrix Metalloproteinase 13 via Transcriptional Activation of NFκB and P38 MAP Kinase in Articular Chondrocytes. J. Biol. Chem. 2006;281:17952–17960. doi: 10.1074/jbc.M602750200. PubMed DOI PMC

Xu H., Ito T., Tawada A., Maeda H., Yamanokuchi H., Isahara K., Yoshida K., Uchiyama Y., Asari A. Effect of Hyaluronan Oligosaccharides on the Expression of Heat Shock Protein 72. J. Biol. Chem. 2002;277:17308–17314. doi: 10.1074/jbc.M112371200. PubMed DOI

Suzuki Y., Yamaguchi T. Effects of Hyaluronic Acid on Macrophage Phagocytosis and Active Oxygen Release. Agents Actions. 1993;38:32–37. doi: 10.1007/BF02027210. PubMed DOI

McKee C.M., Penno M.B., Cowman M., Burdick M.D., Strieter R.M., Bao C., Noble P.W. Hyaluronan (HA) Fragments Induce Chemokine Gene Expression in Alveolar Macrophages. The Role of HA Size and CD44. J. Clin. Investig. 1996;98:2403–2413. doi: 10.1172/JCI119054. PubMed DOI PMC

Horton M.R., Burdick M.D., Strieter R.M., Bao C., Noble P.W. Regulation of Hyaluronan-Induced Chemokine Gene Expression by IL-10 and IFN-Gamma in Mouse Macrophages. J. Immunol. 1998;160:3023–3030. PubMed

Hodge-Dufour J., Noble P.W., Horton M.R., Bao C., Wysoka M., Burdick M.D., Strieter R.M., Trinchieri G., Puré E. Induction of IL-12 and Chemokines by Hyaluronan Requires Adhesion-Dependent Priming of Resident but Not Elicited Macrophages. J. Immunol. 1997;159:2492–2500. PubMed

Lyle D.B., Breger J.C., Baeva L.F., Shallcross J.C., Durfor C.N., Wang N.S., Langone J.J. Low Molecular Weight Hyaluronic Acid Effects on Murine Macrophage Nitric Oxide Production. J. Biomed. Mater. Res. A. 2010;94:893–904. doi: 10.1002/jbm.a.32760. PubMed DOI

McKee C.M., Lowenstein C.J., Horton M.R., Wu J., Bao C., Chin B.Y., Choi A.M., Noble P.W. Hyaluronan Fragments Induce Nitric-Oxide Synthase in Murine Macrophages through a Nuclear Factor KappaB-Dependent Mechanism. J. Biol. Chem. 1997;272:8013–8018. doi: 10.1074/jbc.272.12.8013. PubMed DOI

Termeer C.C., Hennies J., Voith U., Ahrens T., Weiss J.M., Prehm P., Simon J.C. Oligosaccharides of Hyaluronan Are Potent Activators of Dendritic Cells. J. Immunol. 2000;165:1863–1870. doi: 10.4049/jimmunol.165.4.1863. PubMed DOI

Jiang D., Liang J., Noble P.W. Hyaluronan in Tissue Injury and Repair. Annu. Rev. Cell Dev. Biol. 2007;23:435–461. doi: 10.1146/annurev.cellbio.23.090506.123337. PubMed DOI

Stern R., Asari A.A., Sugahara K.N. Hyaluronan Fragments: An Information-Rich System. Eur. J. Cell Biol. 2006;85:699–715. doi: 10.1016/j.ejcb.2006.05.009. PubMed DOI

Powell J.D., Horton M.R. Threat Matrix: Low-Molecular-Weight Hyaluronan (HA) as a Danger Signal. Immunol. Res. 2005;31:207–218. doi: 10.1385/IR:31:3:207. PubMed DOI

Misra S., Hascall V.C., Markwald R.R., Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015;6:201. doi: 10.3389/fimmu.2015.00201. PubMed DOI PMC

Bohaumilitzky L., Huber A.-K., Stork E.M., Wengert S., Woelfl F., Boehm H. A Trickster in Disguise: Hyaluronan’s Ambivalent Roles in the Matrix. Front. Oncol. 2017;7:242. doi: 10.3389/fonc.2017.00242. PubMed DOI PMC

Lagunas-Rangel F.A., Chávez-Valencia V. Learning of Nature: The Curious Case of the Naked Mole Rat. Mech. Ageing Dev. 2017;164:76–81. doi: 10.1016/j.mad.2017.04.010. PubMed DOI

Piersigilli A., Meyerholz D.K. The “Naked Truth”: Naked Mole-Rats Do Get Cancer. Vet. Pathol. 2016;53:519–520. doi: 10.1177/0300985816638431. PubMed DOI

Tian X., Azpurua J., Hine C., Vaidya A., Myakishev-Rempel M., Ablaeva J., Mao Z., Nevo E., Gorbunova V., Seluanov A. High Molecular Weight Hyaluronan Mediates the Cancer Resistance of the Naked Mole-Rat. Nature. 2013;499:346. doi: 10.1038/nature12234. PubMed DOI PMC

Garg H.G., Hales C.A. Chemistry and Biology of Hyaluronan. Elsevier; Amsterdam, The Netherlands: 2004.

Knudson C.B., Knudson W. Hyaluronan-Binding Proteins in Development, Tissue Homeostasis, and Disease. FASEB J. 1993;7:1233–1241. doi: 10.1096/fasebj.7.13.7691670. PubMed DOI

Girish K.S., Kemparaju K. The Magic Glue Hyaluronan and Its Eraser Hyaluronidase: A Biological Overview. Life Sci. 2007;80:1921–1943. doi: 10.1016/j.lfs.2007.02.037. PubMed DOI

Perkins S.J., Nealis A.S., Dudhia J., Hardingham T.E. Immunoglobulin Fold and Tandem Repeat Structures in Proteoglycan N-Terminal Domains and Link Protein. J. Mol. Biol. 1989;206:737–748. doi: 10.1016/0022-2836(89)90580-9. PubMed DOI

Kohda D., Morton C.J., Parkar A.A., Hatanaka H., Inagaki F.M., Campbell I.D., Day A.J. Solution Structure of the Link Module: A Hyaluronan-Binding Domain Involved in Extracellular Matrix Stability and Cell Migration. Cell. 1996;86:767–775. doi: 10.1016/S0092-8674(00)80151-8. PubMed DOI

Watanabe H., Cheung S.C., Itano N., Kimata K., Yamada Y. Identification of Hyaluronan-Binding Domains of Aggrecan. J. Biol. Chem. 1997;272:28057–28065. doi: 10.1074/jbc.272.44.28057. PubMed DOI

Hasegawa K., Yoneda M., Kuwabara H., Miyaishi O., Itano N., Ohno A., Zako M., Isogai Z. Versican, a Major Hyaluronan-Binding Component in the Dermis, Loses Its Hyaluronan-Binding Ability in Solar Elastosis. J. Investig. Dermatol. 2007;127:1657–1663. doi: 10.1038/sj.jid.5700754. PubMed DOI

Rauch U., Clement A., Retzler C., Fröhlich L., Fässler R., Göhring W., Faissner A. Mapping of a Defined Neurocan Binding Site to Distinct Domains of Tenascin-C. J. Biol. Chem. 1997;272:26905–26912. doi: 10.1074/jbc.272.43.26905. PubMed DOI

Yamada H., Watanabe K., Shimonaka M., Yamaguchi Y. Molecular Cloning of Brevican, a Novel Brain Proteoglycan of the Aggrecan/Versican Family. J. Biol. Chem. 1994;269:10119–10126. doi: 10.1016/S0021-9258(17)36998-3. PubMed DOI

Hascall V.C. Interaction of Cartilage Proteoglycans with Hyaluronic Acid. J. Supramol. Struct. 1977;7:101–120. doi: 10.1002/jss.400070110. PubMed DOI

Yamaguchi Y. Lecticans: Organizers of the Brain Extracellular Matrix. Cell. Mol. Life Sci. 2000;57:276–289. doi: 10.1007/PL00000690. PubMed DOI PMC

Teriete P., Banerji S., Noble M., Blundell C.D., Wright A.J., Pickford A.R., Lowe E., Mahoney D.J., Tammi M.I., Kahmann J.D., et al. Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Mol. Cell. 2004;13:483–496. doi: 10.1016/S1097-2765(04)00080-2. PubMed DOI

Banerji S., Day A.J., Kahmann J.D., Jackson D.G. Characterization of a Functional Hyaluronan-Binding Domain from the Human CD44 Molecule Expressed in Escherichia Coli. Protein Expr. Purif. 1998;14:371–381. doi: 10.1006/prep.1998.0971. PubMed DOI

Zhou B., Weigel J.A., Fauss L., Weigel P.H. Identification of the Hyaluronan Receptor for Endocytosis (HARE) J. Biol. Chem. 2000;275:37733–37741. doi: 10.1074/jbc.M003030200. PubMed DOI

Wisniewski H.-G., Snitkin E.S., Mindrescu C., Sweet M.H., Vilcek J. TSG-6 Protein Binding to Glycosaminoglycans: Formation of Stable Complexes with Hyaluronan and Binding to Chondroitin Sulfates. J. Biol. Chem. 2005;280:14476–14484. doi: 10.1074/jbc.M411734200. PubMed DOI

Yang B., Yang B.L., Savani R.C., Turley E.A. Identification of a Common Hyaluronan Binding Motif in the Hyaluronan Binding Proteins RHAMM, CD44 and Link Protein. EMBO J. 1994;13:286–296. doi: 10.1002/j.1460-2075.1994.tb06261.x. PubMed DOI PMC

Wang C., Entwistle J., Hou G., Li Q., Turley E.A. The Characterization of a Human RHAMM CDNA: Conservation of the Hyaluronan-Binding Domains. Gene. 1996;174:299–306. doi: 10.1016/0378-1119(96)00080-7. PubMed DOI

Grammatikakis N., Grammatikakis A., Yoneda M., Yu Q., Banerjee S.D., Toole B.P. A Novel Glycosaminoglycan-Binding Protein Is the Vertebrate Homologue of the Cell Cycle Control Protein, Cdc37. J. Biol. Chem. 1995;270:16198–16205. doi: 10.1074/jbc.270.27.16198. PubMed DOI

Bost F., Diarra-Mehrpour M., Martin J.-P. Inter-α-Trypsin Inhibitor Proteoglycan Family. Eur. J. Biochem. 1998;252:339–346. doi: 10.1046/j.1432-1327.1998.2520339.x. PubMed DOI

Nishina H., Inageda K., Takahashi K., Hoshino S., Ikeda K., Katada T. Cell Surface Antigen CD38 Identified as Ecto-Enzyme of NAD Glycohydrolase Has Hyaluronate-Binding Activity. Biochem. Biophys. Res. Commun. 1994;203:1318–1323. doi: 10.1006/bbrc.1994.2326. PubMed DOI

Becerra S.P., Perez-Mediavilla L.A., Weldon J.E., Locatelli-Hoops S., Senanayake P., Notari L., Notario V., Hollyfield J.G. Pigment Epithelium-Derived Factor Binds to Hyaluronan. J. Biol. Chem. 2008;283:33310–33320. doi: 10.1074/jbc.M801287200. PubMed DOI PMC

Amemiya K., Nakatani T., Saito A., Suzuki A., Munakata H. Hyaluronan-Binding Motif Identified by Panning a Random Peptide Display Library. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2005;1724:94–99. doi: 10.1016/j.bbagen.2005.04.029. PubMed DOI

Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A Simple Polysaccharide with Diverse Biological Functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC

Day A.J., Prestwich G.D. Hyaluronan-Binding Proteins: Tying Up the Giant. J. Biol. Chem. 2002;277:4585–4588. doi: 10.1074/jbc.R100036200. PubMed DOI

Garantziotis S., Savani R.C. Hyaluronan Biology: A Complex Balancing Act of Structure, Function, Location and Context. Matrix Biol. 2019;78–79:1–10. doi: 10.1016/j.matbio.2019.02.002. PubMed DOI PMC

Ponta H., Sherman L., Herrlich P.A. CD44: From Adhesion Molecules to Signalling Regulators. Nat. Rev. Mol. Cell Biol. 2003;4:33–45. doi: 10.1038/nrm1004. PubMed DOI

Jackson D.G. Hyaluronan in the Lymphatics: The Key Role of the Hyaluronan Receptor LYVE-1 in Leucocyte Trafficking. Matrix Biol. 2019;78–79:219–235. doi: 10.1016/j.matbio.2018.02.001. PubMed DOI

Harris E.N., Baker E. Role of the Hyaluronan Receptor, Stabilin-2/HARE, in Health and Disease. Int. J. Mol. Sci. 2020;21:3504. doi: 10.3390/ijms21103504. PubMed DOI PMC

Lesley J., Gál I., Mahoney D.J., Cordell M.R., Rugg M.S., Hyman R., Day A.J., Mikecz K. TSG-6 Modulates the Interaction between Hyaluronan and Cell Surface CD44*. J. Biol. Chem. 2004;279:25745–25754. doi: 10.1074/jbc.M313319200. PubMed DOI

Miller C.M., Donner A.J., Blank E.E., Egger A.W., Kellar B.M., Østergaard M.E., Seth P.P., Harris E.N. Stabilin-1 and Stabilin-2 Are Specific Receptors for the Cellular Internalization of Phosphorothioate-Modified Antisense Oligonucleotides (ASOs) in the Liver. Nucleic Acids Res. 2016;44:2782–2794. doi: 10.1093/nar/gkw112. PubMed DOI PMC

Spicer A.P., Joo A., Bowling R.A. A Hyaluronan Binding Link Protein Gene Family Whose Members Are Physically Linked Adjacent to Chondroitin Sulfate Proteoglycan Core Protein Genes: The Missing Links. J. Biol. Chem. 2003;278:21083–21091. doi: 10.1074/jbc.M213100200. PubMed DOI

Hirakawa S., Oohashi T., Su W.-D., Yoshioka H., Murakami T., Arata J., Ninomiya Y. The Brain Link Protein-1 (BRAL1): CDNA Cloning, Genomic Structure, and Characterization as a Novel Link Protein Expressed in Adult Brain. Biochem. Biophys. Res. Commun. 2000;276:982–989. doi: 10.1006/bbrc.2000.3583. PubMed DOI

Qadri M., Almadani S., Jay G.D., Elsaid K.A. Role of CD44 in Regulating Toll-like Receptor 2 (TLR2) Activation of Human Macrophages and Downstream Expression of Proinflammatory Cytokines. J. Immunol. 2018;200:758–767. doi: 10.4049/jimmunol.1700713. PubMed DOI PMC

Oertli B., Beck-Schimmer B., Fan X., Wüthrich R.P. Mechanisms of Hyaluronan-Induced up-Regulation of ICAM-1 and VCAM-1 Expression by Murine Kidney Tubular Epithelial Cells: Hyaluronan Triggers Cell Adhesion Molecule Expression through a Mechanism Involving Activation of Nuclear Factor-Kappa B and Activating Protein-1. J. Immunol. 1998;161:3431–3437. PubMed

Bono P., Rubin K., Higgins J.M., Hynes R.O. Layilin, A Novel Integral Membrane Protein, Is a Hyaluronan Receptor. Mol. Biol. Cell. 2001;12:891–900. doi: 10.1091/mbc.12.4.891. PubMed DOI PMC

Harris E., Weigel P. Hyaluronan-Binding Proteoglycans. [(accessed on 20 February 2022)]. Biochemistry-Faculty Publications: 2009. Available online: https://digitalcommons.unl.edu/biochemfacpub/66.

LeBoeuf R.D., Raja R.H., Fuller G.M., Weigel P.H. Human Fibrinogen Specifically Binds Hyaluronic Acid. J. Biol. Chem. 1986;261:12586–12592. doi: 10.1016/S0021-9258(18)67129-7. PubMed DOI

Fries E., Kaczmarczyk A. Inter-Alpha-Inhibitor, Hyaluronan and Inflammation. Acta Biochim. Pol. 2003;50:735–742. doi: 10.18388/abp.2003_3664. PubMed DOI

Yoshino Y., Ishisaka M., Tsuruma K., Shimazawa M., Yoshida H., Inoue S., Shimoda M., Okada Y., Hara H. Distribution and Function of Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization (HYBID, KIAA1199) in the Mouse Central Nervous System. Neuroscience. 2017;347:1–10. doi: 10.1016/j.neuroscience.2017.01.049. PubMed DOI

Acharya S., Rodriguez I.R., Moreira E.F., Midura R.J., Misono K., Todres E., Hollyfield J.G. SPACR, A Novel Interphotoreceptor Matrix Glycoprotein in Human Retina That Interacts with Hyaluronan *. J. Biol. Chem. 1998;273:31599–31606. doi: 10.1074/jbc.273.47.31599. PubMed DOI

Acharya S., Foletta V.C., Lee J.W., Rayborn M.E., Rodriguez I.R., Young W.S., Hollyfield J.G. SPACRCAN, a Novel Human Interphotoreceptor Matrix Hyaluronan-Binding Proteoglycan Synthesized by Photoreceptors and Pinealocytes. J. Biol. Chem. 2000;275:6945–6955. doi: 10.1074/jbc.275.10.6945. PubMed DOI

Assmann V., Jenkinson D., Marshall J.F., Hart I.R. The Intracellular Hyaluronan Receptor RHAMM/IHABP Interacts with Microtubules and Actin Filaments. J. Cell. Sci. 1999;112:3943–3954. doi: 10.1242/jcs.112.22.3943. PubMed DOI

Ramakrishna S., Suresh B., Bae S.-M., Ahn W.-S., Lim K.-H., Baek K.-H. Hyaluronan Binding Motifs of USP17 and SDS3 Exhibit Anti-Tumor Activity. PLoS ONE. 2012;7:e37772. doi: 10.1371/journal.pone.0037772. PubMed DOI PMC

Huang L., Grammatikakis N., Yoneda M., Banerjee S.D., Toole B.P. Molecular Characterization of a Novel Intracellular Hyaluronan-Binding Protein. J. Biol. Chem. 2000;275:29829–29839. doi: 10.1074/jbc.M002737200. PubMed DOI

Dalchau R., Kirkley J., Fabre J.W. Monoclonal Antibody to a Human Leukocyte-Specific Membrane Glycoprotein Probably Homologous to the Leukocyte-Common (L-C) Antigen of the Rat. Eur. J. Immunol. 1980;10:737–744. doi: 10.1002/eji.1830101003. PubMed DOI

Underhill C.B., Green S.J., Comoglio P.M., Tarone G. The Hyaluronate Receptor Is Identical to a Glycoprotein of Mr 85,000 (Gp85) as Shown by a Monoclonal Antibody That Interferes with Binding Activity. J. Biol. Chem. 1987;262:13142–13146. doi: 10.1016/S0021-9258(18)45179-4. PubMed DOI

Naor D., Sionov R.V., Ish-Shalom D. CD44: Structure, Function and Association with the Malignant Process. In: Vande Woude G.F., Klein G., editors. Advances in Cancer Research. Volume 71. Academic Press; Cambridge, MA, USA: 1997. pp. 241–319. PubMed

Senbanjo L.T., Chellaiah M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017;5:18. doi: 10.3389/fcell.2017.00018. PubMed DOI PMC

Naor D. CD44. In: Delves P.J., editor. Encyclopedia of Immunology. 2nd ed. Elsevier; Oxford, UK: 1998. pp. 488–491.

Zeilstra J., Joosten S.P.J., van Andel H., Tolg C., Berns A., Snoek M., van de Wetering M., Spaargaren M., Clevers H., Pals S.T. Stem Cell CD44v Isoforms Promote Intestinal Cancer Formation in Apc (Min) Mice Downstream of Wnt Signaling. Oncogene. 2014;33:665–670. doi: 10.1038/onc.2012.611. PubMed DOI

Sneath R.J., Mangham D.C. The Normal Structure and Function of CD44 and Its Role in Neoplasia. Mol. Pathol. 1998;51:191–200. doi: 10.1136/mp.51.4.191. PubMed DOI PMC

Naor D., Wallach-Dayan S.B., Zahalka M.A., Sionov R.V. Involvement of CD44, a Molecule with a Thousand Faces, in Cancer Dissemination. Semin. Cancer Biol. 2008;18:260–267. doi: 10.1016/j.semcancer.2008.03.015. PubMed DOI

Wang L., Zuo X., Xie K., Wei D. The Role of CD44 and Cancer Stem Cells. Methods Mol. Biol. 2018;1692:31–42. doi: 10.1007/978-1-4939-7401-6_3. PubMed DOI

Iida N., Bourguignon L.Y.W. New CD44 Splice Variants Associated with Human Breast Cancers. J. Cell. Physiol. 1995;162:127–133. doi: 10.1002/jcp.1041620115. PubMed DOI

Bourguignon L.Y., Gunja-Smith Z., Iida N., Zhu H.B., Young L.J., Muller W.J., Cardiff R.D. CD44v(3,8-10) Is Involved in Cytoskeleton-Mediated Tumor Cell Migration and Matrix Metalloproteinase (MMP-9) Association in Metastatic Breast Cancer Cells. J. Cell. Physiol. 1998;176:206–215. doi: 10.1002/(SICI)1097-4652(199807)176:1<206::AID-JCP22>3.0.CO;2-3. PubMed DOI

Franzmann E.J., Weed D.T., Civantos F.J., Goodwin W.J., Bourguignon L.Y. A Novel CD44 v3 Isoform Is Involved in Head and Neck Squamous Cell Carcinoma Progression. Otolaryngol. Head Neck Surg. 2001;124:426–432. doi: 10.1067/mhn.2001.114674. PubMed DOI

Wang S.J., Wreesmann V.B., Bourguignon L.Y.W. Association of CD44 V3-Containing Isoforms with Tumor Cell Growth, Migration, Matrix Metalloproteinase Expression, and Lymph Node Metastasis in Head and Neck Cancer. Head Neck. 2007;29:550–558. doi: 10.1002/hed.20544. PubMed DOI

Ni J., Cozzi P.J., Hao J.L., Beretov J., Chang L., Duan W., Shigdar S., Delprado W.J., Graham P.H., Bucci J., et al. CD44 Variant 6 Is Associated with Prostate Cancer Metastasis and Chemo-/Radioresistance. Prostate. 2014;74:602–617. doi: 10.1002/pros.22775. PubMed DOI

Piselli P., Vendetti S., Vismara D., Cicconi R., Poccia F., Colizzi V., Delpino A. Different Expression of CD44, ICAM-1, and HSP60 on Primary Tumor and Metastases of a Human Pancreatic Carcinoma Growing in Scid Mice. Anticancer. Res. 2000;20:825–831. PubMed

Zhou G., Chiu D., Qin D., Niu L., Cai J., He L., Huang W., Xu K. Detection and Clinical Significance of CD44v6 and Integrin-Β1 in Pancreatic Cancer Patients Using a Triplex Real-Time RT-PCR Assay. Appl. Biochem. Biotechnol. 2012;167:2257–2268. doi: 10.1007/s12010-012-9752-2. PubMed DOI

Li Z., Chen K., Jiang P., Zhang X., Li X., Li Z. CD44v/CD44s Expression Patterns Are Associated with the Survival of Pancreatic Carcinoma Patients. Diagn. Pathol. 2014;9:79. doi: 10.1186/1746-1596-9-79. PubMed DOI PMC

Todaro M., Gaggianesi M., Catalano V., Benfante A., Iovino F., Biffoni M., Apuzzo T., Sperduti I., Volpe S., Cocorullo G., et al. CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell. 2014;14:342–356. doi: 10.1016/j.stem.2014.01.009. PubMed DOI

Mulder J.W., Kruyt P.M., Sewnath M., Oosting J., Seldenrijk C.A., Weidema W.F., Offerhaus G.J., Pals S.T. Colorectal Cancer Prognosis and Expression of Exon-v6-Containing CD44 Proteins. Lancet. 1994;344:1470–1472. doi: 10.1016/S0140-6736(94)90290-9. PubMed DOI

Yan Y., Zuo X., Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl. Med. 2015;4:1033–1043. doi: 10.5966/sctm.2015-0048. PubMed DOI PMC

Weber G.F., Ashkar S., Cantor H. Interaction between CD44 and Osteopontin as a Potential Basis for Metastasis Formation. Proc. Assoc. Am. Physicians. 1997;109:1–9. PubMed

Gupta A., Cao W., Sadashivaiah K., Chen W., Schneider A., Chellaiah M.A. Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9. Sci. World J. 2013;2013:493689. doi: 10.1155/2013/493689. PubMed DOI PMC

Konstantopoulos K., Thomas S.N. Cancer Cells in Transit: The Vascular Interactions of Tumor Cells. Annu. Rev. Biomed. Eng. 2009;11:177–202. doi: 10.1146/annurev-bioeng-061008-124949. PubMed DOI

Bourguignon L.Y.W., Shiina M., Li J.-J. Hyaluronan–CD44 Interaction Promotes Oncogenic Signaling, MicroRNA Functions, Chemoresistance, and Radiation Resistance in Cancer Stem Cells Leading to Tumor Progression. In: Simpson M.A., Heldin P., editors. Advances in Cancer Research. Volume 123. Academic Press; Cambridge, MA, USA: 2014. pp. 255–275. Hyaluronan Signaling and Turnover. PubMed PMC

Chen C., Zhao S., Karnad A., Freeman J.W. The Biology and Role of CD44 in Cancer Progression: Therapeutic Implications. J. Hematol. Oncol. 2018;11:64. doi: 10.1186/s13045-018-0605-5. PubMed DOI PMC

Lesley J., Hyman R., Kincade P.W. CD44 and Its Interaction with Extracellular Matrix. Adv. Immunol. 1993;54:271–335. PubMed

Hardwick C., Hoare K., Owens R., Hohn H.P., Hook M., Moore D., Cripps V., Austen L., Nance D.M., Turley E.A. Molecular Cloning of a Novel Hyaluronan Receptor That Mediates Tumor Cell Motility. J. Cell Biol. 1992;117:1343–1350. doi: 10.1083/jcb.117.6.1343. PubMed DOI PMC

Turley E.A., Moore D., Hayden L.J. Characterization of Hyaluronate Binding Proteins Isolated from 3T3 and Murine Sarcoma Virus Transformed 3T3 Cells. Biochemistry. 1987;26:2997–3005. doi: 10.1021/bi00385a007. PubMed DOI

Spicer A.P., Roller M.L., Camper S.A., McPherson J.D., Wasmuth J.J., Hakim S., Wang C., Turley E.A., McDonald J.A. The Human and Mouse Receptors for Hyaluronan-Mediated Motility, RHAMM, Genes (HMMR) Map to Human Chromosome 5q33.2-Qter and Mouse Chromosome 11. Genomics. 1995;30:115–117. doi: 10.1006/geno.1995.0022. PubMed DOI

Turley E.A., Noble P.W., Bourguignon L.Y.W. Signaling Properties of Hyaluronan Receptors. J. Biol. Chem. 2002;277:4589–4592. doi: 10.1074/jbc.R100038200. PubMed DOI

Turley E.A. Hyaluronan and Cell Locomotion. Cancer Metastasis Rev. 1992;11:21–30. doi: 10.1007/BF00047600. PubMed DOI

Lynn B.D., Turley E.A., Nagy J.I. Subcellular Distribution, Calmodulin Interaction, and Mitochondrial Association of the Hyaluronan-Binding Protein RHAMM in Rat Brain. J. Neurosci. Res. 2001;65:6–16. doi: 10.1002/jnr.1122. PubMed DOI

Tolg C., McCarthy J.B., Yazdani A., Turley E.A. Hyaluronan and RHAMM in Wound Repair and the “Cancerization” of Stromal Tissues. [(accessed on 9 June 2019)]. Available online: https://www.hindawi.com/journals/bmri/2014/103923/ PubMed PMC

Nikitovic D., Kouvidi K., Kavasi R.-M., Berdiaki A., Tzanakakis G.N. Hyaluronan/Hyaladherins-A Promising Axis for Targeted Drug Delivery in Cancer. Curr. Drug Deliv. 2016;13:500–511. doi: 10.2174/1567201813666151109103013. PubMed DOI

Zhang S., Chang M.C., Zylka D., Turley S., Harrison R., Turley E.A. The Hyaluronan Receptor RHAMM Regulates Extracellular-Regulated Kinase. J. Biol. Chem. 1998;273:11342–11348. doi: 10.1074/jbc.273.18.11342. PubMed DOI

Hall C.L., Wang C., Lange L.A., Turley E.A. Hyaluronan and the Hyaluronan Receptor RHAMM Promote Focal Adhesion Turnover and Transient Tyrosine Kinase Activity. J. Cell Biol. 1994;126:575–588. doi: 10.1083/jcb.126.2.575. PubMed DOI PMC

Hall C.L., Turley E.A. Hyaluronan: RHAMM Mediated Cell Locomotion and Signaling in Tumorigenesis. J. Neurooncol. 1995;26:221–229. doi: 10.1007/BF01052625. PubMed DOI

Hamilton S.R., Fard S.F., Paiwand F.F., Tolg C., Veiseh M., Wang C., McCarthy J.B., Bissell M.J., Koropatnick J., Turley E.A. The Hyaluronan Receptors CD44 and Rhamm (CD168) Form Complexes with ERK1,2 That Sustain High Basal Motility in Breast Cancer Cells. J. Biol. Chem. 2007;282:16667–16680. doi: 10.1074/jbc.M702078200. PubMed DOI PMC

Maxwell C.A., McCarthy J., Turley E. Cell-Surface and Mitotic-Spindle RHAMM: Moonlighting or Dual Oncogenic Functions? J. Cell Sci. 2008;121:925–932. doi: 10.1242/jcs.022038. PubMed DOI

Nedvetzki S., Gonen E., Assayag N., Reich R., Williams R.O., Thurmond R.L., Huang J.-F., Neudecker B.A., Wang F.-S., Turley E.A., et al. RHAMM, a Receptor for Hyaluronan-Mediated Motility, Compensates for CD44 in Inflamed CD44-Knockout Mice: A Different Interpretation of Redundancy. Proc. Natl. Acad. Sci. USA. 2004;101:18081–18086. doi: 10.1073/pnas.0407378102. PubMed DOI PMC

Assmann V., Marshall J.F., Fieber C., Hofmann M., Hart I.R. The Human Hyaluronan Receptor RHAMM Is Expressed as an Intracellular Protein in Breast Cancer Cells. J. Cell. Sci. 1998;111:1685–1694. doi: 10.1242/jcs.111.12.1685. PubMed DOI

Tolg C., Hamilton S.R., Morningstar L., Zhang J., Zhang S., Esguerra K.V., Telmer P.G., Luyt L.G., Harrison R., McCarthy J.B., et al. RHAMM Promotes Interphase Microtubule Instability and Mitotic Spindle Integrity through MEK1/ERK1/2 Activity. J. Biol. Chem. 2010;285:26461–26474. doi: 10.1074/jbc.M110.121491. PubMed DOI PMC

Evanko S.P., Wight T.N. Intracellular Localization of Hyaluronan in Proliferating Cells. J. Histochem. Cytochem. 1999;47:1331–1341. doi: 10.1177/002215549904701013. PubMed DOI

Evanko S.P., Parks W.T., Wight T.N. Intracellular Hyaluronan in Arterial Smooth Muscle Cells: Association with Microtubules, RHAMM, and the Mitotic Spindle. J. Histochem. Cytochem. 2004;52:1525–1535. doi: 10.1369/jhc.4A6356.2004. PubMed DOI

Telmer P.G., Tolg C., McCarthy J.B., Turley E.A. How Does a Protein with Dual Mitotic Spindle and Extracellular Matrix Receptor Functions Affect Tumor Susceptibility and Progression? Commun. Integr. Biol. 2011;4:182–185. doi: 10.4161/cib.4.2.14270. PubMed DOI PMC

Choi S., Wang D., Chen X., Tang L.H., Verma A., Chen Z., Kim B.J., Selesner L., Robzyk K., Zhang G., et al. Function and Clinical Relevance of RHAMM Isoforms in Pancreatic Tumor Progression. Mol. Cancer. 2019;18:92. doi: 10.1186/s12943-019-1018-y. PubMed DOI PMC

Maxwell C.A., Rasmussen E., Zhan F., Keats J.J., Adamia S., Strachan E., Crainie M., Walker R., Belch A.R., Pilarski L.M., et al. RHAMM Expression and Isoform Balance Predict Aggressive Disease and Poor Survival in Multiple Myeloma. Blood. 2004;104:1151–1158. doi: 10.1182/blood-2003-11-4079. PubMed DOI

Kouvidi K., Berdiaki A., Nikitovic D., Katonis P., Afratis N., Hascall V.C., Karamanos N.K., Tzanakakis G.N. Role of Receptor for Hyaluronic Acid-Mediated Motility (RHAMM) in Low Molecular Weight Hyaluronan (LMWHA)-Mediated Fibrosarcoma Cell Adhesion. J. Biol. Chem. 2011;286:38509–38520. doi: 10.1074/jbc.M111.275875. PubMed DOI PMC

Nikitovic D., Kouvidi K., Karamanos N.K., Tzanakakis G.N. The Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression. Biomed. Res. Int. 2013;2013:929531. doi: 10.1155/2013/929531. PubMed DOI PMC

Mele V., Sokol L., Kölzer V.H., Pfaff D., Muraro M.G., Keller I., Stefan Z., Centeno I., Terracciano L.M., Dawson H., et al. The Hyaluronan-Mediated Motility Receptor RHAMM Promotes Growth, Invasiveness and Dissemination of Colorectal Cancer. Oncotarget. 2017;8:70617–70629. doi: 10.18632/oncotarget.19904. PubMed DOI PMC

Jackson D.G. The Lymphatics Revisited: New Perspectives from the Hyaluronan Receptor LYVE-1. Trends Cardiovasc. Med. 2003;13:1–7. doi: 10.1016/S1050-1738(02)00189-5. PubMed DOI

Jackson D.G. Immunological Functions of Hyaluronan and Its Receptors in the Lymphatics. Immunol. Rev. 2009;230:216–231. doi: 10.1111/j.1600-065X.2009.00803.x. PubMed DOI

Lee L.K., Ghorbanian Y., Wang W., Wang Y., Kim Y.J., Weissman I.L., Inlay M.A., Mikkola H.K.A. LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage. Cell Rep. 2016;17:2286–2298. doi: 10.1016/j.celrep.2016.10.080. PubMed DOI PMC

DeLeve L.D., Maretti-Mira A.C. Liver Sinusoidal Endothelial Cell: An Update. Semin. Liver Dis. 2017;37:377–387. doi: 10.1055/s-0037-1617455. PubMed DOI PMC

Zheng M., Kimura S., Nio-Kobayashi J., Iwanaga T. The Selective Distribution of LYVE-1-Expressing Endothelial Cells and Reticular Cells in the Reticulo-Endothelial System (RES) Biomed. Res. 2016;37:187–198. doi: 10.2220/biomedres.37.187. PubMed DOI

Lim H.Y., Lim S.Y., Tan C.K., Thiam C.H., Goh C.C., Carbajo D., Chew S.H.S., See P., Chakarov S., Wang X.N., et al. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity. 2018;49:326–341.e7. doi: 10.1016/j.immuni.2018.06.008. PubMed DOI

Schledzewski K., Falkowski M., Moldenhauer G., Metharom P., Kzhyshkowska J., Ganss R., Demory A., Falkowska-Hansen B., Kurzen H., Ugurel S., et al. Lymphatic Endothelium-Specific Hyaluronan Receptor LYVE-1 Is Expressed by Stabilin-1+, F4/80+, CD11b+ Macrophages in Malignant Tumours and Wound Healing Tissue in Vivo and in Bone Marrow Cultures in Vitro: Implications for the Assessment of Lymphangiogenesis. J. Pathol. 2006;209:67–77. doi: 10.1002/path.1942. PubMed DOI

Jackson D.G., Prevo R., Clasper S., Banerji S. LYVE-1, the Lymphatic System and Tumor Lymphangiogenesis. Trends Immunol. 2001;22:317–321. doi: 10.1016/S1471-4906(01)01936-6. PubMed DOI

Gale N.W., Prevo R., Espinosa J., Ferguson D.J., Dominguez M.G., Yancopoulos G.D., Thurston G., Jackson D.G. Normal Lymphatic Development and Function in Mice Deficient for the Lymphatic Hyaluronan Receptor LYVE-1. Mol. Cell. Biol. 2007;27:595–604. doi: 10.1128/MCB.01503-06. PubMed DOI PMC

Tammela T., Alitalo K. Lymphangiogenesis: Molecular Mechanisms and Future Promise. Cell. 2010;140:460–476. doi: 10.1016/j.cell.2010.01.045. PubMed DOI

Banerji S., Hide B.R.S., James J.R., Noble M.E.M., Jackson D.G. Distinctive Properties of the Hyaluronan-Binding Domain in the Lymphatic Endothelial Receptor Lyve-1 and Their Implications for Receptor Function. J. Biol. Chem. 2010;285:10724–10735. doi: 10.1074/jbc.M109.047647. PubMed DOI PMC

Banerji S., Ni J., Wang S.X., Clasper S., Su J., Tammi R., Jones M., Jackson D.G. LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-Specific Receptor for Hyaluronan. J. Cell Biol. 1999;144:789–801. doi: 10.1083/jcb.144.4.789. PubMed DOI PMC

Harris E.N., Parry S., Sutton-Smith M., Pandey M.S., Panico M., Morris H.R., Haslam S.M., Dell A., Weigel P.H. N-Glycans on the Link Domain of Human HARE/Stabilin-2 Are Needed for Hyaluronan Binding to Purified Ecto-Domain, but Not for Cellular Endocytosis of Hyaluronan. Glycobiology. 2010;20:991–1001. doi: 10.1093/glycob/cwq057. PubMed DOI PMC

Harris E.N., Weigel P.H. The Ligand-Binding Profile of HARE: Hyaluronan and Chondroitin Sulfates A, C, and D Bind to Overlapping Sites Distinct from the Sites for Heparin, Acetylated Low-Density Lipoprotein, Dermatan Sulfate, and CS-E. Glycobiology. 2008;18:638–648. doi: 10.1093/glycob/cwn045. PubMed DOI PMC

Weigel P.H., Baggenstoss B.A. What Is Special about 200 KDa Hyaluronan That Activates Hyaluronan Receptor Signaling? Glycobiology. 2017;27:868–877. doi: 10.1093/glycob/cwx039. PubMed DOI PMC

Pandey M.S., Baggenstoss B.A., Washburn J., Harris E.N., Weigel P.H. The Hyaluronan Receptor for Endocytosis (HARE) Activates NF-ΚB-Mediated Gene Expression in Response to 40-400-KDa, but Not Smaller or Larger, Hyaluronans. J. Biol. Chem. 2013;288:14068–14079. doi: 10.1074/jbc.M112.442889. PubMed DOI PMC

Kyosseva S.V., Harris E.N., Weigel P.H. The Hyaluronan Receptor for Endocytosis Mediates Hyaluronan-Dependent Signal Transduction via Extracellular Signal-Regulated Kinases. J. Biol. Chem. 2008;283:15047–15055. doi: 10.1074/jbc.M709921200. PubMed DOI PMC

Kawai T., Akira S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010;11:373. doi: 10.1038/ni.1863. PubMed DOI

Jin M.S., Lee J.-O. Structures of the Toll-like Receptor Family and Its Ligand Complexes. Immunity. 2008;29:182–191. doi: 10.1016/j.immuni.2008.07.007. PubMed DOI

Bauer S., Müller T., Hamm S. Pattern Recognition by Toll-like Receptors. In: Kishore U., editor. Target Pattern Recognition in Innate Immunity. Springer; New York, NY, USA: 2009. pp. 15–34.

Hamblin M.J., Eberlein M., Black K., Hallowell R., Collins S., Chan-Li Y., Horton M.R. Lovastatin Inhibits Low Molecular Weight Hyaluronan Induced Chemokine Expression via LFA-1 and Decreases Bleomycin-Induced Pulmonary Fibrosis. Int. J. Biomed. Sci. 2014;10:146–157. PubMed PMC

Campo G.M., Avenoso A., D’Ascola A., Prestipino V., Scuruchi M., Nastasi G., Calatroni A., Campo S. Hyaluronan Differently Modulates TLR-4 and the Inflammatory Response in Mouse Chondrocytes. BioFactors. 2012;38:69–76. doi: 10.1002/biof.202. PubMed DOI

Ebid R., Lichtnekert J., Anders H.-J. Hyaluronan Is Not a Ligand but a Regulator of Toll-Like Receptor Signaling in Mesangial Cells: Role of Extracellular Matrix in Innate Immunity. ISRN Nephrol. 2014;2014:714081. doi: 10.1155/2014/714081. PubMed DOI PMC

Bourguignon L.Y.W., Wong G., Earle C.A., Xia W. Interaction of Low Molecular Weight Hyaluronan with CD44 and Toll-like Receptors Promotes the Actin Filament-Associated Protein 110-Actin Binding and MyD88-NFκB Signaling Leading to Proinflammatory Cytokine/Chemokine Production and Breast Tumor Invasion. Cytoskeleton. 2011;68:671–693. doi: 10.1002/cm.20544. PubMed DOI PMC

Yoshida H., Nagaoka A., Kusaka-Kikushima A., Tobiishi M., Kawabata K., Sayo T., Sakai S., Sugiyama Y., Enomoto H., Okada Y., et al. KIAA1199, a Deafness Gene of Unknown Function, is a New Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization. Proc. Natl. Acad. Sci. USA. 2013;110:5612–5617. doi: 10.1073/pnas.1215432110. PubMed DOI PMC

Deroyer C., Charlier E., Neuville S., Malaise O., Gillet P., Kurth W., Chariot A., Malaise M., de Seny D. CEMIP (KIAA1199) Induces a Fibrosis-like Process in Osteoarthritic Chondrocytes. Cell Death Dis. 2019;10:103. doi: 10.1038/s41419-019-1377-8. PubMed DOI PMC

Kanse S.M., Parahuleva M., Muhl L., Kemkes-Matthes B., Sedding D., Preissner K.T. Factor VII-Activating Protease (FSAP): Vascular Functions and Role in Atherosclerosis. Thromb. Haemost. 2008;99:286–289. doi: 10.1160/TH07-10-0640. PubMed DOI

Mambetsariev N., Mirzapoiazova T., Mambetsariev B., Sammani S., Lennon F.E., Garcia J.G.N., Singleton P.A. HABP2 Is a Novel Regulator of Vascular Integrity. Arter. Thromb. Vasc. Biol. 2010;30:483–490. doi: 10.1161/ATVBAHA.109.200451. PubMed DOI PMC

Wygrecka M., Markart P., Fink L., Guenther A., Preissner K.T. Raised Protein Levels and Altered Cellular Expression of Factor VII Activating Protease (FSAP) in the Lungs of Patients with Acute Respiratory Distress Syndrome (ARDS) Thorax. 2007;62:880–888. doi: 10.1136/thx.2006.069658. PubMed DOI PMC

Mirzapoiazova T., Mambetsariev N., Lennon F.E., Mambetsariev B., Berlind J.E., Salgia R., Singleton P.A. HABP2 Is a Novel Regulator of Hyaluronan-Mediated Human Lung Cancer Progression. Front. Oncol. 2015;5:164. doi: 10.3389/fonc.2015.00164. PubMed DOI PMC

Jaffray D.A., Gospodarowicz M.K. Radiation Therapy for Cancer. In: Gelband H., Jha P., Sankaranarayanan R., Horton S., editors. Cancer: Disease Control Priorities. 3rd ed. Volume 3. The International Bank for Reconstruction and Development/The World Bank; Washington, DC, USA: 2015.

Lukoff J., Olmos J. Minimizing Medical Radiation Exposure by Incorporating a New Radiation “Vital Sign” into the Electronic Medical Record: Quality of Care and Patient Safety. Perm. J. 2017;21:1–8. doi: 10.7812/TPP/17-007. PubMed DOI PMC

Santivasi W.L., Xia F. Ionizing Radiation-Induced DNA Damage, Response, and Repair. Antioxid. Redox Signal. 2013;21:251–259. doi: 10.1089/ars.2013.5668. PubMed DOI

Le Caër S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water. 2011;3:235–253. doi: 10.3390/w3010235. DOI

Rosen E.M., Day R., Singh V.K. New Approaches to Radiation Protection. Front. Oncol. 2015;4:381. doi: 10.3389/fonc.2014.00381. PubMed DOI PMC

Wirsdörfer F., Jendrossek V. Modeling DNA Damage-Induced Pneumopathy in Mice: Insight from Danger Signaling Cascades. Radiat. Oncol. 2017;12:142. doi: 10.1186/s13014-017-0865-1. PubMed DOI PMC

Kirsch D.G., Diehn M., Kesarwala A.H., Maity A., Morgan M.A., Schwarz J.K., Bristow R., Demaria S., Eke I., Griffin R.J., et al. The Future of Radiobiology. J. Natl. Cancer Inst. 2018;110:329–340. doi: 10.1093/jnci/djx231. PubMed DOI PMC

Mothersill C. Are Epigenetic Mechanisms Involved in Radiation-Induced Bystander Effects? Front. Genet. 2012;3:74. doi: 10.3389/fgene.2012.00074. PubMed DOI PMC

Mukherjee S., Chakraborty A. Radiation-Induced Bystander Phenomenon: Insight and Implications in Radiotherapy. Int. J. Radiat. Biol. 2019;95:243–263. doi: 10.1080/09553002.2019.1547440. PubMed DOI

Šoltés L., Mendichi R., Kogan G., Schiller J., Stankovská M., Arnhold J. Degradative Action of Reactive Oxygen Species on Hyaluronan. Biomacromolecules. 2006;7:659–668. doi: 10.1021/bm050867v. PubMed DOI

Parsons B.J. Free Radical Studies of Components of the Extracellular Matrix: Contributions to Protection of Biomolecules and Biomaterials from Sterilising Doses of Ionising Radiation. Cell Tissue Bank. 2017;19:201–213. doi: 10.1007/s10561-017-9650-5. PubMed DOI

Schoenberg M.D., Brooks R.E., Hall J.J., Schneiderman H. Effect of X-Irradiation on the Hyaluronïdasehyaluronic Acid System. Arch. Biochem. 1951;30:333–340. PubMed

Caputo A. Depolymerization of Hyaluronic Acid by X-Rays. Nature. 1957;179:1133–1134. doi: 10.1038/1791133a0. DOI

Daar E., King L., Nisbet A., Thorpe R.B., Bradley D.A. Viscosity Changes in Hyaluronic Acid: Irradiation and Rheological Studies. Appl. Radiat. Isot. 2010;68:746–750. doi: 10.1016/j.apradiso.2009.10.022. PubMed DOI

Al-Assaf S., Navaratnam S., Parsons B.J., Phillips G.O. Chain Scission of Hyaluronan by Carbonate and Dichloride Radical Anions: Potential Reactive Oxidative Species in Inflammation? Free. Radic. Biol. Med. 2006;40:2018–2027. doi: 10.1016/j.freeradbiomed.2006.01.033. PubMed DOI

Deeble D.J., Phillips G.O., Bothe E., Schuchmann H.-P., von Sonntag C. The Radiation-Induced Degradation of Hyaluronic Acid. International Journal of Radiation Applications and Instrumentation. Part C. Radiat. Phys. Chem. 1991;37:115–118. doi: 10.1016/1359-0197(91)90208-J. DOI

Al-Assaf S., Meadows J., Phillips G.O., Williams P.A., Parsons B.J. The Effect of Hydroxyl Radicals on the Rheological Performance of Hylan and Hyaluronan. Int. J. Biol. Macromol. 2000;27:337–348. doi: 10.1016/S0141-8130(00)00136-7. PubMed DOI

Ahmad A.F., Mohd H.M.K., bin Ayob M.T.M., Rosli N.R.A.M., Mohamed F., Radiman S., Rahman I.A. Effect of Gamma Irradiation on Hyaluronic Acid and Dipalmitoylphosphatidylcholine (DPPC) Interaction. 2014;1614:69–73. doi: 10.1063/1.4895173. DOI

Huang Y.-C., Huang K.-Y., Lew W.-Z., Fan K.-H., Chang W.-J., Huang H.-M. Gamma-Irradiation-Prepared Low Molecular Weight Hyaluronic Acid Promotes Skin Wound Healing. Polymers. 2019;11:1214. doi: 10.3390/polym11071214. PubMed DOI PMC

Bardaweel S.K., Gul M., Alzweiri M., Ishaqat A., ALSalamat H.A., Bashatwah R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018;50:193–201. doi: 10.5152/eurasianjmed.2018.17397. PubMed DOI PMC

Volpi N., Schiller J., Stern R., Soltés L. Role, Metabolism, Chemical Modifications and Applications of Hyaluronan. Curr. Med. Chem. 2009;16:1718–1745. doi: 10.2174/092986709788186138. PubMed DOI

Kumari S., Badana A.K., Mohan G.M., Shailender G., Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark. Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391. PubMed DOI PMC

Azzam E.I. What Does Radiation Biology Tell Us about Potential Health Effects at Low Dose and Low Dose Rates. J. Radiol. Prot. 2019;39:4. doi: 10.1088/1361-6498/ab2b09. PubMed DOI

Lapčík L., Schurz J. Photochemical Degradation of Hyaluronic Acid by Singlet Oxygen. Colloid Polym. Sci. 1991;269:633–635. doi: 10.1007/BF00659919. DOI

Caspersen M.B., Roubroeks J.P., Qun L., Shan H., Fogh J., RuiDong Z., Tømmeraas K. Thermal Degradation and Stability of Sodium Hyaluronate in Solid State. Carbohydr. Polym. 2014;107:25–30. doi: 10.1016/j.carbpol.2014.02.005. PubMed DOI

Šoltés L., Valachová K., Mendichi R., Kogan G., Arnhold J., Gemeiner P. Solution Properties of High-Molar-Mass Hyaluronans: The Biopolymer Degradation by Ascorbate. Carbohydr. Res. 2007;342:1071–1077. doi: 10.1016/j.carres.2007.02.018. PubMed DOI

Chen H., Qin J., Hu Y. Efficient Degradation of High-Molecular-Weight Hyaluronic Acid by a Combination of Ultrasound, Hydrogen Peroxide, and Copper Ion. Molecules. 2019;24:617. doi: 10.3390/molecules24030617. PubMed DOI PMC

Duan J., Kasper D.L. Oxidative Depolymerization of Polysaccharides by Reactive Oxygen/Nitrogen Species. Glycobiology. 2011;21:401–409. doi: 10.1093/glycob/cwq171. PubMed DOI PMC

Kennett E.C., Davies M.J. Degradation of Matrix Glycosaminoglycans by Peroxynitrite/Peroxynitrous Acid: Evidence for a Hydroxyl-Radical-like Mechanism. Free Radic. Biol. Med. 2007;42:1278–1289. doi: 10.1016/j.freeradbiomed.2007.01.030. PubMed DOI

Li M., Rosenfeld L., Vilar R.E., Cowman M.K. Degradation of Hyaluronan by Peroxynitrite. Arch. Biochem. Biophys. 1997;341:245–250. doi: 10.1006/abbi.1997.9970. PubMed DOI

Riehl T.E., Foster L., Stenson W.F. Hyaluronic Acid Is Radioprotective in the Intestine through a TLR4 and COX-2-Mediated Mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;302:G309–G316. doi: 10.1152/ajpgi.00248.2011. PubMed DOI PMC

Ratikan J.A., Micewicz E.D., Xie M.W., Schaue D. Radiation Takes Its Toll. Cancer Lett. 2015;368:238–245. doi: 10.1016/j.canlet.2015.03.031. PubMed DOI PMC

Hanson W.R., Houseman K.A., Collins P.W. Radiation Protection in Vivo by Prostaglandins and Related Compounds of the Arachidonic Acid Cascade. Pharmacol. Ther. 1988;39:347–356. doi: 10.1016/0163-7258(88)90082-4. PubMed DOI

Macià i Garau M., Lucas Calduch A., López E.C. Radiobiology of the Acute Radiation Syndrome. Rep. Pract. Oncol. Radiother. 2011;16:123–130. doi: 10.1016/j.rpor.2011.06.001. PubMed DOI PMC

Kiang J.G., Olabisi A.O. Radiation: A Poly-Traumatic Hit Leading to Multi-Organ Injury. Cell Biosci. 2019;9:25. doi: 10.1186/s13578-019-0286-y. PubMed DOI PMC

Johnson P., Arif A.A., Lee-Sayer S.S.M., Dong Y. Hyaluronan and Its Interactions with Immune Cells in the Healthy and Inflamed Lung. Front. Immunol. 2018;9:2787. doi: 10.3389/fimmu.2018.02787. PubMed DOI PMC

Lennon F.E., Singleton P.A. Role of Hyaluronan and Hyaluronan-Binding Proteins in Lung Pathobiology. Am. J. Physiol. Lung Cell Mol. Physiol. 2011;301:L137–L147. doi: 10.1152/ajplung.00071.2010. PubMed DOI PMC

Garantziotis S., Brezina M., Castelnuovo P., Drago L. The Role of Hyaluronan in the Pathobiology and Treatment of Respiratory Disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2016;310:L785–L795. doi: 10.1152/ajplung.00168.2015. PubMed DOI PMC

Lierova A., Jelicova M., Nemcova M., Proksova M., Pejchal J., Zarybnicka L., Sinkorova Z. Cytokines and Radiation-Induced Pulmonary Injuries. J. Radiat. Res. 2018;59:709–753. doi: 10.1093/jrr/rry067. PubMed DOI PMC

Kliment C.R., Oury T.D. Oxidative Stress, Extracellular Matrix Targets, and Idiopathic Pulmonary Fibrosis. Free. Radic. Biol. Med. 2010;49:707–717. doi: 10.1016/j.freeradbiomed.2010.04.036. PubMed DOI

Gao F., Koenitzer J.R., Tobolewski J.M., Jiang D., Liang J., Noble P.W., Oury T.D. Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan. J. Biol. Chem. 2008;283:6058–6066. doi: 10.1074/jbc.M709273200. PubMed DOI PMC

Zelko I.N., Folz R.J. Extracellular Superoxide Dismutase Attenuates Release of Pulmonary Hyaluronan from the Extracellular Matrix Following Bleomycin Exposure. FEBS Lett. 2010;584:2947–2952. doi: 10.1016/j.febslet.2010.05.025. PubMed DOI PMC

Kang S.K., Rabbani Z.N., Folz R.J., Golson M.L., Huang H., Yu D., Samulski T.S., Dewhirst M.W., Anscher M.S., Vujaskovic Z. Overexpression of Extracellular Superoxide Dismutase Protects Mice from Radiation-Induced Lung Injury. Int. J. Radiat. Oncol. Biol. Phys. 2003;57:1056–1066. doi: 10.1016/S0360-3016(03)01369-5. PubMed DOI

Wei L., Zhang J., Yang Z.-L., You H. Extracellular Superoxide Dismutase Increased the Therapeutic Potential of Human Mesenchymal Stromal Cells in Radiation Pulmonary Fibrosis. Cytotherapy. 2017;19:586–602. doi: 10.1016/j.jcyt.2017.02.359. PubMed DOI

Rabbani Z.N., Anscher M.S., Folz R.J., Archer E., Huang H., Chen L., Golson M.L., Samulski T.S., Dewhirst M.W., Vujaskovic Z. Overexpression of Extracellular Superoxide Dismutase Reduces Acute Radiation Induced Lung Toxicity. BMC Cancer. 2005;5:59. doi: 10.1186/1471-2407-5-59. PubMed DOI PMC

Rosenbaum D., Peric S., Holecek M., Ward H.E. Hyaluronan in Radiation-Induced Lung Disease in the Rat. Radiat. Res. 1997;147:585–591. doi: 10.2307/3579625. PubMed DOI

Nilsson K., Henriksson R., Hellström S., Tengblad A., Bjermer L. Hyaluronan Reflects the Pre-Fibrotic Inflammation in Irradiated Rat Lung: Concomitant Analysis of Parenchymal Tissues and Bronchoalveolar Lavage. Int. J. Radiat. Biol. 1990;58:519–530. doi: 10.1080/09553009014551861. PubMed DOI

Li Y., Rahmanian M., Widström C., Lepperdinger G., Frost G.I., Heldin P. Irradiation-Induced Expression of Hyaluronan (HA) Synthase 2 and Hyaluronidase 2 Genes in Rat Lung Tissue Accompanies Active Turnover of HA and Induction of Types I and III Collagen Gene Expression. Am. J. Respir. Cell Mol. Biol. 2000;23:411–418. doi: 10.1165/ajrcmb.23.3.4102. PubMed DOI

Shen Y.N., Shin H.-J., Joo H.-Y., Park E.-R., Kim S.-H., Hwang S.-G., Park S.J., Kim C.-H., Lee K.-H. Inhibition of HAS2 Induction Enhances the Radiosensitivity of Cancer Cells via Persistent DNA Damage. Biochem. Biophys. Res. Commun. 2014;443:796–801. doi: 10.1016/j.bbrc.2013.12.026. PubMed DOI

Kim J.H., Jenrow K.A., Brown S.L. Mechanisms of Radiation-Induced Normal Tissue Toxicity and Implications for Future Clinical Trials. Radiat. Oncol. J. 2014;32:103–115. doi: 10.3857/roj.2014.32.3.103. PubMed DOI PMC

Li Y., Jiang D., Liang J., Meltzer E.B., Gray A., Miura R., Wogensen L., Yamaguchi Y., Noble P.W. Severe Lung Fibrosis Requires an Invasive Fibroblast Phenotype Regulated by Hyaluronan and CD44. J. Exp. Med. 2011;208:1459–1471. doi: 10.1084/jem.20102510. PubMed DOI PMC

Colgan S.P., Eltzschig H.K., Eckle T., Thompson L.F. Physiological Roles for Ecto-5′-Nucleotidase (CD73) Purinergic Signal. 2006;2:351. doi: 10.1007/s11302-005-5302-5. PubMed DOI PMC

Wirsdörfer F., de Leve S., Cappuccini F., Eldh T., Meyer A.V., Gau E., Thompson L.F., Chen N.-Y., Karmouty-Quintana H., Fischer U., et al. Extracellular Adenosine Production by Ecto-5′-Nucleotidase (CD73) Enhanc. Radiat. Induc. Lung Fibrosis. Cancer Res. 2016;76:3045–3056. doi: 10.1158/0008-5472.CAN-15-2310. PubMed DOI PMC

De Leve S., Wirsdörfer F., Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front. Immunol. 2019;10:698. doi: 10.3389/fimmu.2019.00698. PubMed DOI PMC

De Leve S., Wirsdörfer F., Cappuccini F., Schütze A., Meyer A.V., Röck K., Thompson L.F., Fischer J.W., Stuschke M., Jendrossek V. Loss of CD73 Prevents Accumulation of Alternatively Activated Macrophages and the Formation of Prefibrotic Macrophage Clusters in Irradiated Lungs. FASEB J. 2017;31:2869–2880. doi: 10.1096/fj.201601228R. PubMed DOI PMC

Sohr S., Engeland K. RHAMM Is Differentially Expressed in the Cell Cycle and Downregulated by the Tumor Suppressor P53. Cell Cycle. 2008;7:3448–3460. doi: 10.4161/cc.7.21.7014. PubMed DOI

Fei P., El-Deiry W.S. P53 and Radiation Responses. Oncogene. 2003;22:5774. doi: 10.1038/sj.onc.1206677. PubMed DOI

Lee C.-L., Blum J.M., Kirsch D.G. Role of P53 in Regulating Tissue Response to Radiation by Mechanisms Independent of Apoptosis. Transl. Cancer Res. 2013;2:412–421. PubMed PMC

Uddin M.A., Barabutis N. P53 in the Impaired Lungs. DNA Repair. 2020;95:102952. doi: 10.1016/j.dnarep.2020.102952. PubMed DOI PMC

Wirostko B., Mann B.K., Williams D.L., Prestwich G.D. Ophthalmic Uses of a Thiol-Modified Hyaluronan-Based Hydrogel. Adv. Wound Care. 2014;3:708–716. doi: 10.1089/wound.2014.0572. PubMed DOI PMC

Widjaja L.K., Bora M., Chan P.N.P.H., Lipik V., Wong T.T.L., Venkatraman S.S. Hyaluronic Acid-Based Nanocomposite Hydrogels for Ocular Drug Delivery Applications. J. Biomed. Mater. Res. A. 2014;102:3056–3065. doi: 10.1002/jbm.a.34976. PubMed DOI

Lee D., Lu Q., Sommerfeld S.D., Chan A., Menon N.G., Schmidt T.A., Elisseeff J.H., Singh A. Targeted Delivery of Hyaluronic Acid to the Ocular Surface by a Polymer-Peptide Conjugate System for Dry Eye Disease. Acta Biomater. 2017;55:163–171. doi: 10.1016/j.actbio.2017.03.043. PubMed DOI

Bowman S., Awad M.E., Hamrick M.W., Hunter M., Fulzele S. Recent Advances in Hyaluronic Acid Based Therapy for Osteoarthritis. Clin. Transl. Med. 2018;7:6. doi: 10.1186/s40169-017-0180-3. PubMed DOI PMC

Tashiro T., Seino S., Sato T., Matsuoka R., Masuda Y., Fukui N. Oral Administration of Polymer Hyaluronic Acid Alleviates Symptoms of Knee Osteoarthritis: A Double-Blind, Placebo-Controlled Study over a 12-Month Period. Sci. World J. 2012;2012:167928. doi: 10.1100/2012/167928. PubMed DOI PMC

Kaya S., Schmidl D., Schmetterer L., Witkowska K.J., Unterhuber A., Aranha Dos Santos V., Baar C., Garhöfer G., Werkmeister R.M. Effect of Hyaluronic Acid on Tear Film Thickness as Assessed with Ultra-High Resolution Optical Coherence Tomography. Acta Ophthalmol. 2015;93:439–443. doi: 10.1111/aos.12647. PubMed DOI

Sionkowska A., Kaczmarek B., Michalska M., Lewandowska K., Grabska S. Preparation and Characterization of Collagen/Chitosan/Hyaluronic Acid Thin Films for Application in Hair Care Cosmetics. Pure Appl. Chem. 2017;89:1829–1839. doi: 10.1515/pac-2017-0314. DOI

Kašparová J., Arnoldová K., Korecká L., Česlová L. Determination of Hyaluronic Acid in Pharmaceutical Products by Spectrophotometry and HPLC Coupled to Fluorescence or Mass Spectrometric Detection. Faculty of Chemical Technology; Pardubice, Czech Republic: 2018.

Cartier H., Hedén P., Delmar H., Bergentz P., Skoglund C., Edwartz C., Norberg M., Kestemont P. Repeated Full-Face Aesthetic Combination Treatment with AbobotulinumtoxinA, Hyaluronic Acid Filler, and Skin-Boosting Hyaluronic Acid After Monotherapy with AbobotulinumtoxinA or Hyaluronic Acid Filler. Derm. Surg. 2020;46:475–482. doi: 10.1097/DSS.0000000000002165. PubMed DOI PMC

Al-Sibani M., Al-Harrasi A., Neubert R.H.H. Effect of Hyaluronic Acid Initial Concentration on Cross-Linking Efficiency of Hyaluronic Acid-Based Hydrogels Used in Biomedical and Cosmetic Applications. Pharmazie. 2017;72:81–86. doi: 10.1691/ph.2017.6133. PubMed DOI

Rohrich R.J., Ghavami A., Crosby M.A. The Role of Hyaluronic Acid Fillers (Restylane) in Facial Cosmetic Surgery: Review and Technical Considerations. Plast. Reconstr. Surg. 2007;120:41S–54S. doi: 10.1097/01.prs.0000248794.63898.0f. PubMed DOI

Urdiales-Gálvez F., Martín-Sánchez S., Maíz-Jiménez M., Castellano-Miralla A., Lionetti-Leone L. Concomitant Use of Hyaluronic Acid and Laser in Facial Rejuvenation. Aesthetic Plast. Surg. 2019;43:1061–1070. doi: 10.1007/s00266-019-01393-7. PubMed DOI PMC

Rzany B., Cartier H., Kestemont P., Trevidic P., Sattler G., Kerrouche N., Dhuin J.-C., Ma Y.M. Full-Face Rejuvenation Using a Range of Hyaluronic Acid Fillers: Efficacy, Safety, and Patient Satisfaction over 6 Months. Derm. Surg. 2012;38:1153–1161. doi: 10.1111/j.1524-4725.2012.02470.x. PubMed DOI

Benzaquen M., Fongue J., Pauly V., Collet-Villette A.-M. Laser-Assisted Hyaluronic Acid Delivery by Fractional Carbon Dioxide Laser in Facial Skin Remodeling: A Prospective Randomized Split-Face Study in France. Lasers Surg. Med. 2021;53:1166–1172. doi: 10.1002/lsm.23403. PubMed DOI

Wu M., Cao M., He Y., Liu Y., Yang C., Du Y., Wang W., Gao F. A Novel Role of Low Molecular Weight Hyaluronan in Breast Cancer Metastasis. FASEB J. 2015;29:1290–1298. doi: 10.1096/fj.14-259978. PubMed DOI

Ossipov D.A. Nanostructured Hyaluronic Acid-Based Materials for Active Delivery to Cancer. Expert Opin. Drug Deliv. 2010;7:681–703. doi: 10.1517/17425241003730399. PubMed DOI

Hemshekhar M., Thushara R.M., Chandranayaka S., Sherman L.S., Kemparaju K., Girish K.S. Emerging Roles of Hyaluronic Acid Bioscaffolds in Tissue Engineering and Regenerative Medicine. Int. J. Biol. Macromol. 2016;86:917–928. doi: 10.1016/j.ijbiomac.2016.02.032. PubMed DOI

Hussain Z., Thu H.E., Katas H., Bukhari S.N.A. Hyaluronic Acid-Based Biomaterials: A Versatile and Smart Approach to Tissue Regeneration and Treating Traumatic, Surgical, and Chronic Wounds. Polym. Rev. 2017;57:594–630. doi: 10.1080/15583724.2017.1315433. DOI

Margolis R.K., Crockett C.P., Kiang W.-L., Margolis R.U. Glycosaminoglycans and Glycoproteins Associated with Rat Brain Nuclei. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1976;451:465–469. doi: 10.1016/0304-4165(76)90141-0. PubMed DOI

Stein G.S., Roberts R.M., Davis J.L., Head W.J., Stein J.L., Thrall C.L., Veen J.V., Welch D.W. Are Glycoproteins and Glycosaminoglycans Components of the Eukaryotic Genome? Nature. 1975;258:639. doi: 10.1038/258639a0. PubMed DOI

Skandalis S.S., Karalis T., Heldin P. Intracellular Hyaluronan: Importance for Cellular Functions. Semin. Cancer Biol. 2019;62:20–30. doi: 10.1016/j.semcancer.2019.07.002. PubMed DOI

Hascall V.C., Majors A.K., De La Motte C.A., Evanko S.P., Wang A., Drazba J.A., Strong S.A., Wight T.N. Intracellular Hyaluronan: A New Frontier for Inflammation? Biochim. Biophys. Acta. 2004;1673:3–12. doi: 10.1016/j.bbagen.2004.02.013. PubMed DOI

Wang A., Hascall V.C. Hyaluronan Structures Synthesized by Rat Mesangial Cells in Response to Hyperglycemia Induce Monocyte Adhesion. J. Biol. Chem. 2004;279:10279–10285. doi: 10.1074/jbc.M312045200. PubMed DOI

Nagy N., Sunkari V.G., Kaber G., Hasbun S., Lam D.N., Speake C., Sanda S., McLaughlin T.L., Wight T.N., Long S.R., et al. Hyaluronan Levels Are Increased Systemically in Human Type 2 but Not Type 1 Diabetes Independently of Glycemic Control. Matrix Biol. 2019;80:46–58. doi: 10.1016/j.matbio.2018.09.003. PubMed DOI PMC

Pu Y., Cai F., Wang D., Wang J.-X., Chen J.-F. Colloidal Synthesis of Semiconductor Quantum Dots toward Large-Scale Production: A Review. Ind. Eng. Chem. Res. 2018;57:1790–1802. doi: 10.1021/acs.iecr.7b04836. DOI

Hardman R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Env. Health Perspect. 2006;114:165–172. doi: 10.1289/ehp.8284. PubMed DOI PMC

D’Amico M., Fiorica C., Palumbo F.S., Militello V., Leone M., Dubertret B., Pitarresi G., Giammona G. Uptake of Silica Covered Quantum Dots into Living Cells: Long Term Vitality and Morphology Study on Hyaluronic Acid Biomaterials. Mater Sci. Eng. C Mater Biol. Appl. 2016;67:231–236. doi: 10.1016/j.msec.2016.04.082. PubMed DOI

Wang H., Sun H., Wei H., Xi P., Nie S., Ren Q. Biocompatible Hyaluronic Acid Polymer-Coated Quantum Dots for CD44+ Cancer Cell-Targeted Imaging. J. Nanopart. Res. 2014;16:2621. doi: 10.1007/s11051-014-2621-x. DOI

Choi K.Y., Min K.H., Yoon H.Y., Kim K., Park J.H., Kwon I.C., Choi K., Jeong S.Y. PEGylation of Hyaluronic Acid Nanoparticles Improves Tumor Targetability in Vivo. Biomaterials. 2011;32:1880–1889. doi: 10.1016/j.biomaterials.2010.11.010. PubMed DOI

Lee H., Lee K., Kim I.K., Park T.G. Synthesis, Characterization, and in Vivo Diagnostic Applications of Hyaluronic Acid Immobilized Gold Nanoprobes. Biomaterials. 2008;29:4709–4718. doi: 10.1016/j.biomaterials.2008.08.038. PubMed DOI

Russo M., Bevilacqua P., Netti P.A., Torino E. A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (CHANPs) for Enhanced MRI. Sci. Rep. 2016;6:37906. doi: 10.1038/srep37906. PubMed DOI PMC

Lee Y., Lee H., Kim Y.B., Kim J., Hyeon T., Park H., Messersmith P.B., Park T.G. Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Adv. Mater. 2008;20:4154–4157. doi: 10.1002/adma.200800756. PubMed DOI PMC

Rao N.V., Rho J.G., Um W., Ek P.K., Nguyen V.Q., Oh B.H., Kim W., Park J.H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics. 2020;12:931. doi: 10.3390/pharmaceutics12100931. PubMed DOI PMC

Holubova L., Korecka L., Podzimek S., Moravcova V., Rotkova J., Ehlova T., Velebny V., Bilkova Z. Enhanced Multiparametric Hyaluronan Degradation for Production of Molar-Mass-Defined Fragments. Carbohydr. Polym. 2014;112:271–276. doi: 10.1016/j.carbpol.2014.05.096. PubMed DOI

Lierova A., Kasparova J., Pejchal J., Kubelkova K., Jelicova M., Palarcik J., Korecka L., Bilkova Z., Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front. Pharm. 2020;11:1199. doi: 10.3389/fphar.2020.01199. PubMed DOI PMC

Malfanti A., Catania G., Degros Q., Wang M., Bausart M., Préat V. Design of Bio-Responsive Hyaluronic Acid–Doxorubicin Conjugates for the Local Treatment of Glioblastoma. Pharmaceutics. 2022;14:124. doi: 10.3390/pharmaceutics14010124. PubMed DOI PMC

Kim H., Shin M., Han S., Kwon W., Hahn S.K. Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules. 2019;20:2889–2903. doi: 10.1021/acs.biomac.9b00564. PubMed DOI

Choi K.Y., Han H.S., Lee E.S., Shin J.M., Almquist B.D., Lee D.S., Park J.H. Hyaluronic Acid–Based Activatable Nanomaterials for Stimuli-Responsive Imaging and Therapeutics: Beyond CD44-Mediated Drug Delivery. Adv. Mater. 2019;31:1803549. doi: 10.1002/adma.201803549. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recent Advances of Hyaluronan for Skin Delivery: From Structure to Fabrication Strategies and Applications

. 2022 Nov 10 ; 14 (22) : . [epub] 20221110

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...