Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota

. 2021 ; 12 () : 752653. [epub] 20211021

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34745186

Plants communicate with microorganisms by exchanging chemical signals throughout the phytosphere. Such interactions are important not only for plant productivity and fitness, but also for terrestrial ecosystem functioning. It is known that beneficial microorganisms emit diffusible substances including volatile organic compounds (VOCs) that promote growth. Consistently, soil application of cell-free culture filtrates (CF) of beneficial soil and plant-associated microorganisms enhances plant growth and yield. However, how this treatment acts in plants and whether it alters the resident soil microbiota, are largely unknown. In this work we characterized the responses of pepper (Capsicum annuum L.) plants cultured under both greenhouse and open field conditions and of soil microbiota to soil application of CFs of beneficial and phytopathogenic fungi. To evaluate the contribution of VOCs occurring in the CFs to these responses, we characterized the responses of plants and of soil microbiota to application of distillates (DE) of the fungal CFs. CFs and their respective DEs contained the same potentially biogenic VOCs, and application of these extracts enhanced root growth and fruit yield, and altered the nutritional characteristics of fruits. High-throughput amplicon sequencing of bacterial 16S and fungal ITS rRNA genes of the soil microbiota revealed that the CF and DE treatments altered the microbial community compositions, and led to strong enrichment of the populations of the same beneficial bacterial and fungal taxa. Our findings show that CFs of both beneficial and phytopathogenic fungi can be used as biostimulants, and provide evidence that VOCs occurring in the fungal CFs act as mediators of the plants' responses to soil application of fungal CFs through stimulation of the beneficial soil microbiota.

Zobrazit více v PubMed

Abarenkov K., Nilsson R. H., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., et al. (2010). The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol. 186 281–285. 10.1111/j.1469-8137.2009.03160.x PubMed DOI

Ahmad M., Pataczek L., Hilger T. H., Zahir Z. A., Hussain A., Rasche F., et al. (2018). Perspectives of microbial inoculation for sustainable development and environmental management. Front. Microbiol. 9:2992. 10.3389/fmicb.2018.02992 PubMed DOI PMC

Aldesuquy H. S., Mansour F. A., Abo-Hamed S. A. (1998). Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43 465–470. 10.1007/BF02820792 DOI

Allen M. M., Allen D. J. (2020). Biostimulant potential of acetic acid under drought stress is confounded by pH-dependent root growth inhibition. Front. Plant Sci. 11:213. 10.3389/fpls.2020 PubMed DOI PMC

Ameztoy K., Baslam M., Sánchez-López ÁM., Muñoz F. J., Bahaji A., Almagro G., et al. (2019). Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant. Cell Environ. 42 2627–2644. 10.1111/pce.13601 PubMed DOI

Ameztoy K., Sánchez-López ÁM., Muñoz F. J., Bahaji A., Almagro G., Baroja-Fernández E., et al. (2021). Proteostatic regulation of MEP and shikimate pathways by redox-activated photosynthesis signaling in plants exposed to small fungal volatiles. Front. Plant Sci. 12:637976. 10.3389/fpls.2021.637976 PubMed DOI PMC

Arkhipova T. N., Veselov S. U., Melentiev A. I., Martynenko E. V., Kudoyarova G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272 201–209. 10.1007/s11104-004-5047-x DOI

Badri D. V., Chaparro J. M., Zhang R., Shen Q., Vivanco J. M. (2013a). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288 4502–4512. 10.1074/jbc.M112.433300 PubMed DOI PMC

Badri D. V., Zolla G., Bakker M. G., Manter D. K., Vivanco J. M. (2013b). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198 264–273. 10.1111/nph.12124 PubMed DOI

Bagde U. S., Prasad R., Varma A. (2011). Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annus. Symbiosis 53:83. 10.1007/s13199-011-0114-6 DOI

Bahaji A., Baroja-Fernández E., Ricarte-Bermejo A., Sánchez-López ÁM., Muñoz F. J., Romero J. M., et al. (2015a). Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the. Blockage of sucrose biosynthesis. Plant Sci. 238 135–147. 10.1016/j.plantsci.2015.06.009 PubMed DOI

Bahaji A., Sánchez-López ÁM., De Diego N., Muñoz F. J., Baroja-Fernández E., Li J., et al. (2015b). Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis. PLoS One 10:e0119641. 10.1371/journal.pone.0126531 PubMed DOI PMC

Belimov A. A., Dodd I. C., Safronova V. I., Hontzeas N., Davies W. J. (2007). Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1- carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J. Exp. Bot. 58 1485–1495. 10.1093/jxb/erm010 PubMed DOI

Berestetskiy A. O. (2008). A review of fungal phytotoxins: from basic studies to practical use. Appl. Biochem. Microbiol. 44 453–465. 10.1134/S0003683808050013 PubMed DOI

Bitas V., McCartney N., Li N., Demers J., Kim J. E., Kim H. S., et al. (2015). Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front. Microbiol. 10:1248. 10.3389/fmicb.2015.01248 PubMed DOI PMC

Calvo P., Nelson L., Kloepper J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383 3–41. 10.1007/s11104-014-2131-8 DOI

Camarena-Pozos D. A., Flores-Núñ;ez V. M., López M. G., López-Bucio J., Partida-Martínez L. P. (2019). Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ. 42 1368–1380. 10.1111/pce.13476 PubMed DOI

Chanclud E., Morel J. B. (2016). Plant hormones: a fungal point of view. Mol. Plant Pathol. 17 1289–1297. 10.1111/mpp.12393 PubMed DOI PMC

Chaurasia B., Pandey A., Palni L. M. S., Trivedi P., Kumar B., Colvin N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160 75–81. 10.1016/j.micres.2004.09.013 PubMed DOI

Chen Y., Bonkowski M., Shen Y., Griffiths B. S., Jiang Y., Wang X., et al. (2020). Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome 8 4. 10.1186/s40168-019-0775-6 PubMed DOI PMC

Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., et al. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8:2202. 10.3389/fpls.2017.02202 PubMed DOI PMC

Contreras-Cornejo H. A., Macías-Rodríguez L., Cortés-Penagos C., López-Bucio J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149 1579–1592. 10.1104/pp.108.130369 PubMed DOI PMC

Cordovez V., Mommer L., Moisan K., Lucas-Barbosa D., Pierik R., Mumm R., et al. (2017). Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front. Plant Sci. 8:1262. 10.3389/fpls.2017.01262 PubMed DOI PMC

De Mendiburu F., Simon R. (2015). Agricolae – Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ Prepr. 3 1–17. 10.7287/peerj.preprints.1404v1 DOI

De-la-Peña C., Loyola-Vargas V. M. (2014). Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol. 166 701–709. 10.1104/pp.114.241810 PubMed DOI PMC

Delgado-Baquerizo M., Maestre F. T., Reich P. B., Jeffries T. C., Gaitan J. J., Encinar D., et al. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7:10541. 10.1038/ncomms10541 PubMed DOI PMC

Deng S., Wipf H. M.-L., Pierroz G., Raab T. K., Khanna R., Coleman-Derr D. (2019). A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Sci. Rep. 9 17677. 10.1038/s41598-019-53623-2 PubMed DOI PMC

Ditengou F. A., Müller A., Rosenkranz M., Felten J., Lasok H., Van Doorn M. M., et al. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6 6279. 10.1038/ncomms7279 PubMed DOI PMC

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196 3–14. 10.1016/j.scienta.2015.09.021 DOI

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC

Ezquer I., Li J., Ovecka M., Baroja-Fernández E., Muñoz F. J., Montero M., et al. (2010). Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol. 51 1674–1693. 10.1093/pcp/pcq126 PubMed DOI

Fincheira P., Parra L., Mutis A., Parada M., Quiroz A. (2017). Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiol. Res. 203 47–56. 10.1016/j.micres.2017.06.007 PubMed DOI

Fiorentino N., Ventorino V., Woo S. L., Pepe O., De Rosa A., Gioia L., et al. (2018). Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 9:743. 10.3389/fpls.2018.00743 PubMed DOI PMC

Flexas J., Díaz-Espejo A., Conesa M. A., Coopman R. E., Douthe C., Gago J., et al. (2016). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39 965–982. 10.1111/pce.12622 PubMed DOI

Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105 147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI

Forde B. G. (2014). Glutamate signalling in roots. J. Exp. Bot. 65 779–787. 10.1093/jxb/ert335 PubMed DOI

Fu L., Niu B., Zhu Z., Wu S., Li W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28 3150–3152. 10.1093/bioinformatics/bts565 PubMed DOI PMC

Fu S.-F., Sun P.-F., Lu H.-Y., Wei J.-Y., Xiao H.-S., Fang W.-T., et al. (2016). Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 120 433–448. 10.1016/j.funbio.2015.12.006 PubMed DOI

García-Gómez P., Almagro G., Sánchez-López ÁM., Bahaji A., Ameztoy K., Ricarte-Bermejo A., et al. (2019). Volatile compounds other than CO2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. Plant Cell Environ. 42 1729–1746. 10.1111/pce.13490 PubMed DOI

García-Gómez P., Bahaji A., Gámez-Arcas S., Muñoz F. J., Sánchez-lópez ÁM., Almagro G., et al. (2020). Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. Plant Cell Environ. 43 2551–2570. PubMed

Garnica-Vergara A., Barrera-Ortiz S., Muñoz-Parra E., Raya-González J., Méndez-Bravo A., Macías-Rodríguez L., et al. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209 1496–1512. 10.1111/nph.13725 PubMed DOI

George T. K., SubaidaBeevi S., Asok A. K., Shaikmoideen J. M. (2019). Plant growthpromoting endophytic yeast Geotrichum candidum (Jx 477426) from roots of Bruguiera cylindrica. J. Microbiol. Biotechnol. Food Sci. 9 267–272. 10.15414/jmbfs.2019.9.2.267-272 DOI

Gu Y., Wang J., Xia Z., Wei H. L. (2020). Characterization of a versatile plant growth-promoting rhizobacterium Pseudomonas mediterranea strain s58. Microorganisms 8:334. 10.3390/microorganisms8030334 PubMed DOI PMC

Guo Y., Jud W., Ghirardo A., Antritter F., Benz J. P., Schnitzler J.-P., et al. (2020). Sniffing fungi – phenotyping of volatile chemical diversity in Trichoderma species. New Phytol. 227 244–259. 10.1111/nph.16530 PubMed DOI

Gutiérrez-Luna F. M., López-Bucio J., Altamirano-Hernández J., Valencia-Cantero E., Reyes de La Cruz H., Macías-Rodríguez L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51 75–83. 10.1007/s13199-010-0066-2 DOI

Hernández-Calderón E., Aviles-Garcia M. E., Castulo-Rubio D. Y., Macías-Rodríguez L., Ramírez V. M., Santoyo G., et al. (2018). Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol. Biol. 96 291–304. 10.1007/s11103-017-0694-5 PubMed DOI

Hilber-Bodmer M., Schmid M., Ahrens C. H., Freimoser F. M. (2017). Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiol. 17:4. 10.1186/s12866-016-0908-z PubMed DOI PMC

Huang A. C., Jiang T., Liu Y. X., Bai Y. C., Reed J., Qu B., et al. (2019). A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 36 eaau6389. 10.1126/science.aau6389 PubMed DOI

Jiang C.-H., Xie Y.-S., Zhu K., Wang N., Li Z.-J., Yu G.-J., et al. (2019). Volatile organic compounds emitted by Bacillus sp. JC03 promote plant growth through the action of auxin and strigolactone. Plant Growth Regul. 87 317–328. 10.1007/s10725-018-00473-z DOI

Kai M., Effmert U., Berg G., Piechulla B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187 351–360. 10.1007/s00203-006-0199-0 PubMed DOI

Kalita M., Małek W. (2017). Molecular phylogeny of Bradyrhizobium bacteria isolated from root nodules of tribe Genisteae plants growing in southeast Poland. Syst. Appl. Microbiol. 40 482–491. 10.1016/j.syapm.2017.09.001 PubMed DOI

Kanchiswamy C. N., Malnoy M., Maffei M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151. 10.3389/fpls.2015.00151 PubMed DOI PMC

Kaur T., Rani R., Manhas R. K. (2019). Biocontrol and plant growth promoting potential of phylogenetically new Streptomyces sp. MR14 of rhizospheric origin. AMB Express 9 125. 10.1186/s13568-019-0849-7 PubMed DOI PMC

Khan S., Yu H., Li Q., Gao Y., Sallam B. N., Wang H., et al. (2019). Exogenous Application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agron 9:266. 10.3390/agronomy9050266 DOI

Kim J.-M., To T. K., Matsui A., Tanoi K., Kobayashi N. I., Matsuda F., et al. (2017). Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 3 17097. 10.1038/nplants.2017.97 PubMed DOI

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. 10.1093/nar/gks808 PubMed DOI PMC

Koprna R., De Diego N., Dundálková L., Spíchal L. (2016). Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 24 484–492. 10.1016/j.bmc.2015.12.022 PubMed DOI

Kottb M., Gigolashvili T., Großkinsky D. K., Piechulla B. (2015). Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front. Microbiol. 6:995. 10.3389/fmicb.2015.00995 PubMed DOI PMC

Kröber M., Wibberg D., Grosch R., Eikmeyer F., Verwaaijen B., Chowdhury S. P., et al. (2014). Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front. Microbiol. 5:252. 10.3389/fmicb.2014.00252 PubMed DOI PMC

Lebeis S. L., Paredes S. H., Lundberg D. S., Breakfield N., Gehring J., McDonald M., et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349 860–864. 10.1126/science.aaa8764 PubMed DOI

Lee S. A., Kanth B. K., Kim H. S., Kim T.-W., Sang M. K., Song J., et al. (2019). Complete genome sequence of the plant growth-promoting endophytic bacterium Rhodanobacter glycinis T01E-68 isolated from tomato Solanum lycopersicum L. plant roots. Korean J. Microbiol. 55 422–424. 10.7845/kjm.2019.9115 DOI

Li N., Wang W., Bitas V., Subbarao K., Liu X., Kang S. (2018). Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. Mol. Plant Microbe Interact. 31 1021–1031. 10.1094/MPMI-11-17-0263-R PubMed DOI

Loiret F. G., Grimm B., Hajirezaei M. R., Kleiner D., Ortega E. (2009). Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. J. Plant Physiol. 166 1152–1161. 10.1016/j.jplph.2009.01.002 PubMed DOI

López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. (2015). Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196 109–123. 10.1016/j.scienta.2015.08.043 DOI

Lou J., Fu L., Peng Y., Zhou L. (2013). Metabolites from Alternaria fungi and their bioactivities. Molecules 18 5891–5935. 10.3390/molecules18055891 PubMed DOI PMC

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Luziatelli F., Ficca A. G., Colla G., Baldassarre Švecová E., Ruzzi M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10:60. 10.3389/fpls.2019.00060 PubMed DOI PMC

Mahnert A., Haratani M., Schmuck M., Berg G. (2018). Enriching beneficial microbial diversity of indoor plants and their surrounding built environment with biostimulants. Front. Microbiol. 9:2985. 10.3389/fmicb.2018.02985 PubMed DOI PMC

Mannaa M., Park I., Seo Y. S. (2019). Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated Burkholderia species. Int. J. Mol. Sci. 20:121. 10.3390/ijms20010121 PubMed DOI PMC

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17 10–12. 10.14806/ej.17.1.200 DOI

McLean M. (1996). The phytotoxicity of Fusarium metabolites: an update since 1989. Mycopathologia 133 163–179. 10.1007/BF02373024 PubMed DOI

Moisan K., Cordovez V., van de Zande E. M., Raaijmakers J. M., Dicke M., Lucas-Barbosa D. (2019). Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia 190 589–604. 10.1007/s00442-019-04433-w PubMed DOI PMC

Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI

Ogórek R. (2016). Enzymatic activity of potential fungal plant pathogens and the effect of their culture filtrates on seed germination and seedling growth of garden cress (Lepidium sativum L.). Eur. J. Plant Pathol. 145 469–481. 10.1007/s10658-016-0860-7 DOI

Op De Beeck M., Lievens B., Busschaert P., Declerck S., Vangronsveld J., Colpaert J. V. (2014). Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9:e97629. 10.1371/journal.pone.0097629 PubMed DOI PMC

Ortíz-Castro R., Contreras-Cornejo H. A., Macías-Rodríguez L., López-Bucio J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav. 4 701–712. 10.4161/psb.4.8.9047 PubMed DOI PMC

Palou L., Smilanick J., Crisosto C. (2009). Evaluation of food additives as alternative or complementary chemicals to conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 72 1037–1046. 10.4315/0362-028X-72.5.1037 PubMed DOI

Parveen S., Wani A. H., Bhat M. Y. (2019). Effect of culture filtrates of pathogenic and antagonistic fungi on seed germination of some economically important vegetables. Braz. J. Biol. Sci. 6 133–139. 10.21472/bjbs.061212 DOI

Pěnčík A., Rolčík J., Novák O., Magnus V., Barták P., Buchtík R., et al. (2009). Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80 651–655. 10.1016/j.talanta.2009.07.043 PubMed DOI

Perin L., Martínez-Aguilar L., Paredes-Valdez G., Baldani J. I., Estrada-de los Santos P., Reis V. M., et al. (2006). Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int. J. Syst. Evol. Microbiol. 56 1931–1937. 10.1099/ijs.0.64362-0 PubMed DOI

Philippot L., Raaijmakers J. M., Lemanceau P., Van Der Putten W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11 789–799. 10.1038/nrmicro3109 PubMed DOI

Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol. 48 53–65. 10.1016/j.nbt.2018.07.003 PubMed DOI

Prudent M., Dequiedt S., Sorin C., Girodet S., Nowak V., Duc G., et al. (2020). The diversity of soil microbial communities matters when legumes face drought. Plant Cell Environ. 43 1023–1035. 10.1111/pce.13712 PubMed DOI

Rabhi N. E. H., Silini A., Cherif-Silini H., Yahiaoui B., Lekired A., Robineau M., et al. (2018). Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J. Appl. Microbiol. 125 1836–1851. 10.1111/jam.14082 PubMed DOI

Radhakrishnan R., Kang S.-M., Baek I.-Y., Lee I.-J. (2014). Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J. Plant Interact. 9 754–762. 10.1080/17429145.2014.930524 DOI

Rahman A., Sultana R., Ferdousi Begum M., Firoz Alam M. (2012). Effect of culture filtrates of Trichoderma on seed germination and seedling growth in chili. Int. J. Biosci. 2 46–55.

Rao V. K., Girisham S., Reddy S. M. (2014). Influence of different species of Penicillium and their culture filtrates on seed germination and seedling growth of sorghum. J. Biochem. Technol. 5 832–837.

Renaut S., Masse J., Norrie J. P., Blal B., Hijri M. (2019). A commercial seaweed extract structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microb. Biotechnol. 12 1346–1358. 10.1111/1751-7915.13473 PubMed DOI PMC

Ryu C.-M., Farag M. A., Hu C.-H., Reddy M. S., Wei H.-X., Paré P. W., et al. (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100 4927–4932. 10.1073/pnas.0730845100 PubMed DOI PMC

Sánchez-López ÁM., Baslam M., De Diego N., Muñoz F. J., Bahaji A., Almagro G., et al. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ. 39 2592–2608. 10.1111/pce.12759 PubMed DOI

Sasse J., Martinoia E., Northen T. (2018). Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23 25–41. 10.1016/j.tplants.2017.09.003 PubMed DOI

Schmidt R., Etalo D. W., de Jager V., Gerards S., Zweers H., de Boer W., et al. (2016). Microbial small talk: volatiles in fungal–bacterial interactions. Front. Microbiol. 6:1495. 10.3389/fmicb.2015.01495 PubMed DOI PMC

Schulz-Bohm K., Martín-Sánchez L., Garbeva P. (2017). Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front. Microbiol. 8:2484. 10.3389/fmicb.2017.02484 PubMed DOI PMC

Spaepen S., Vanderleyden J., Remans R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31 425–448. 10.1111/j.1574-6976.2007.00072.x PubMed DOI

Sudadi S. (2012). Exogenous application of tryptophan and indole acetic acid (IAA) to induce root nodule formation and increase yield of soybean. Agric. Sci. Res. J. 2 134–139.

Sung G. H., Shrestha B., Park K. B., Han S. K., Sung J. M. (2011). Enhancing effect of Shimizuomyces paradoxus on seed germination and seedling growth of canola, plant growth of cucumber, and harvest of tomato. Mycobiology 39 7–11. 10.4489/MYCO.2011.39.1.007 PubMed DOI PMC

Talibi I., Askarne L., Boubaker H., Boudyach E. H., Msanda F., Saadi B., et al. (2012). Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop Prot. 35 41–46. 10.1016/j.cropro.2011.12.016 DOI

Tarkowski P., Vereecke D. (2014). Threats and opportunities of plant pathogenic bacteria. Biotechnol. Adv. 32 215–229. 10.1016/j.biotechadv.2013.11.001 PubMed DOI

Varma A., Savita V., Sudha, Sahay N., Butehorn B., Franken P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65 2741–2744. 10.1128/AEM.65.6.2741-2744.1999 PubMed DOI PMC

von Caemmerer S., Farquhar G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153 376–387. 10.1007/BF00384257 PubMed DOI

Wang D., Deng X., Wang B., Zhang N., Zhu C., Jiao Z., et al. (2019). Effects of foliar application of amino acid liquid fertilizers, with or without Bacillus amyloliquefaciens SQR9, on cowpea yield and leaf microbiota. PLoS One 14:e0222048. 10.1371/journal.pone.0222048 PubMed DOI PMC

Waqas M., Kim Y.-H., Khan A. L., Shahzad R., Asaf S., Hamayun M., et al. (2017). Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J. Zhejiang Univ. B 18 109–124. 10.1631/jzus.B1500262 PubMed DOI PMC

Werner S., Polle A., Brinkmann N. (2016). Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl. Microbiol. Biotechnol. 100 8651–8665. 10.1007/s00253-016-7792-1 PubMed DOI

Wu Y., He Y., Yin H., Chen W., Wang Z., Xu L., et al. (2012). Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates. Pakistan J. Biol. Sci. PJBS 15 1144–1151. 10.3923/pjbs.2012.1144.1151 PubMed DOI

Yandigeri M. S., Meena K. K., Singh D., Malviya N., Singh D. P., Solanki M. K., et al. (2012). Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul. 68 411–420. 10.1007/s10725-012-9730-2 DOI

Yu K., Pieterse C. M. J., Bakker P. A. H. M., Berendsen R. L. (2019). Beneficial microbes going underground of root immunity. Plant. Cell Environ. 42 2860–2870. 10.1111/pce.13632 PubMed DOI PMC

Zahir Z. A., Shah M. K., Naveed M., Akhter M. J. (2010). Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J. Microbiol. Biotechnol. 20 1288–1294. 10.4014/jmb.1002.02010 PubMed DOI

Zhang H., Sun Y., Xie X., Kim M. S., Dowd S. E., Paré P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J. 58 568–577. 10.1111/j.1365-313X.2009.03803.x PubMed DOI

Zhang H., Xie X., Kim M. S., Kornyeyev D. A., Holaday S., Paré P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56 264–273. 10.1111/j.1365-313X.2008.03593.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...