soil microbiota
Dotaz
Zobrazit nápovědu
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
- MeSH
- buněčná imunita * MeSH
- cytokiny metabolismus krev MeSH
- dospělí MeSH
- kůže * imunologie mikrobiologie MeSH
- leukocyty mononukleární * imunologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota imunologie MeSH
- pneumokokové infekce prevence a kontrola imunologie MeSH
- pneumokokové vakcíny * imunologie aplikace a dávkování MeSH
- půdní mikrobiologie MeSH
- střevní mikroflóra imunologie MeSH
- vakcinace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
AIM: Current attempts to modulate the human microbiota and immune responses are based on probiotics or human-derived bacterial transplants. We investigated microbial modulation by soil and plant-based material. MATERIALS & METHODS: We performed a pilot study in which healthy adults were exposed to the varied microbial community of a soil- and plant-based material. RESULTS: The method was safe and feasible; exposure was associated with an increase in gut microbial diversity. CONCLUSION: If these findings are reproduced in larger studies nature-derived microbial exposure strategies could be further developed for testing their efficacy in the treatment and prevention of immune-mediated diseases.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- gastrointestinální trakt imunologie mikrobiologie MeSH
- imunita * MeSH
- imunomodulace MeSH
- kůže imunologie mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- pilotní projekty MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rostliny mikrobiologie MeSH
- střevní mikroflóra * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
- MeSH
- fylogeneze MeSH
- Isoptera * MeSH
- metagenom MeSH
- půda MeSH
- střevní mikroflóra * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
Water shortage and low organic carbon content in soil limit soil fertility and crop productivity. The use of desalinated seawater is increasing as an alternative source of irrigation water. However, it has a high boron (B) content that could cause toxicity in the plant-soil microbial system. Here, we evaluated the responses of the soil microbiota and lemon trees to 3 irrigation B doses (0.3, 1, and 15 mg L-1) under two types of soil management (conventional, CS; and organic, OS) in a 180-days pot experiment. High B doses promoted B accumulation in soil, reaching harmful concentrations that affected soil biodiversity. Our results suggest a close interaction between B and organic labile fractions that increased B availability in soil solution. Besides, B addition to soil impacted on microbial biomass. The bacterial community showed sensitivity to the B dose. Organic amendment did not increase B soil adsorption but it favored B plant uptake. The highest B dose had a detrimental impact on plant physiology, finally resulting lethal for the plants. Our study provides a comprehensive assessment of the microbes-plant interactions in soils irrigated with water with high B content. This will be fundamental in the design of future fertirrigation strategies.
- MeSH
- biomasa MeSH
- bor MeSH
- mikrobiota * MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying mechanisms. By applying perturbation, one can generate compositional and functional shifts of complex microbial communities in a controlled way. Perturbations can reduce microbial diversity, diminish the abundance of specific microbial taxa and thereby disturb the interactions within the microbial consortia and with their eukaryotic hosts. Four different microbiome perturbation approaches, namely selective heat, specific biocides, dilution-to-extinction and genome editing are the focus of this mini-review. We also discuss the potential of perturbation approaches to reveal the tipping point at which specific soil functions are lost and to link this change to key microbial taxa involved in specific microbiome-associated phenotypes.
Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major 'eco-receptors' of nanoscale particles in the terrestrial ecosystem, soil-microbiota and plants (the soil-plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil-plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil-plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil-plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil-microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil-microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the 'soil-plant system'.
The objective of the present study was to evaluate how altitudinal gradients shape the composition of soil bacterial and fungal communities, humus forms and soil properties across six altitude levels in Hyrcanian forests. Soil microbiomes were characterized by sequencing amplicons of selected molecular markers. Soil chemistry and plant mycorrhizal type were the two dominant factors explaining variations in bacterial and fungal diversity, respectively. The lowest altitude level had more favorable conditions for the formation of mull humus and exhibited higher N and Ca contents. These conditions were also associated with a higher proportion of Betaproteobacteria, Acidimicrobia, Acidobacteria and Nitrospirae. Low soil and forest floor quality as well as lower bacterial and fungal diversity characterized higher altitude levels, along with a high proportion of shared bacterial (Thermoleophilia, Actinobacteria and Bacilli) and fungal (Eurotiomycetes and Mortierellomycota) taxa. Beech-dominated sites showed moderate soil quality and high bacterial (Alphaproteobacteria, Acidobacteria, Planctomycetes and Bacteroidetes) and fungal (Basidiomycota) diversity. Particularly, the Basidiomycota were well represented in pure beech forests at an altitude of 1500 m. In fertile and nitrogen rich soils with neutral pH, soil quality decreased along the altitudinal gradient, indicating that microbial diversity and forest floor decomposition were likely constrained by climatic conditions.
- MeSH
- Bacteria genetika MeSH
- houby genetika MeSH
- lesy MeSH
- mykobiom * MeSH
- mykorhiza * MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
The methodical developments in the fields of molecular biology and analytical chemistry significantly increased the level of detail that we achieve when exploring soils and their microbial inhabitants. High-resolution description of microbial communities, detection of taxa with minor abundances, screening of gene expression or the detailed characterization of metabolomes are nowadays technically feasible. Despite all of this, our understanding of soil is limited in many ways. The imperfect tools to describe microbial communities and limited possibilities to assign traits to community members make it difficult to link microbes to functions. Also the analysis of processes exemplified by enzyme activity measurements is still imperfect. In the future, it is important to look at soil at a finer detail to obtain a better picture on the properties of individual microbes, their in situ interactions, metabolic rates and activity at a scale relevant to individual microbes. Scaling up is needed as well to get answers at ecosystem or biome levels and to enable global modelling. The recent development of novel tools including metabolomics, identification of genomes in metagenomics sequencing datasets or collection of trait data have the potential to bring soil ecology further. It will, however, always remain a highly demanding scientific discipline.
- MeSH
- Bacteria klasifikace enzymologie genetika MeSH
- ekologie MeSH
- ekosystém MeSH
- houby klasifikace enzymologie genetika MeSH
- metabolomika MeSH
- metagenomika MeSH
- mikrobiota genetika MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Perfluorinated compounds (PFCs) contamination of soil has attracted global attention in recent years but influences of PFCs on microorganisms in the soil environment have not been fully described. In this study, the effects of perfluorooctane sulphonate (PFOS) and perfluoroctanoic acid (PFOA) on bacterial communities were determined by Illumina Miseq sequencing and Illumina Hiseq Xten. The stimulation of PFCs pollutants on soil bacterial richness and community diversity were observed. Sequencing information indicated that Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, and Gemmatimonadetes were the dominant bacterial phyla. Two genera, Bacillus and Sphingomonas, exhibited adverse responses toward PFCs pollution. Carbohydrate-active enzymes (CAZy), Kyoto Encyclopedia of Genes and Genomes (KEGG) and NCBI databases were used to elucidate the proteins and function action of soil microbial to PFCs pollution. Pathways such as Carbohydrate metabolism, Global and overview maps and Membrane transport in the soil microbes were affected by PFCs stress. CAZy analysis revealed that glycosyl transferases (GTs) in PFCs-polluted soils showed more active, while glycoside hydrolases (GHs) were inhibited severely.