Proteostatic Regulation of MEP and Shikimate Pathways by Redox-Activated Photosynthesis Signaling in Plants Exposed to Small Fungal Volatiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33747018
PubMed Central
PMC7973468
DOI
10.3389/fpls.2021.637976
Knihovny.cz E-zdroje
- Klíčová slova
- : Clp protease system, MEP pathway, PQC system, chloroplast-to-nucleus retrograde signaling, plant–microbe interaction, proteostatic regulation, redox regulation,
- Publikační typ
- časopisecké články MeSH
Microorganisms produce volatile compounds (VCs) with molecular masses of less than 300 Da that promote plant growth and photosynthesis. Recently, we have shown that small VCs of less than 45 Da other than CO2 are major determinants of plant responses to fungal volatile emissions. However, the regulatory mechanisms involved in the plants' responses to small microbial VCs remain unclear. In Arabidopsis thaliana plants exposed to small fungal VCs, growth promotion is accompanied by reduction of the thiol redox of Calvin-Benson cycle (CBC) enzymes and changes in the levels of shikimate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway-related compounds. We hypothesized that plants' responses to small microbial VCs involve post-translational modulation of enzymes of the MEP and shikimate pathways via mechanisms involving redox-activated photosynthesis signaling. To test this hypothesis, we compared the responses of wild-type (WT) plants and a cfbp1 mutant defective in a redox-regulated isoform of the CBC enzyme fructose-1,6-bisphosphatase to small VCs emitted by the fungal phytopathogen Alternaria alternata. Fungal VC-promoted growth and photosynthesis, as well as metabolic and proteomic changes, were substantially weaker in cfbp1 plants than in WT plants. In WT plants, but not in cfbp1 plants, small fungal VCs reduced the levels of both transcripts and proteins of the stromal Clp protease system and enhanced those of plastidial chaperonins and co-chaperonins. Consistently, small fungal VCs promoted the accumulation of putative Clp protease clients including MEP and shikimate pathway enzymes. clpr1-2 and clpc1 mutants with disrupted plastidial protein homeostasis responded weakly to small fungal VCs, strongly indicating that plant responses to microbial volatile emissions require a finely regulated plastidial protein quality control system. Our findings provide strong evidence that plant responses to fungal VCs involve chloroplast-to-nucleus retrograde signaling of redox-activated photosynthesis leading to proteostatic regulation of the MEP and shikimate pathways.
Centre for Research in Agricultural Genomics CSIC IRTA UAB UB Barcelona Spain
Instituto de Agrobiotecnología Mutilva Spain
Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora Campus de Teatinos Málaga Spain
Zobrazit více v PubMed
Ameztoy K., Baslam M., Sánchez-López ÁM., Muñoz F. J., Bahaji A., Almagro G., et al. (2019). Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant. Cell Environ. 42 2627–2644. 10.1111/pce.13601 PubMed DOI
Banerjee A., Wu Y., Banerjee R., Li Y., Yan H., Sharkey T. D. (2013). Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J. Biol. Chem. 288 16926–16936. 10.1074/jbc.M113.464636 PubMed DOI PMC
Carretero-Paulet L., Ahumada I., Cunillera N., Rodríguez-Concepción M., Ferrer A., Boronat A., et al. (2002). Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol. 129 1581–1591. 10.1104/pp.003798 PubMed DOI PMC
Chan K. X., Phua S. Y., Crisp P., McQuinn R., Pogson B. J. (2016). Learning the languages of the chloroplast: retrograde signaling and beyond. Annu. Rev. Plant Biol. 67 25–53. 10.1146/annurev-arplant-043015-111854 PubMed DOI
Chen M., Galvão R. M., Li M., Burger B., Bugea J., Bolado J., et al. (2010). Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141 1230–1240. 10.1016/j.cell.2010.05.007 PubMed DOI PMC
Córdoba E., Salmi M., León P. (2009). Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 60 2933–2943. 10.1093/jxb/erp190 PubMed DOI
Da Q., Wang P., Wang M., Sun T., Jin H., Liu B., et al. (2017). Thioredoxin and NADPH-dependent thioredoxin reductase c regulation of tetrapyrrole biosynthesis. Plant Physiol. 175 652–666. 10.1104/pp.16.01500 PubMed DOI PMC
Ditengou F. A., Müller A., Rosenkranz M., Felten J., Lasok H., Van Doorn M. M., et al. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6:6279. 10.1038/ncomms7279 PubMed DOI PMC
Entus R., Poling M., Herrmann K. M. (2002). Redox regulation of Arabidopsis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Plant Physiol. 129 1866–1871. 10.1104/pp.002626 PubMed DOI PMC
Estavillo G. M., Crisp P. A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., et al. (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23 3992–4012. 10.1105/tpc.111.091033 PubMed DOI PMC
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105 147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI
García-Gómez P., Almagro G., Sánchez-López ÁM., Bahaji A., Ameztoy K., Ricarte-Bermejo A., et al. (2019). Volatile compounds other than CO2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. Plant Cell Environ. 42 1729–1746. 10.1111/pce.13490 PubMed DOI
García-Gómez P., Bahaji A., Gámez-Arcas S., Muñoz F. J., Sánchez-lópez ÁM., Almagro G., et al. (2020). Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. Plant Cell Environ. 43 2551–2570. 10.1111/pce.13817 PubMed DOI
Garnica-Vergara A., Barrera-Ortiz S., Muñoz-Parra E., Raya-González J., Méndez-Bravo A., Macías-Rodríguez L., et al. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209 1496–1512. 10.1111/nph.13725 PubMed DOI
Ghirardo A., Wright L. P., Bi Z., Rosenkranz M., Pulido P., Rodríguez-Concepción M., et al. (2014). Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene. Plant Physiol. 165 37–51. 10.1104/pp.114.236018 PubMed DOI PMC
Ghirardo A., Zimmer I., Brüggemann N., Schnitzler J. P. (2010). Analysis of 1-deoxy-d-xylulose 5-phosphate synthase activity in Grey poplar leaves using isotope ratio mass spectrometry. Phytochemistry 71 918–922. 10.1016/j.phytochem.2010.02.016 PubMed DOI
Guo Y., Jud W., Ghirardo A., Antritter F., Benz J. P., Schnitzler J.-P., et al. (2020). Sniffing fungi – phenotyping of volatile chemical diversity in Trichoderma species. New Phytol. 227 244–259. 10.1111/nph.16530 PubMed DOI
Henkes S., Sonnewald U., Badur R., Flachmann R., Stitt M. (2001). A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13 535–552. 10.1105/tpc.13.3.535 PubMed DOI PMC
Hernández-Verdeja T., Strand Å. (2018). Retrograde signals navigate the path to chloroplast development. Plant Physiol 176 967–976. 10.1104/pp.17.01299 PubMed DOI PMC
Hooper C. M., Castleden I. R., Tanz S. K., Aryamanesh N., Millar A. H. (2017). SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 45 D1064–D1074. 10.1093/nar/gkw1041 PubMed DOI PMC
Kessler F., Blobel G. (1996). Interaction of the protein import and folding machineries in the chloroplast. Proc. Natl. Acad. Sci. U. S. A. 93 7684–7689. 10.1073/pnas.93.15.7684 PubMed DOI PMC
Li J., Ezquer I., Bahaji A., Montero M., Ovecka M., Baroja-Fernández E., et al. (2011). Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Mol. Plant Microbe Interact. 24 1165–1178. 10.1094/MPMI-05-11-0112 PubMed DOI
Lichtenthaler H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148 350–382. 10.1016/0076-6879(87)48036-1 DOI
Llamas E., Pulido P., Rodríguez-Concepción M. (2017). Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet. 13:e1007022. 10.1371/journal.pgen.1007022 PubMed DOI PMC
Long S. P., Bernacchi C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 54 2393–2401. 10.1093/jxb/erg262 PubMed DOI
Megger D. A., Pott L. L., Ahrens M., Padden J., Bracht T., Kuhlmann K., et al. (2014). Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. Biochim. Biophys. Acta Proteins Proteom. 1844 967–976. 10.1016/j.bbapap.2013.07.017 PubMed DOI
Melonek J., Oetke S., Krupinska K. (2016). Multifunctionality of plastid nucleoids as revealed by proteome analyses. Biochim. Biophys. Acta Proteins Proteom. 1864 12828–12831. 10.1016/j.bbapap.2016.03.009 PubMed DOI
Michelet L., Zaffagnini M., Morisse S., Sparla F., Pérez-Pérez M. E., Francia F., et al. (2013). Redox regulation of the Calvin-Benson cycle: something old, something new. Front. Plant Sci. 4:479. 10.3389/fpls.2013.00470 PubMed DOI PMC
Moreno J. C., Martínez-Jaime S., Schwartzmann J., Karcher D., Tillich M., Graf A., et al. (2018). Temporal proteomics of inducible RNAi lines of Clp protease subunits identifies putative protease substrates. Plant Physiol. 176 1485–1508. 10.1104/pp.17.01635 PubMed DOI PMC
Naranjo B., Diaz-Espejo A., Lindahl M., Cejudo F. J. (2016). Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J. Exp. Bot. 67 1951–1964. 10.1093/jxb/erw017 PubMed DOI PMC
Nishimura K., Asakura Y., Friso G., Kim J., Oh S. H., Rutschow H., et al. (2013). ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 25 2276–2301. 10.1105/tpc.113.112557 PubMed DOI PMC
Nishimura K., Kato Y., Sakamoto W. (2017). Essentials of proteolytic machineries in chloroplasts. Mol. Plant 10 4–19. 10.1016/j.molp.2016.08.005 PubMed DOI
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI
Okegawa Y., Motohashi K. (2015). Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J. 84 900–913. 10.1111/tpj.13049 PubMed DOI
Pěnčík A., Rolčík J., Novák O., Magnus V., Barták P., Buchtík R., et al. (2009). Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80 651–655. 10.1016/j.talanta.2009.07.043 PubMed DOI
Perlaza K., Toutkoushian H., Boone M., Lam M., Iwai M., Jonikas M. C., et al. (2019). The Mars1 kinase confers photoprotection through signaling in the chloroplast unfolded protein response. Elife 8:e49577. 10.7554/eLife.49577 PubMed DOI PMC
Phua S. Y., Yan D., Chan K. X., Estavillo G. M., Nambara E., Pogson B. J. (2018). The Arabidopsis SAL1-PAP pathway: a case study for integrating chloroplast retrograde, light and hormonal signaling in modulating plant growth and development? Front. Plant Sci. 9:1171. 10.3389/fpls.2018.01171 PubMed DOI PMC
Pokhilko A., Bou-Torrent J., Pulido P., Rodríguez-Concepción M., Ebenhöh O. (2015). Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol. 206 1075–1085. 10.1111/nph.13258 PubMed DOI
Pulido P., Llamas E., Llorente B., Ventura S., Wright L. P., Rodríguez-Concepción M. (2016). Specific Hsp100 chaperones determine the fate of the first enzyme of the plastidial isoprenoid pathway for either refolding or degradation by the stromal Clp protease in Arabidopsis. PLoS Genet. 12:e1005824. 10.1371/journal.pgen.1005824 PubMed DOI PMC
Pulido P., Toledo-Ortiz G., Phillips M. A., Wright L. P., Rodríguez-Concepción M. (2013). Arabidopsis J-Protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control. Plant Cell 25 4183–4194. 10.1105/tpc.113.113001 PubMed DOI PMC
Rodríguez-Concepción M., D’Andrea L., Pulido P. (2019). Control of plastidial metabolism by the Clp protease complex. J. Exp. Bot. 70 2049–2058. 10.1093/jxb/ery441 PubMed DOI
Rojas-González J. A., Soto-Súarez M., García-Díaz Á, Romero-Puertas M. C., Sandalio L. M., Mérida Á, et al. (2015). Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J. Exp. Bot. 66 2673–2689. 10.1093/jxb/erv062 PubMed DOI PMC
Rudella A., Friso G., Alonso J. M., Ecker J. R., Van Wijk K. J. (2006). Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18 1704–1721. 10.1105/tpc.106.042861 PubMed DOI PMC
Ryu C.-M., Farag M. A., Hu C.-H., Reddy M. S., Wei H.-X., Pare P. W., et al. (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci.U.S.A. 100 4927–4932. 10.1073/pnas.0730845100 PubMed DOI PMC
Sánchez-López ÁM., Bahaji A., De Diego N., Baslam M., Li J., Muñoz F. J., et al. (2016a). Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol. 172 1989–2001. 10.1104/pp.16.00945 PubMed DOI PMC
Sánchez-López ÁM., Baslam M., De Diego N., Muñoz F. J., Bahaji A., Almagro G., et al. (2016b). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell Environ. 39 2592–2608. 10.1111/pce.12759 PubMed DOI
Serrato A. J., Yubero-Serrano E. M., Sandalio L. M., Muñoz-Blanco J., Chueca A., Caballero J. L., et al. (2009). cpFBPaseII, a novel redox-independent chloroplastic isoform of fructose-1,6-bisphosphatase. Plant Cell Environ. 32 811–827. 10.1111/j.1365-3040.2009.01960.x PubMed DOI
Teow C. C., Truong V., Den McFeeters R. F., Thompson R. L., Pecota K. V., Yencho G. C. (2007). Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 103 829–838. 10.1016/j.foodchem.2006.09.033 DOI
Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., et al. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37 914–939. 10.1111/j.1365-313X.2004.02016.x PubMed DOI
Tsai Y. C. C., Mueller-Cajar O., Saschenbrecker S., Hartl F. U., Hayer-Hartl M. (2012). Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287 20471–20481. 10.1074/jbc.M112.365411 PubMed DOI PMC
Tzin V., Malitsky S., Zvi M. M., Ben Bedair M., Sumner L., Aharoni A., et al. (2012). Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 194 430–439. 10.1111/j.1469-8137.2012.04052.x PubMed DOI
Vogel M. O., Moore M., König K., Pecher P., Alsharafa K., Lee J., et al. (2014). Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. Plant Cell 26 1151–1165. 10.1105/tpc.113.121061 PubMed DOI PMC
von Caemmerer S., Farquhar G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153 376–387. 10.1007/BF00384257 PubMed DOI
Vranová E., Coman D., Gruissem W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64 665–700. 10.1146/annurev-arplant-050312-120116 PubMed DOI
Welsch R., Zhou X., Yuan H., Álvarez D., Sun T., Schlossarek D., et al. (2018). Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol. Plant 11 149–162. 10.1016/j.molp.2017.11.003 PubMed DOI
Wright L. P., Rohwer J. M., Ghirardo A., Hammerbacher A., Ortiz-Alcaide M., Raguschke B., et al. (2014). Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiol. 165 1488–1504. 10.1104/pp.114.245191 PubMed DOI PMC
Xiao Y., Savchenko T., Baidoo E. E. K., Chehab W. E., Hayden D. M., Tolstikov V., et al. (2012). Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149 1525–1535. 10.1016/j.cell.2012.04.038 PubMed DOI
Yin R., Messner B., Faus-Kessler T., Hoffmann T., Schwab W., Hajirezaei M. R., et al. (2012). Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J. Exp. Bot. 63 2465–2478. 10.1093/jxb/err416 PubMed DOI PMC
Zhang H., Xie X., Kim M. S., Kornyeyev D. A., Holaday S., Paré P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56 264–273. 10.1111/j.1365-313X.2008.03593.x PubMed DOI
Zhao Q., Liu C. (2018). Chloroplast chaperonin: an intricate protein folding machine for photosynthesis. Front. Mol. Biosci. 4:98. 10.3389/fmolb.2017.00098 PubMed DOI PMC
Zheng B., Halperin T., Hruskova-Heidingsfeldova O., Adam Z., Clarke A. K. (2002). Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol. Plant. 114 92–101. 10.1034/j.1399-3054.2002.1140113.x PubMed DOI
Zybailov B., Friso G., Kim J., Rudella A., Rodríguez V. R., Asakura Y., et al. (2009). Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol. Cell. Proteom. 8 1789–1810. 10.1074/mcp.M900104-MCP200 PubMed DOI PMC
Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction