plant–microbe interaction
Dotaz
Zobrazit nápovědu
sv.
- MeSH
- mikrobiální genetika MeSH
- molekulární biologie MeSH
- rostliny genetika MeSH
- Publikační typ
- periodika MeSH
- Konspekt
- Mikrobiologie
- NLK Obory
- mikrobiologie, lékařská mikrobiologie
- biologie
The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity. Used as biostimulants to improve plant growth, they also increase plant resistance to abiotic and biotic stresses through the generation of a primed status in the plant, leading to a better and faster response to stress. In this review, we have focused on the importance of a balanced redox status for the adequate performance of the plant and revisited the different antioxidant mechanisms supporting the biocontrol effect of beneficial microbes through the adjustment of the levels of reactive oxygen species (ROS). In addition, the different tools for the analysis of antioxidant responses and redox regulation have been evaluated. The importance of redox regulation in the activation of the immune responses through different mechanisms, such as transcriptional regulation, retrograde signaling, and post-translational modification of proteins, emerges as an important research goal for understanding the biocontrol activity of the beneficial microbes.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Zinc-solubilizing bacteria, namely Burkholderia cepacia and Acinetobacter baumannii (H1 and H3, respectively), able to grow in liquid basal medium supplemented with ZnO, Zn3 (PO4)2, and ZnSO4·7H2O (0.1%), showed plant growth promoting properties. The treatment of Acinetobacter baumannii (H3) solubilizes the ZnO (1.42 ppm), Zn3 (PO4)2 (1.15 ppm), and ZnSO4·7H2O (1.44 ppm).The maximum solubilization of ZnSO4·7H2O (1.42 ppm) was observed in Burkholderia cepacia (H1) after 15 days. Organic acids produced by the bacteria decreased the pH of the medium and helped in Zn solubilization. In pot experiment on maize, Burkholderia cepacia (H1) treatment significantly enhanced plant height and root length in the presence of ZnO (2%) added in 10 mL of inoculum in each pot. High-performance liquid chromatography (HPLC) analysis of maize root extract showed the presence of oxalic, maleic, tartaric, and fumaric acid after 60 days of the experiment. Bacterial treatments enhanced sugar and protein level in maize plants and were 55.2 and 42.55 µg/mL plant extract, respectively, under mixture of bacterial treatment. Hence, isolates H1 and H3 expressed highest potential throughout the experiments, as zinc solubilizers and plant growth-promoting strains. This study demonstrated that meticulous use of Zn-solubilizing bacterial strains could aid in enhanced plant growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition.
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Plant-rhizobia symbiosis can activate key genes involved in regulating nodulation associated with biological nitrogen fixation (BNF). Although the general molecular basis of the BNF process is frequently studied, little is known about its intraspecific variability and the characteristics of its allelic variants. This study's main goals were to describe phenotypic and genotypic variation in the context of nitrogen fixation in red clover (Trifolium pretense L.) and identify variants in BNF candidate genes associated with BNF efficiency. Acetylene reduction assay validation was the criterion for selecting individual plants with particular BNF rates. Sequences in 86 key candidate genes were obtained by hybridization-based sequence capture target enrichment of plants with alternative phenotypes for nitrogen fixation. Two genes associated with BNF were identified: ethylene response factor required for nodule differentiation (EFD) and molybdate transporter 1 (MOT1). In addition, whole-genome population genotyping by double-digest restriction-site-associated sequencing (ddRADseq) was performed, and BNF was evaluated by the natural 15N abundance method. Polymorphisms associated with BNF and reflecting phenotype variability were identified. The genetic structure of plant accessions was not linked to BNF rate of measured plants. Knowledge of the genetic variation within BNF candidate genes and the characteristics of genetic variants will be beneficial in molecular diagnostics and breeding of red clover.
- MeSH
- alely MeSH
- fenotyp MeSH
- fixace dusíku genetika MeSH
- genotyp MeSH
- interakce mikroorganismu a hostitele MeSH
- kořeny rostlin genetika mikrobiologie MeSH
- polymorfismus genetický * MeSH
- Rhizobium fyziologie MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza DNA metody MeSH
- symbióza genetika MeSH
- Trifolium genetika mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
The host specificity of the recently described ciliate species Tetrahymena utriculariae was tested in a greenhouse growth experiment, which included 14 different species of aquatic Utricularia as potential host plants. We confirmed the high specificity of the interaction between U. reflexa and T. utriculariae, the former being the only tested host species able to maintain colonization for prolonged time periods. We conclude that this plant-microbe relationship is a unique and specialized form of digestive mutualism and the plant-microbe unit a suitable experimental system for future ecophysiological studies.
MAIN CONCLUSION: The level of resistance induced in different tomato genotypes after β-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to β-cryptogein (β-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied β-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with β-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, β-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here β-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.
- MeSH
- cyklopentany metabolismus MeSH
- ethyleny metabolismus MeSH
- fungální proteiny metabolismus MeSH
- interakce hostitele a patogenu MeSH
- kyselina salicylová metabolismus MeSH
- listy rostlin metabolismus mikrobiologie MeSH
- nemoci rostlin mikrobiologie MeSH
- oxylipiny metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- Phytophthora MeSH
- Pythium MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce * MeSH
- Solanum lycopersicum metabolismus mikrobiologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Background and Aims: Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Methods: Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Key Results: Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Conclusions: Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root hair growth response is triggered in the range of hours after bacterial contact with roots and can be modulated by FLS2 signalling. Bacterial stimulation of root hair growth requires functional ethylene signalling and an efficient exocyst-dependent secretory machinery.
- MeSH
- Arabidopsis genetika růst a vývoj mikrobiologie MeSH
- genový knockout MeSH
- interakce hostitele a patogenu * MeSH
- kořeny rostlin růst a vývoj mikrobiologie MeSH
- mutace MeSH
- proteinkinasy genetika MeSH
- proteiny huseníčku genetika MeSH
- Pseudomonas syringae * MeSH
- receptory buněčného povrchu genetika MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MAIN CONCLUSION: This study showed that Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis roots changed root structure and promoted growth implying the usability of this strain as a novel tool to support sustainable crop production. Root architecture plays a crucial role for plants to ensure uptake of water, minerals and nutrients and to provide anchorage in the soil. The root is a dynamic structure with plastic growth and branching depending on the continuous integration of internal and environmental factors. The rhizosphere contains a complex microbiota, where some microbes can colonize plant roots and support growth and stress tolerance. Here, we report that the rhizobacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 stimulated the growth of Arabidopsis thaliana Col-0 by increased lateral root outgrowth and elongation and root-hair formation, although primary root elongation was inhibited. In addition, the growth of the above ground tissues was stimulated by UCMB5113. Specific hormone reporter gene lines were tested which suggested a role for at least auxin and cytokinin signaling during rhizobacterial modulation of Arabidopsis root architecture. UCMB5113 produced cytokinins and indole-3-acetic acid, and the formation of the latter was stimulated by root exudates and tryptophan. The plant growth promotion effect by UCMB5113 did not appear to depend on jasmonic acid in contrast to the disease suppression effect in plants. UCMB5113 exudates inhibited primary root growth, while a semi-purified lipopeptide fraction did not and resulted in the overall growth promotion indicating an interplay of many different bacterial compounds that affect the root growth of the host plant. This study illustrates that beneficial microbes interact with plants in root development via classic and novel signals.
- MeSH
- Arabidopsis účinky léků růst a vývoj mikrobiologie MeSH
- Bacillus amyloliquefaciens účinky léků fyziologie MeSH
- brassinosteroidy farmakologie MeSH
- cytokininy farmakologie MeSH
- gibereliny farmakologie MeSH
- interakce hostitele a patogenu * účinky léků MeSH
- kořeny rostlin anatomie a histologie účinky léků MeSH
- kyseliny indoloctové farmakologie MeSH
- lipopeptidy farmakologie MeSH
- regulátory růstu rostlin farmakologie MeSH
- semenáček účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Interaction of a plant with a fungal pathogen is an encounter with hundreds of molecules. In contrast to this, a single molecule often decides between the disease and resistance. In the present article, we describe the defense responses triggered by AvrLm1, an avirulence gene from a hemibiotrophic ascomycete, Leptosphaeria maculans, responsible for an incompatible interaction with Brassica napus. Using multiple hormone quantification and expression analysis of defense-related genes, we investigated signaling events in Rlm1 plants infected with two sister isolates of L. maculans differentiated by the presence or absence of AvrLm1. Infection with the isolate carrying AvrLm1 increased the biosynthesis of salicylic acid (SA) and induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, a feature characteristic of responses to biotrophic pathogens and resistance gene-mediated resistance. In addition to SA-signaling elements, we also observed the induction of ASC2a, HEL, and CHI genes associated with ethylene (ET) signaling. Pharmacological experiments confirmed the positive roles of SA and ET in mediating resistance to L. maculans. The unusual cooperation of SA and ET signaling might be a response to the hemibiotrophic nature of L. maculans. Our results also demonstrate the profound difference between the natural host B. napus and the model plant Arabidopsis in their response to L. maculans infection.
- MeSH
- Ascomycota metabolismus MeSH
- Brassica napus účinky léků metabolismus mikrobiologie MeSH
- časové faktory MeSH
- ethyleny metabolismus MeSH
- fungální proteiny metabolismus farmakologie MeSH
- kyselina salicylová metabolismus MeSH
- listy rostlin účinky léků metabolismus mikrobiologie MeSH
- nemoci rostlin MeSH
- regulace genové exprese u hub MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH