Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-23033S
Czech Science Foundation
PubMed
37259334
PubMed Central
PMC9962873
DOI
10.3390/ph16020186
PII: ph16020186
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, mass spectrometry, online preconcentration, stacking, tyrosine kinase inhibitors,
- Publikační typ
- časopisecké články MeSH
Capillary electrophoresis connected with tandem mass spectrometry was employed for the development of a method for determination of various tyrosine kinase inhibitors in plasma samples. A stacking online preconcentration with a 120 cm-long capillary was used for the determination of bosutinib, dasatinib, canertinib, and erlotinib at physiologically relevant concentrations. The optimization included both capillary electrophoresis and mass spectrometry steps. Under optimal conditions, 50 mM formic acid pH 2.5, an injection time of 120 s, and an optimized mass spectrometry set-up (as sheath liquid composition 75:24.9:0.1 (v/v) methanol, water, formic acid, and appropriate conditions for ion transitions), LODs in a range of 3.9-23.0 nmol·L-1 were observed. The method was validated in terms of linearity, limit of detection, limit of quantification, repeatability of migration times and peak area, and recovery using plasma as a matrix for analytes. The results showed that this method has great promise for use in many analytical tasks, e.g., therapeutic drug monitoring.
Zobrazit více v PubMed
Cismowski M.J. In: Tyrosine Kinase Inhibitors, in xPharm: The Comprehensive Pharmacology Reference. Enna S.J., Bylund D.B., editors. Elsevier; Amsterdam, The Netherlands: 2007. pp. 1–4.
Shawver L.K., Slamon D., Ullrich A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 2002;1:117–123. doi: 10.1016/S1535-6108(02)00039-9. PubMed DOI
Zámečníková A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert. Opin. Drug. Discov. 2014;9:77–92. doi: 10.1517/17460441.2014.865012. PubMed DOI
Huang L., Jiang S., Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020) J. Hematol. Oncol. 2020;13:143. doi: 10.1186/s13045-020-00977-0. PubMed DOI PMC
Ates H.C., Roberts J.A., Lipman J., Cass A.E.G., Urban G.A., Dincer C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020;38:1262–1277. doi: 10.1016/j.tibtech.2020.03.001. PubMed DOI
Garzón V., Pinacho D.G., Bustos R.-H., Garzón G., Bustamante S. Optical biosensors for therapeutic drug monitoring. Biosensors. 2019;9:132. doi: 10.3390/bios9040132. PubMed DOI PMC
Figueras A. Review of the Evidence to Include TDM in the Essential In Vitro Diagnostics List and Prioritization of Medicines to be Monitored. Fundació Institut Català de Farmacologia; Barcelona, Spain: 2019.
Kang J.-S., Lee M.-H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009;24:2687654. doi: 10.3904/kjim.2009.24.1.1. PubMed DOI PMC
Paal M., Zoller M., Schuster C., Vogeser M., Schütze G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal. 2018;152:102–110. doi: 10.1016/j.jpba.2018.01.031. PubMed DOI
Bustos R., Zapata C., Esteban E., García J.-C., Jáuregui E., Jaimes D. Label-free quantification of anti-TNF-α in patients treated with adalimumab using an optical biosensor. Sensors. 2018;18:691. doi: 10.3390/s18030691. PubMed DOI PMC
Suntornsuk L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal. Bioanal. Chem. 2010;398:29–52. doi: 10.1007/s00216-010-3741-5. PubMed DOI
Torano J.S., Ramautar R., de Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B. 2019;1118–1119:116–136. doi: 10.1016/j.jchromb.2019.04.020. PubMed DOI
Voeten R.L.C., Ventouri I.K., Haselberg R., Somsen G.W. Capillary electrophoresis: Trends and recent advances. Anal. Chem. 2018;90:1464–1481. doi: 10.1021/acs.analchem.8b00015. PubMed DOI PMC
Ranasinghe M., Quirino J.P. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr. Opin. Green Sustain. Chem. 2021;31:100515. doi: 10.1016/j.cogsc.2021.100515. DOI
Kitagawa F., Otsuka K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J. Chromatogr. A. 2014;1335:43–60. doi: 10.1016/j.chroma.2013.10.066. PubMed DOI
Grochocki W., Markuszewski M.J., Quirino J.P. Different detection and stacking techniques in capillary electrophoresis for metabolomics. Anal. Methods. 2016;8:1216–1221. doi: 10.1039/C5AY02493E. DOI
Gackowski M., Przybylska A., Kruszewski S., Koba M., Madra-Gackowska K., Bogacz A. Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules. 2021;26:4141. doi: 10.3390/molecules26144141. PubMed DOI PMC
Petr J., Jiang C.X., Ševčík J., Tesařová E., Armstrong D.W. Sterility testing by CE: A comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis. 2009;30:3870–3876. doi: 10.1002/elps.200900299. PubMed DOI PMC
Mičová K., Friedecký D., Faber E., Polýnková A., Adam T. Flow injection analysis vs. ultra high performance liquid chromatography coupled with tandem mass spectrometry for determination of imatinib in human plasma. Clin. Chim. Acta. 2010;411:1957–1962. doi: 10.1016/j.cca.2010.08.014. PubMed DOI
Friedecký D., Mičová K., Faber E., Hrdá M., Široká J., Adam T. Detailed study of imatinib metabolization using high-resolution mass spectrometry. J. Chromatogr. A. 2015;1409:173–181. doi: 10.1016/j.chroma.2015.07.033. PubMed DOI
Miura M., Takahashi N. Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods. Drug Metabol. Pharmacokin. 2016;31:12–20. doi: 10.1016/j.dmpk.2015.09.002. PubMed DOI
Pearce C.M., Resmini M. Towards point of care systems for the therapeutic drug monitoring of imatinib. Anal. Bioanal. Chem. 2020;412:5925–5933. doi: 10.1007/s00216-020-02545-4. PubMed DOI
Picard S., Titier K., Etienne G., Teilhet E., Ducint D., Bernard M.-A., Lassalle R., Marit G., Reiffers J., Begaud B., et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007;109:3496–3499. doi: 10.1182/blood-2006-07-036012. PubMed DOI
Peng B., Lloyd P., Schran H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 2005;44:879–894. doi: 10.2165/00003088-200544090-00001. PubMed DOI
Haouala A., Widmer N., Guidi M., Montemurro M., Leyvraz S., Buclin T., Eap C.B., Decosterd L.A., Csajka C. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br. J. Clin. Pharmacol. 2013;75:1007–1018. doi: 10.1111/j.1365-2125.2012.04422.x. PubMed DOI PMC
Pasquini B., Orlandini S., Furlanetto S., Gotti R., Del Bubba M., Boscaro F., Bertaccini B., Douša M., Pieraccini G. Quality by design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography—Tandem mass spectrometry method for the determination of nintedanib and its impurities. J. Chromatogr. A. 2020;1611:460615. doi: 10.1016/j.chroma.2019.460615. PubMed DOI
Matsumoto A., Shiraiwa K., Suzuki Y., Tanaka K., Kawano M., Iwasaki T., Tanaka R., Tatsuta R., Tsumura H., Itoh H. Sensitive quantification of free pazopanib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and assessment of clinical application. J. Pharm. Biomed. Anal. 2021;206:114348. doi: 10.1016/j.jpba.2021.114348. PubMed DOI
Ferrer F., Solas C., Giocanti M., Lacarelle B., Deville J.-L., Gravis G., Ciccolini J. A simple and rapid liquid chromatography—Mass spectrometry method to assay cabozantinib in plasma: Application to therapeutic drug monitoring in patients with renal cell carcinoma. J. Chromatogr. B. 2020;1138:121968. doi: 10.1016/j.jchromb.2020.121968. PubMed DOI
Ezzeldin E., Iqbal M., Herqash R.N., ElNahhas T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J. Chromatogr. B. 2020;1136:121851. doi: 10.1016/j.jchromb.2019.121851. PubMed DOI
Merienne C., Rousset M., Ducint D., Castaing N., Titier K., Molimard M., Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J. Pharm. Biomed. Anal. 2018;150:112–120. doi: 10.1016/j.jpba.2017.11.060. PubMed DOI
Koller D., Vaitsekhovich V., Mba C., Steegmann J.L., Zubiaur P., Abad-Santos F., Wojnicz A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta. 2020;208:120450. doi: 10.1016/j.talanta.2019.120450. PubMed DOI
Zhang S., Jin W., Yang Y. Simultaneous identification and determination of eleven tyrosine kinase inhibitors by supercritical fluid chromatography—Mass spectrometry. Anal. Methods. 2019;11:2211–2222. doi: 10.1039/C9AY00332K. DOI
Horská J., Ginterová P., Ševčík J., Petr J. CZE separation of new drugs for treatment of leukemia. Chromatographia. 2014;77:1477–1482. doi: 10.1007/s10337-014-2730-9. DOI
Rodriguez J., Castaneda G., Munoz L., Lopez S. Development and validation of a non-aqueous capillary electrophoresis method for the determination of imatinib, codeine and morphine in human urine. Anal. Methods. 2014;6:3842–3848. doi: 10.1039/c4ay00113c. DOI
Gonzales A.G., Taraba T., Hraníček J., Kozlík P., Coufal P. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis. J. Sep. Sci. 2017;40:400–406. doi: 10.1002/jssc.201600950. PubMed DOI
Rodriguez J., Castaneda G., Munoz L., Villa J.C. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry. Electrophoresis. 2015;36:1580–1587. doi: 10.1002/elps.201400588. PubMed DOI
Forough M., Farhadi K., Eyshi A., Molaei R., Khalili H., Kouzegaran V.J., Matin A.A. Rapid ionic liquid-supported nano-hybrid composite reinforced hollow-fibed electromembrane extraction followed by field-amplified sample injection-capillary electrophoresis: An effective approach for extraction and quantification of imatinib mesylate in human plasma. J. Chromatogr. A. 2017;1516:21–34. PubMed
Sanz I.L., Bernardo F.J.G., Penalvo G.C., Flores J.R. Determination of dabrafenib and trametinib in serum by dispersive solid phase extraction with multi-walled carbon nanotubes and capillary electrophoresis coupled to ultraviolet/visible detection. Microchem. J. 2021;165:160180.
Ahmed O.S., Ladner Y., Montels J., Philibert L., Perrin C. Coupling of salting-our assisted liquid-liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J. Chromatogr. A. 2018;1579:121–128. doi: 10.1016/j.chroma.2018.10.017. PubMed DOI
Ahmed O.S., Ladner Y., Xia J., Montels J., Philibert L., Perrin C. A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta. 2020;208:120391. doi: 10.1016/j.talanta.2019.120391. PubMed DOI
Ahmed O.S., Ladner Y., Bousquet C., Montels J., Dubský P., Philibert L., Perrin C. Direct salting-out assisted liquid-liquid extraction (SALLE) from human blood: Application for the analysis of tyrosine kinase inhibitors. Microchem. J. 2020;155:104791. doi: 10.1016/j.microc.2020.104791. DOI
Zhao T., Wang L., Chen D.D.Y. Quantification of imatinib and related compounds using capillary electrophoresis—Tandem mass spectrometry with field-amplified sample stacking. Electrophoresis. 2020;41:1843–1850. doi: 10.1002/elps.202000118. PubMed DOI
Niessen W.M.A., Rosing H., Beijnen J.H. Interpretation of MS-MS spectra of small-molecule signal transduction inhibitors using accurate-m/z data and m/z-shifts with stable-isotope-labeled analogues and metabolites. Int. J. Mass. Spectrom. 2021;464:116559. doi: 10.1016/j.ijms.2021.116559. DOI
Beckers J.L., Boček P. Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations. Electrophoresis. 2000;21:2747–2767. doi: 10.1002/1522-2683(20000801)21:14<2747::AID-ELPS2747>3.0.CO;2-Z. PubMed DOI
Simpson S.L., Quirino J.P., Terabe S. On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications. J. Chromatogr. A. 2008;1184:504–541. doi: 10.1016/j.chroma.2007.11.001. PubMed DOI
Kehl N., Schlichtig K., Dürr P., Bellut L., Dörje F., Fietkau R., Pavel M., Mackensen A., Wullich B., Maas R., et al. An easily expandable multi-drug LC-MS assay for the simultaneous quantification of 57 oral antitumor drugs in human plasma. Cancers. 2021;13:6329. doi: 10.3390/cancers13246329. PubMed DOI PMC
Miura M. Therapeutic drug monitoring of imatinib, nilotinib, and patients with chronic myeloid leukemia. Biol. Pharm. Bull. 2015;38:645–654. doi: 10.1248/bpb.b15-00103. PubMed DOI
García-Ferrer M., Wojnicz A., Mejía G., Koller D., Zubiaur P., Abad-Santos F. Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: A systematic review and meta-analysis. Clin. Ther. 2019;41:2258–2570.e7. doi: 10.1016/j.clinthera.2019.10.009. PubMed DOI
[(accessed on 15 March 2021)]. Available online: https://web.natur.cuni.cz/gas/peakmaster.html.