Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration

. 2023 Jan 25 ; 16 (2) : . [epub] 20230125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37259334

Grantová podpora
19-23033S Czech Science Foundation

Capillary electrophoresis connected with tandem mass spectrometry was employed for the development of a method for determination of various tyrosine kinase inhibitors in plasma samples. A stacking online preconcentration with a 120 cm-long capillary was used for the determination of bosutinib, dasatinib, canertinib, and erlotinib at physiologically relevant concentrations. The optimization included both capillary electrophoresis and mass spectrometry steps. Under optimal conditions, 50 mM formic acid pH 2.5, an injection time of 120 s, and an optimized mass spectrometry set-up (as sheath liquid composition 75:24.9:0.1 (v/v) methanol, water, formic acid, and appropriate conditions for ion transitions), LODs in a range of 3.9-23.0 nmol·L-1 were observed. The method was validated in terms of linearity, limit of detection, limit of quantification, repeatability of migration times and peak area, and recovery using plasma as a matrix for analytes. The results showed that this method has great promise for use in many analytical tasks, e.g., therapeutic drug monitoring.

Zobrazit více v PubMed

Cismowski M.J. In: Tyrosine Kinase Inhibitors, in xPharm: The Comprehensive Pharmacology Reference. Enna S.J., Bylund D.B., editors. Elsevier; Amsterdam, The Netherlands: 2007. pp. 1–4.

Shawver L.K., Slamon D., Ullrich A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 2002;1:117–123. doi: 10.1016/S1535-6108(02)00039-9. PubMed DOI

Zámečníková A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert. Opin. Drug. Discov. 2014;9:77–92. doi: 10.1517/17460441.2014.865012. PubMed DOI

Huang L., Jiang S., Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020) J. Hematol. Oncol. 2020;13:143. doi: 10.1186/s13045-020-00977-0. PubMed DOI PMC

Ates H.C., Roberts J.A., Lipman J., Cass A.E.G., Urban G.A., Dincer C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020;38:1262–1277. doi: 10.1016/j.tibtech.2020.03.001. PubMed DOI

Garzón V., Pinacho D.G., Bustos R.-H., Garzón G., Bustamante S. Optical biosensors for therapeutic drug monitoring. Biosensors. 2019;9:132. doi: 10.3390/bios9040132. PubMed DOI PMC

Figueras A. Review of the Evidence to Include TDM in the Essential In Vitro Diagnostics List and Prioritization of Medicines to be Monitored. Fundació Institut Català de Farmacologia; Barcelona, Spain: 2019.

Kang J.-S., Lee M.-H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009;24:2687654. doi: 10.3904/kjim.2009.24.1.1. PubMed DOI PMC

Paal M., Zoller M., Schuster C., Vogeser M., Schütze G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal. 2018;152:102–110. doi: 10.1016/j.jpba.2018.01.031. PubMed DOI

Bustos R., Zapata C., Esteban E., García J.-C., Jáuregui E., Jaimes D. Label-free quantification of anti-TNF-α in patients treated with adalimumab using an optical biosensor. Sensors. 2018;18:691. doi: 10.3390/s18030691. PubMed DOI PMC

Suntornsuk L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal. Bioanal. Chem. 2010;398:29–52. doi: 10.1007/s00216-010-3741-5. PubMed DOI

Torano J.S., Ramautar R., de Jong G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B. 2019;1118–1119:116–136. doi: 10.1016/j.jchromb.2019.04.020. PubMed DOI

Voeten R.L.C., Ventouri I.K., Haselberg R., Somsen G.W. Capillary electrophoresis: Trends and recent advances. Anal. Chem. 2018;90:1464–1481. doi: 10.1021/acs.analchem.8b00015. PubMed DOI PMC

Ranasinghe M., Quirino J.P. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr. Opin. Green Sustain. Chem. 2021;31:100515. doi: 10.1016/j.cogsc.2021.100515. DOI

Kitagawa F., Otsuka K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J. Chromatogr. A. 2014;1335:43–60. doi: 10.1016/j.chroma.2013.10.066. PubMed DOI

Grochocki W., Markuszewski M.J., Quirino J.P. Different detection and stacking techniques in capillary electrophoresis for metabolomics. Anal. Methods. 2016;8:1216–1221. doi: 10.1039/C5AY02493E. DOI

Gackowski M., Przybylska A., Kruszewski S., Koba M., Madra-Gackowska K., Bogacz A. Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules. 2021;26:4141. doi: 10.3390/molecules26144141. PubMed DOI PMC

Petr J., Jiang C.X., Ševčík J., Tesařová E., Armstrong D.W. Sterility testing by CE: A comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis. 2009;30:3870–3876. doi: 10.1002/elps.200900299. PubMed DOI PMC

Mičová K., Friedecký D., Faber E., Polýnková A., Adam T. Flow injection analysis vs. ultra high performance liquid chromatography coupled with tandem mass spectrometry for determination of imatinib in human plasma. Clin. Chim. Acta. 2010;411:1957–1962. doi: 10.1016/j.cca.2010.08.014. PubMed DOI

Friedecký D., Mičová K., Faber E., Hrdá M., Široká J., Adam T. Detailed study of imatinib metabolization using high-resolution mass spectrometry. J. Chromatogr. A. 2015;1409:173–181. doi: 10.1016/j.chroma.2015.07.033. PubMed DOI

Miura M., Takahashi N. Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods. Drug Metabol. Pharmacokin. 2016;31:12–20. doi: 10.1016/j.dmpk.2015.09.002. PubMed DOI

Pearce C.M., Resmini M. Towards point of care systems for the therapeutic drug monitoring of imatinib. Anal. Bioanal. Chem. 2020;412:5925–5933. doi: 10.1007/s00216-020-02545-4. PubMed DOI

Picard S., Titier K., Etienne G., Teilhet E., Ducint D., Bernard M.-A., Lassalle R., Marit G., Reiffers J., Begaud B., et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007;109:3496–3499. doi: 10.1182/blood-2006-07-036012. PubMed DOI

Peng B., Lloyd P., Schran H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 2005;44:879–894. doi: 10.2165/00003088-200544090-00001. PubMed DOI

Haouala A., Widmer N., Guidi M., Montemurro M., Leyvraz S., Buclin T., Eap C.B., Decosterd L.A., Csajka C. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br. J. Clin. Pharmacol. 2013;75:1007–1018. doi: 10.1111/j.1365-2125.2012.04422.x. PubMed DOI PMC

Pasquini B., Orlandini S., Furlanetto S., Gotti R., Del Bubba M., Boscaro F., Bertaccini B., Douša M., Pieraccini G. Quality by design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography—Tandem mass spectrometry method for the determination of nintedanib and its impurities. J. Chromatogr. A. 2020;1611:460615. doi: 10.1016/j.chroma.2019.460615. PubMed DOI

Matsumoto A., Shiraiwa K., Suzuki Y., Tanaka K., Kawano M., Iwasaki T., Tanaka R., Tatsuta R., Tsumura H., Itoh H. Sensitive quantification of free pazopanib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and assessment of clinical application. J. Pharm. Biomed. Anal. 2021;206:114348. doi: 10.1016/j.jpba.2021.114348. PubMed DOI

Ferrer F., Solas C., Giocanti M., Lacarelle B., Deville J.-L., Gravis G., Ciccolini J. A simple and rapid liquid chromatography—Mass spectrometry method to assay cabozantinib in plasma: Application to therapeutic drug monitoring in patients with renal cell carcinoma. J. Chromatogr. B. 2020;1138:121968. doi: 10.1016/j.jchromb.2020.121968. PubMed DOI

Ezzeldin E., Iqbal M., Herqash R.N., ElNahhas T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J. Chromatogr. B. 2020;1136:121851. doi: 10.1016/j.jchromb.2019.121851. PubMed DOI

Merienne C., Rousset M., Ducint D., Castaing N., Titier K., Molimard M., Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J. Pharm. Biomed. Anal. 2018;150:112–120. doi: 10.1016/j.jpba.2017.11.060. PubMed DOI

Koller D., Vaitsekhovich V., Mba C., Steegmann J.L., Zubiaur P., Abad-Santos F., Wojnicz A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta. 2020;208:120450. doi: 10.1016/j.talanta.2019.120450. PubMed DOI

Zhang S., Jin W., Yang Y. Simultaneous identification and determination of eleven tyrosine kinase inhibitors by supercritical fluid chromatography—Mass spectrometry. Anal. Methods. 2019;11:2211–2222. doi: 10.1039/C9AY00332K. DOI

Horská J., Ginterová P., Ševčík J., Petr J. CZE separation of new drugs for treatment of leukemia. Chromatographia. 2014;77:1477–1482. doi: 10.1007/s10337-014-2730-9. DOI

Rodriguez J., Castaneda G., Munoz L., Lopez S. Development and validation of a non-aqueous capillary electrophoresis method for the determination of imatinib, codeine and morphine in human urine. Anal. Methods. 2014;6:3842–3848. doi: 10.1039/c4ay00113c. DOI

Gonzales A.G., Taraba T., Hraníček J., Kozlík P., Coufal P. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis. J. Sep. Sci. 2017;40:400–406. doi: 10.1002/jssc.201600950. PubMed DOI

Rodriguez J., Castaneda G., Munoz L., Villa J.C. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry. Electrophoresis. 2015;36:1580–1587. doi: 10.1002/elps.201400588. PubMed DOI

Forough M., Farhadi K., Eyshi A., Molaei R., Khalili H., Kouzegaran V.J., Matin A.A. Rapid ionic liquid-supported nano-hybrid composite reinforced hollow-fibed electromembrane extraction followed by field-amplified sample injection-capillary electrophoresis: An effective approach for extraction and quantification of imatinib mesylate in human plasma. J. Chromatogr. A. 2017;1516:21–34. PubMed

Sanz I.L., Bernardo F.J.G., Penalvo G.C., Flores J.R. Determination of dabrafenib and trametinib in serum by dispersive solid phase extraction with multi-walled carbon nanotubes and capillary electrophoresis coupled to ultraviolet/visible detection. Microchem. J. 2021;165:160180.

Ahmed O.S., Ladner Y., Montels J., Philibert L., Perrin C. Coupling of salting-our assisted liquid-liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J. Chromatogr. A. 2018;1579:121–128. doi: 10.1016/j.chroma.2018.10.017. PubMed DOI

Ahmed O.S., Ladner Y., Xia J., Montels J., Philibert L., Perrin C. A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta. 2020;208:120391. doi: 10.1016/j.talanta.2019.120391. PubMed DOI

Ahmed O.S., Ladner Y., Bousquet C., Montels J., Dubský P., Philibert L., Perrin C. Direct salting-out assisted liquid-liquid extraction (SALLE) from human blood: Application for the analysis of tyrosine kinase inhibitors. Microchem. J. 2020;155:104791. doi: 10.1016/j.microc.2020.104791. DOI

Zhao T., Wang L., Chen D.D.Y. Quantification of imatinib and related compounds using capillary electrophoresis—Tandem mass spectrometry with field-amplified sample stacking. Electrophoresis. 2020;41:1843–1850. doi: 10.1002/elps.202000118. PubMed DOI

Niessen W.M.A., Rosing H., Beijnen J.H. Interpretation of MS-MS spectra of small-molecule signal transduction inhibitors using accurate-m/z data and m/z-shifts with stable-isotope-labeled analogues and metabolites. Int. J. Mass. Spectrom. 2021;464:116559. doi: 10.1016/j.ijms.2021.116559. DOI

Beckers J.L., Boček P. Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations. Electrophoresis. 2000;21:2747–2767. doi: 10.1002/1522-2683(20000801)21:14<2747::AID-ELPS2747>3.0.CO;2-Z. PubMed DOI

Simpson S.L., Quirino J.P., Terabe S. On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications. J. Chromatogr. A. 2008;1184:504–541. doi: 10.1016/j.chroma.2007.11.001. PubMed DOI

Kehl N., Schlichtig K., Dürr P., Bellut L., Dörje F., Fietkau R., Pavel M., Mackensen A., Wullich B., Maas R., et al. An easily expandable multi-drug LC-MS assay for the simultaneous quantification of 57 oral antitumor drugs in human plasma. Cancers. 2021;13:6329. doi: 10.3390/cancers13246329. PubMed DOI PMC

Miura M. Therapeutic drug monitoring of imatinib, nilotinib, and patients with chronic myeloid leukemia. Biol. Pharm. Bull. 2015;38:645–654. doi: 10.1248/bpb.b15-00103. PubMed DOI

García-Ferrer M., Wojnicz A., Mejía G., Koller D., Zubiaur P., Abad-Santos F. Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: A systematic review and meta-analysis. Clin. Ther. 2019;41:2258–2570.e7. doi: 10.1016/j.clinthera.2019.10.009. PubMed DOI

[(accessed on 15 March 2021)]. Available online: https://web.natur.cuni.cz/gas/peakmaster.html.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace