Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32515071
DOI
10.1111/pce.13817
Knihovny.cz E-zdroje
- Klíčová slova
- biostimulant, cyanide scavenging, growth promotion, hormone signalling, microbial volatile compounds, photosynthesis, plant-microbe interaction, proteomics,
- MeSH
- Arabidopsis metabolismus mikrobiologie MeSH
- buněčná stěna metabolismus MeSH
- fotosyntéza MeSH
- kořeny rostlin anatomie a histologie účinky léků metabolismus mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- nemoci rostlin mikrobiologie MeSH
- Penicillium metabolismus fyziologie MeSH
- proteiny huseníčku metabolismus fyziologie MeSH
- proteom účinky léků metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- těkavé organické sloučeniny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku MeSH
- proteom MeSH
- těkavé organické sloučeniny MeSH
Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.
Instituto de Agrobiotecnología Mutilva 31192 Spain
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben 06466 Germany
Zobrazit více v PubMed
Ameztoy, K., Baslam, M., Sánchez-López, Á. M., Muñoz, F. J., Bahaji, A., Almagro, G., … Pozueta-Romero, J. (2019). Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant, Cell & Environment, 42, 2627-2644. https://doi.org/10.1111/pce.13601
Arenas-Alfonseca, L., Gotor, C., Romero, L. C., & García, I. (2018). β-Cyanoalanine synthase action in root hair elongation is exerted at early steps of the root hair elongation pathway and is independent of direct cyanide inactivation of NADPH oxidase. Plant and Cell Physiology, 59(5), 1072-1083.
Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., & Weisskopf, L. (2014). The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 80(5), 758-771.
Barry, C. S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A. J., & Grierson, D. (1996). Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant Journal, 9(4), 525-535.
Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Journal of Biological Chemistry, 282(2), 1183-1192.
Bitas, V., McCartney, N., Li, N., Demers, J., Kim, J. E., Kim, H. S., … Kang, S. (2015). Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Frontiers in Microbiology, 6, 1248.
Bodini, S. F., Cicalini, A. R., & Santori, F. (2011). Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresource Technology, 102(6), 4383-4389.
Bouguyon, E., Perrine-Walker, F., Pervent, M., Rochette, J., Cuesta, C., Benkova, E., … Nacry, P. (2016). Nitrate controls root development through post-transcriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology, 172(2), 1237-1248.
Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G., López-Bucio, J., & Partida-Martínez, L. P. (2019). Smells from the desert: Microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell and Environment, 42(4), 1368-1380.
Cao, Z. Y., Xuan, W., Liu, Z. Y., Li, X. N., Zhao, N., Xu, P., … Shen, W. B. (2007). Carbon monoxide promotes lateral root formation in rapeseed. Journal of Integrative Plant Biology, 49(7), 1070-1079.
Casimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R., … Bennett, M. (2001). Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell, 13(4), 843-852.
Chen, J., Wu, F. H., Wang, W. H., Zheng, C. J., Lin, G. H., Dong, X. J., … Zheng, H. L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62(13), 4481-4493.
Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., … Kim, Y. C. (2008). 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8), 1067-1075.
Contreras-Cornejo, H. A., López-Bucio, J. S., Méndez-Bravo, A., Macías-Rodríguez, L., Ramos-Vega, M., Guevara-García, Á. A., & López-Bucio, J. (2015). Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Molecular Plant-Microbe Interactions, 28(6), 701-710.
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149(3), 1579-1592.
Cordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., … Raaijmakers, J. M. (2017). Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Frontiers in Plant Science, 8, 1262. https://doi.org/10.3389/fpls.2017.01262
Cordovez, V., Schop, S., Hordijk, K., de Boulois, H. D., Coppens, F., Hanssen, I., … Carrióna, V. J. (2018). Priming of plant growth promotion by volatiles of rootassociated Microbacterium spp. Applied and Environmental Microbiology, 84, 22. https://doi.org/10.1128/AEM.01865-18
Correa-Aragunde, N., Graziano, M., & Lamattina, L. (2004). Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 218(6), 900-905.
Costa, A., Luoni, L., Marrano, C. A., Hashimoto, K., Köster, P., Giacometti, S., … Bonza, M. C. (2017). Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. Journal of Experimental Botany, 68(12), 3215-3230.
Creus, C. M., Graziano, M., Casanovas, E. M., Pereyra, M. A., Simontacchi, M., Puntarulo, S., … Lamattina, L. (2005). Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta, 221(2), 297-303.
Cross, A. R., & Jones, O. T. G. (1986). The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochemical Journal, 237(1), 111-116.
D'Agostino, I. B., Deruère, J., & Kieber, J. J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiology, 124(4), 1706-1717.
De-la-Peña, C., & Loyola-Vargas, V. M. (2014). Biotic interactions in the rhizosphere: A diverse cooperative enterprise for plant productivity. Plant Physiology, 166(2), 701-709.
Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., … Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6, 6279. https://doi.org/10.1038/ncomms7279
Dooley, F. D., Nair, S. P., & Ward, P. D. (2013). Increased growth and germination success in plants following hydrogen sulfide administration. PLoS ONE, 8, e62048. https://doi.org/10.1371/journal.pone.0062048
Dubiella, U., Seybold, H., Durian, G., Komander, E., Lassig, R., Witte, C.-P., … Romeis, T. (2013). Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences, 110(21), 8744-8749.
Eggert, K., & Von Wirén, N. (2013). Dynamics and partitioning of the ionome in seeds and germinating seedlings of winter oilseed rape. Metallomics, 5(9), 1316-1325.
Fatland, B. L., Nikolau, B. J., & Wurtele, E. S. (2005). Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. The Plant Cell, 17(1), 182-203.
Fischer, U., Ikeda, Y., Ljung, K., Serralbo, O., Singh, M., Heidstra, R., … Grebe, M. (2006). Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Current Biology, 16(21), 2143-2149.
Flaishman, M. A., Eyal, Z., Zilberstein, A., Voisard, C., & Haas, D. (1996). Suppression of septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Peudomonas putida. Molecular Plant-Microbe Interactions, 9(7), 642-645.
Flexas, J., Díaz-Espejo, A., Conesa, M. A., Coopman, R. E., Douthe, C., Gago, J., … Niinemets, Ü. (2016). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell and Environment., 39(5), 965-982.
Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., … Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446.
Gansel, X., Muños, S., Tillard, P., & Gojon, A. (2001). Differential regulation of the NO3− and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: Relation with long-distance and local controls by N status of the plant. Plant Journal, 26(2), 143-155.
García, I., Castellano, J. M., Vioque, B., Solano, R., Gotor, C., & Romero, L. C. (2010). Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. The Plant Cell, 22(10), 3268-3279.
García-Gómez, P., Almagro, G., Sánchez-López, Á. M., Bahaji, A., Ameztoy, K., Ricarte-Bermejo, A., … Pozueta-Romero, J. (2019). Volatile compounds other than CO2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. Plant Cell and Environment, 42(5), 1729-1746.
Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-González, J., Méndez-Bravo, A., Macías-Rodríguez, L., … López-Bucio, J. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496-1512.
Ghaffari, M. R., Shahinnia, F., Usadel, B., Junker, B., Schreiber, F., Sreenivasulu, N., & Hajirezaei, M. R. (2016). The metabolic signature of biomass formation in barley. Plant and Cell Physiology, 57(9), 1943-1960.
Gharaei-Fathabad, E., Tajick-Ghanbary, M. A., & Shahrokhi, N. (2014). Antimicrobial properties of Penicillium species isolated from agricultural soils of northern Iran. Research Journal of Toxins, 6(1), 1-7.
Guerra, D., Crosatti, C., Khoshro, H. H., Mastrangelo, A. M., Mica, E., & Mazzucotelli, E. (2015). Post-transcriptional and post-translational regulations of drought and heat response in plants: A spider's web of mechanisms. Frontiers in Plant Science, 6, 57. https://doi.org/10.3389/fpls.2015.00057
Guo, K., Kong, W. W., & Yang, Z. M. (2009). Carbon monoxide promotes root hair development in tomato. Plant, Cell and Environment, 32(8), 1033-1045.
Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., Reyes de La Cruz, H., & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51(1), 75-83.
Hua, J., & Meyerowitz, E. M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell, 94(2), 261-271.
Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907.
Kiba, T., Takebayashi, Y., Kojima, M., & Sakakibara, H. (2019). Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2. Scientific Reports, 9(1), 77. https://doi.org/10.1038/s41598-019-44185-4
Kłapeć, T., Cholewa, G., Cholewa, A., Dutkiewicz, J., & Wójcik-Fatla, A. (2018). Fungal diversity of root vegetables and soil rhizosphere collected from organic and conventional farms in eastern Poland. Annals of Agricultural and Environmental Medicine, 25(2), 374-381.
Lan, P., Li, W., & Schmidt, W. (2012). Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Molecular & Cellular Proteomics, 11(11), 1156-1166.
Li, H., Hu, B., & Chu, C. (2017). Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. Journal of Experimental Botany, 68(10), 2477-2488.
Li, N., Wang, W., Bitas, V., Subbarao, K., Liu, X., & Kang, S. (2018). Volatile compounds emitted by diverse Verticillium species enhance plant growth by manipulating auxin signaling. Molecular Plant-Microbe Interactions, 31(10), 1021-1031.
Lin, Y., Zhang, W., Qi, F., Cui, W., Xie, Y., & Shen, W. (2014). Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. Journal of Plant Physiology, 171(2), 1-8.
Liu, J., Moore, S., Chen, C., & Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: From experiments to systems modeling, and back again. Molecular Plant, 10(12), 1480-1496.
Loiret, F. G., Grimm, B., Hajirezaei, M. R., Kleiner, D., & Ortega, E. (2009). Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. Journal of Plant Physiology, 166(11), 1152-1161.
López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., & Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2), 207-212.
López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6(3), 280-287.
Luschnig, C., Gaxiola, R. A., Grisafi, P., & Fink, G. R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes and Development, 12(14), 2175-2187.
Ma, F., Wang, L., Li, J., Samma, M. K., Xie, Y., Wang, R., … Shen, W. (2014). Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Molecular Biology, 85(1-2), 49-61.
Malamy, J. E. (2005). Intrinsic and environmental responses pathways that regulate root system architecture. Plant, Cell and Environment, 28, 66-77.
Mangano, S., Denita-Juarez, S. P., Choi, H.-S., Marzol, E., Hwang, Y., Ranocha, P., … Estevez, J. M. (2017). Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences, 114(20), 5289-5294.
Martínez-Medina, A., Van Wees, S. C. M., & Pieterse, C. M. J. (2017). Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic aciddependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell and Environment, 40(11), 2691-2705.
Mei, Y., Chen, H., Shen, W., Shen, W., & Huang, L. (2017). Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biology, 17(1), 1-12.
Moisan, K., Cordovez, V., van de Zande, E. M., Raaijmakers, J. M., Dicke, M., & Lucas-Barbosa, D. (2019). Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 190(3), 589-604.
Molina-Favero, C., Creus, C. M., Simontacchi, M., Puntarulo, S., & Lamattina, L. (2008). Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 21(7), 1001-1009.
Nandi, R., & Sengupta, S. (1998). Microbial production of hydrogen: An overview. Critical Reviews in Microbiology, 24(1), 61-84.
Nascimento, F. X., Rossi, M. J., & Glick, B. R. (2018). Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions. Frontiers in Plant Science, 9, 114. https://doi.org/10.3389/fpls.2018.00114
Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126(3), 467-475.
Nguyen, H. M., Sako, K., Matsui, A., Suzuki, Y., Mostofa, M. G., Van Ha, C., … Seki, M. (2017). Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Frontiers in Plant Science, 8, 1001. https://doi.org/10.3389/fpls.2017.01001
Novák, O., Hauserová, E., Amakorová, P., Doležal, K., & Strnad, M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69(11), 2214-2224.
O'Leary, B., Preston, G. M., & Sweetlove, L. J. (2014). Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Molecular Plant, 7(1), 231-243.
Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223(5), 965-974.
Péret, B., Li, G., Zhao, J., Band, L. R., Voß, U., Postaire, O., … Bennett, M. J. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology, 14(10), 991-998.
Piotrowski, M., Schönfelder, S., & Weiler, E. W. (2001). The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. Journal of Biological Chemistry, 276(4), 2616-2621.
Pitts, R. J., Cernac, A., & Estelle, M. (1998). Auxin and ethylene promote root hair elongation in Arabidopsis. The Plant Journal, 16(5), 553-560.
Reinhardt, H., Hachez, C., Bienert, M. D., Beebo, A., Swarup, K., Voß, U., … Chaumont, F. (2016). Tonoplast aquaporins facilitate lateral root emergence. Plant Physiology, 170(3), 1640-1654.
Riefler, M., Novak, O., Strnad, M., & Schmu, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18(1), 40-54.
Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., Maurel, C., & Verdoucq, L. (2017). Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proceedings of the National Academy of Sciences, 114(34), 9200-9205.
Rogers, E. E., Eide, D. J., & Guerinot, M. L. (2000). Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences, 97(22), 12356-12360.
Růžička, K., Ljung, K., Vanneste, S., Podhorská, R., Beeckman, T., Friml, J., & Benková, E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell, 19(7), 2197-2212.
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932.
Saini, S., Sharma, I., Kaur, N., & Pati, P. K. (2013). Auxin: A master regulator in plant root development. Plant Cell Reports, 32(6), 741-757.
Sánchez-López, Á. M., Bahaji, A., De Diego, N., Baslam, M., Li, J., Muñoz, F. J., … Pozueta-Romero, J. (2016). Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiology, 172(3), 1989-2001.
Sánchez-López, Á. M., Baslam, M., De Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., … Pozueta-Romero, J. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant Cell and Environment, 39(12), 2592-2608.
Séguéla, M., Briat, J.-F., Vert, G., & Curie, C. (2008). Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. The Plant Journal, 55(2), 289-300.
Sergeeva, L. I., Keurentjes, J. J. B., Bentsink, L., Vonk, J., van der Plas, L. H. W., Koornneef, M., & Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2994-2999.
Shatalin, K., Shatalina, E., Mironov, A., & Nudler, E. (2011). H2S: A universal defense against antibiotics in bacteria. Science, 334(6058), 986-990.
Splivallo, R., Fischer, U., Göbel, C., Feussner, I., & Karlovsky, P. (2009). Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiology, 150(4), 2018-2029.
Stepanova, A. N., Hoyt, J. M., Hamilton, A. A., & Alonso, J. M. (2005). A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. The Plant Cell, 17(8), 2230-2242.
Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G. T. S., Sandberg, G., … Bennett, M. J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell, 19(7), 2186-2196.
Takahashi, M., Furuhashi, T., Ishikawa, N., Horiguchi, G., Sakamoto, A., Tsukaya, H., & Morikawa, H. (2014). Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytologist, 201(4), 1304-1315.
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37(6), 914-939.
Tsukagoshi, H., Busch, W., & Benfey, P. N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 143(4), 606-616.
Ulmasov, T., Murfett, J., Hagen, G., & Guilfoyle, T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell, 9(11), 1963-1971.
van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends in Plant Science, 21(3), 256-265.
van der Weele, C. M., Spollen, W. G., Sharp, R. E., & Baskin, T. I. (2000). Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. Journal of Experimental Botany, 51(350), 1555-1562.
Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589-599.
Vert, G. A., Briat, J. F., & Curie, C. (2003). Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiology, 132(2), 796-804.
Voisard, C., Keel, C., Haas, D., & Dèfago, G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal, 8(2), 351-358.
von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4), 376-387.
Yang, D.-L., Shi, Z., Bao, Y., Yan, J., Yang, Z., Yu, H., … Hua, J. (2017). Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiology, 175(1), 424-437.
Zamioudis, C., Korteland, J., Van Pelt, J. A., Van Hamersveld, M., Dombrowski, N., Bai, Y., … Pieterse, C. M. J. (2015). Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant Journal, 84(2), 309-322.
Žd'árská, M., Zatloukalová, P., Benítez, M., Šedo, O., Potěšil, D., Novák, O., … Hejátko, J. (2013). Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiology, 161(2), 918-930.
Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., … Paré, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226(4), 839-851.
Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M., … Paré, P. W. (2010). Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 23(8), 1097-1104.
Zhang, H., Sun, Y., Xie, X., Kim, M. S., Dowd, S. E., & Paré, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant Journal, 58(4), 568-577.
Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant Journal, 56(2), 264-273.
Zhu, Y., Liao, W., Wang, M., Niu, L., Xu, Q., & Jin, X. (2016). Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber. Journal of Plant Physiology, 195, 50-58.