Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations

. 2019 ; 6 () : 25. [epub] 20190418

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31058167

The state of a molecular system can be described in terms of collective variables. These low-dimensional descriptors of molecular structure can be used to monitor the state of the simulation, to calculate free energy profiles or to accelerate rare events by a bias potential or a bias force. Frequent calculation of some complex collective variables may slow down the simulation or analysis of trajectories. Moreover, many collective variables cannot be explicitly calculated for newly sampled structures. In order to address this problem, we developed a new package called anncolvar. This package makes it possible to build and train an artificial neural network model that approximates a collective variable. It can be used to generate an input for the open-source enhanced sampling simulation PLUMED package, so the collective variable can be monitored and biased by methods available in this program. The computational efficiency and the accuracy of anncolvar are demonstrated on selected molecular systems (cyclooctane derivative, Trp-cage miniprotein) and selected collective variables (Isomap, molecular surface area).

Zobrazit více v PubMed

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25. 10.1016/j.softx.2015.06.001 DOI

Abrams C., Bussi G. (2014). Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16, 163–199. 10.3390/e16010163 DOI

Barducci A., Bussi G., Parrinello M. (2008). Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100:020603. 10.1103/PhysRevLett.100.020603 PubMed DOI

Bonomi M., Branduardi D., Bussi G., Camilloni C., Provasi D., Raiteri P., et al. (2009). PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972. 10.1016/j.cpc.2009.05.011 DOI

Branduardi D., Gervasio F. L., Parrinello M. (2007). From A to B in free energy space. J. Chem. Phys. 126:054103. 10.1063/1.2432340 PubMed DOI

Brown W. M., Martin S., Pollock S. N., Coutsias E. A., Watson J.-P. (2008). Algorithmic dimensionality reduction for molecular structure analysis. J. Chem. Phys. 129:064118. 10.1063/1.2968610 PubMed DOI PMC

Bussi G., Donadio D., Parrinello M. (2007). Canonical sampling through velocity rescaling. J. Chem. Phys. 126:014101. 10.1063/1.2408420 PubMed DOI

Bussi G., Gervasio F. L., Laio A., Parrinello M. (2006). Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128, 13435–13441. 10.1021/ja062463w PubMed DOI

Chen W., Ferguson A. L. (2018). Molecular enhanced sampling with autoencoders: on-the-fly collective variable discovery and accelerated free energy landscape exploration. J. Comput. Chem. 39, 2079–2102. 10.1002/jcc.25520 PubMed DOI

Darden T., York D., Pedersen L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089 10.1063/1.464397 DOI

Das P., Moll M., Stamati H., Kavraki L. E., Clementi C. (2006). Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc. Natl. Acad. Sci. U.S.A. 103, 9885–9890. 10.1073/pnas.0603553103 PubMed DOI PMC

Ferrarotti M. J., Bottaro S., Pérez-Villa A., Bussi G. (2015). Accurate multiple time step in biased molecular simulations. J. Chem. Theory Comput. 11, 139–146. 10.1021/ct5007086 PubMed DOI

Galvelis R., Sugita Y. (2017). Neural network and nearest neighbor algorithms for enhancing sampling of molecular dynamics. J. Chem. Theory Comput. 13, 2489–2500. 10.1021/acs.jctc.7b00188 PubMed DOI

Goodfellow I., Bengio Y., Courville A. (2016). Deep Learning. Cambridge, MA: MIT Press.

Guo A. Z., Sevgen E., Sidky H., Whitmer J. K., Hubbell J. A., de Pablo J. J. (2018). Adaptive enhanced sampling by force-biasing using neural networks. J. Chem. Phys. 148, 134108–134109. 10.1063/1.5020733 PubMed DOI

Laio A., Parrinello M. (2002). Escaping free-energy minima. Proc Natl. Acad. Sci. U.S.A. 99, 12562–12566. 10.1073/pnas.202427399 PubMed DOI PMC

Lindorff-Larsen K., Piana S., Dror R. O., Shaw D. E. (2011). How fast-folding proteins fold. Science. 334, 517–520. 10.1126/science.1208351 PubMed DOI

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., O'Dror R., et al. . (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 78, 1950–1958. 10.1002/prot.22711 PubMed DOI PMC

Mardt A., Pasquali L., Wu H., Noé F. (2018). VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9:5 10.1038/s41467-017-02388-1 PubMed DOI PMC

Martin S., Thompson A., Coutsias E. A., Watson J.-P. (2010). Topology of cyclo-octane energy landscape. J. Chem. Phys. 132:234115. 10.1063/1.3445267 PubMed DOI PMC

McGibbon R. T., Beauchamp K. A., Harrigan M. P., Klein C., Swails J. M., Hernández C. X., et al. . (2015). MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532. 10.1016/j.bpj.2015.08.015 PubMed DOI PMC

Nandy A., Biswas M. (2018). Reinforcement Learning. New York, NY: Apress Media.

Oliphant T. E. (2006). A Guide to NumPy. Spanish Fork, UT: Trelgol Publishing.

Pazúriková J., Krenek A., Spiwok V., Šimková M. (2017). Reducing the number of mean-square deviation calculations with floating close structure in metadynamics. J. Chem. Phys. 146:115101. 10.1063/1.4978296 PubMed DOI

Pérez A., Martínez-Rosell G., De Fabritiis G. (2018). Simulations meet machine learning in structural biology. Curr. Opin. Struct. Biol. 49, 139–144. 10.1016/j.sbi.2018.02.004 PubMed DOI

Pietrucci F., Laio A. (2009). A collective variable for the efficient exploration of protein beta-structures with metadynamics: application to sh3 and gb1. J. Chem. Theory Comput. 5, 2197–2201. 10.1021/ct900202f PubMed DOI

Ramachandran P., Varoquaux G. (2011). Mayavi: 3D visualization of scientific data. IEEE. Comput. Sci. Eng. 13, 40–51. 10.1109/MCSE.2011.35 DOI

Seo B., Kim S., Lee M., Lee Y.-W., Lee W. B. (2018). Driving conformational transitions in the feature space of autoencoder neural network. J. Phys. Chem. C 122, 23224–23229. 10.1021/acs.jpcc.8b08496 DOI

Spiwok V., Hošek P., Šućur Z. (2015a). Enhanced sampling techniques in biomolecular simulations. Biotech. Adv. 6(pt 2), 1130–1140. 10.1016/j.biotechadv.2014.11.011 PubMed DOI

Spiwok V., Králová B. (2011). Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap. J. Chem. Phys. 135:224504. 10.1063/1.3660208 PubMed DOI

Spiwok V., Oborský P., Pazúriková J., Krenek A., Králová B. (2015b). Nonlinear vs. linear biasing in Trp-cage folding simulations. J. Chem. Phys. 142:115101. 10.1063/1.4914828 PubMed DOI

Sridharan S., Nicholls A., Sharp K. A. (1995). A rapid method for calculating derivatives of solvent accessible surface areas of molecules. J. Comput. Chem. 16, 1038–1044. 10.1002/jcc.540160810 DOI

Sultan M. M., Pande V. S. (2018). Automated design of collective variables using supervised machine learning. J. Chem. Phys. 149:094106. 10.1063/1.5029972 PubMed DOI

Tenenbaum J. B., de Silva V., Langford J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323. 10.1126/science.290.5500.2319 PubMed DOI

Torrie G. M., Valleau J. P. (1977). Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199. 10.1016/0021-9991(77)90121-8 DOI

Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. (2014). PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613. 10.1016/j.cpc.2013.09.018 DOI

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 PubMed DOI

Wehmeyer C., Noé F. (2018). Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148:241703. 10.1063/1.5011399 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...