Collective Variable for Metadynamics Derived From AlphaFold Output

. 2022 ; 9 () : 878133. [epub] 20220613

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35769910

AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.

Zobrazit více v PubMed

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 135, 224504. 10.1016/j.softx.2015.06.001 DOI

Barducci A., Bussi G., Parrinello M. (2008). Well-tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 100, 020603. 10.1103/PhysRevLett.100.020603 PubMed DOI

Bernstein F. C., Koetzle T. F., Williams G. J. B., Meyer E. F., Brice M. D., Rodgers J. R., et al. (1977). The Protein Data Bank: a Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 112, 535–542. 10.1016/S0022-2836(77)80200-3 PubMed DOI

Blanco F. J., Rivas G., Serrano L. (1994). A Short Linear Peptide that Folds into a Native Stable β-hairpin in Aqueous Solution. Nat. Struct. Mol. Biol. 1, 584–590. 10.1038/nsb0994-584 PubMed DOI

Branduardi D., Gervasio F. L., Parrinello M. (2007). From A to B in Free Energy Space. J. Chem. Phys. 126, 054103. 10.1063/1.2432340 PubMed DOI

Bussi G., Donadio D., Parrinello M. (2007). Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 126, 014101. 10.1063/1.2408420 PubMed DOI

Bussi G., Gervasio F. L., Laio A., Parrinello M. (2006). Free-Energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 128, 13435–13441. 10.1021/ja062463w PubMed DOI

Darden T., York D., Pedersen L. (1993). Particle Mesh Ewald: An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 98, 10089–10092. 10.1063/1.464397 DOI

Daura X., Gademann K., Jaun B., Seebach D., van Gunsteren W. F., Mark A. E. (1999). Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed. 38, 236–240. 10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.0.co;2-m DOI

Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., et al. (1991). A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G. Science 253, 657–661. 10.1126/science.1871600 PubMed DOI

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 18, 1463–1472. 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h DOI

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1973). Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79, 926–935. 10.1063/1.445869 DOI

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC

Laio A., Parrinello M. (2002). Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U.S.A. 99, 12562–12566. 10.1073/pnas.202427399 PubMed DOI PMC

Lindorff-Larsen K., Piana S., Dror R. O., Shaw D. E. (2011). How Fast-Folding Proteins Fold. Science 334, 517–520. 10.1126/science.1208351 PubMed DOI

Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., et al. (2010). Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins 78, 1950–1958. 10.1002/prot.22711 PubMed DOI PMC

Nassar R., Brini E., Parui S., Liu C., Dignon G. L., Dill K. A. (2022). Accelerating Protein Folding Molecular Dynamics Using Inter-residue Distances from Machine Learning Servers. J. Chem. Theory Comput. 18, 1929–1935. 10.1021/acs.jctc.1c00916 PubMed DOI PMC

Neidigh J. W., Fesinmeyer R. M., Andersen N. H. (2002). Designing a 20-residue Protein. Nat. Struct. Biol. 9, 425–430. 10.1038/nsb798 PubMed DOI

Parrinello M., Rahman A. (1981). Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 52, 7182–7190. 10.1063/1.328693 DOI

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084 PubMed DOI

Pietrucci F., Laio A. (2009). A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1. J. Chem. Theory Comput. 5, 2197–2201. 10.1021/ct900202f PubMed DOI

Sanchez-Pulido L., Ponting C. P. (2021). Extending the Horizon of Homology Detection with Coevolution-Based Structure Prediction. J. Mol. Biol. 433, 167106. From Protein Sequence to Structure at Warp Speed: How Alphafold Impacts Biology. 10.1016/j.jmb.2021.167106 PubMed DOI PMC

Senior A. W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., et al. (2020). Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 577, 706–710. 10.1038/s41586-019-1923-7 PubMed DOI

Spiwok V., Králová B. (2011). Metadynamics in the Conformational Space Nonlinearly Dimensionally Reduced by Isomap. J. Chem. Phys. 135, 224504. 10.1063/1.3660208 PubMed DOI

Spiwok V., Sucur Z., Hosek P. (2015). Enhanced Sampling Techniques in Biomolecular Simulations. Biotechnol. Adv. 33, 1130–1140. 10.1016/j.biotechadv.2014.11.011 PubMed DOI

Sugita Y., Okamoto Y. (1999). Replica-exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 314, 141–151. 10.1016/S0009-2614(99)01123-9 DOI

The PLUMED consortium (2019). Promoting Transparency and Reproducibility in Enhanced Molecular Simulations. Nat. Methods 16, 670–673. 10.1038/s41592-019-0506-8 PubMed DOI

Trapl D., Horvacanin I., Mareska V., Ozcelik F., Unal G., Spiwok V. (2019). Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations. Front. Mol. Biosci. 6, 25. 10.3389/fmolb.2019.00025 PubMed DOI PMC

Trapl D., Spiwok V. (2020). Analysis of the Results of Metadynamics Simulations by Metadynminer and Metadynminer3d. [Dataset]. 10.48550/arXiv.2009.02241 DOI

Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. (2014). PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 185, 604–613. 10.1016/j.cpc.2013.09.018 DOI

Zimm B. H., Doty P., Iso K. (1959). Determination of the Parameters for Helix Formation in Poly-γ-Benzyl-L-Glutamate. Proc. Natl. Acad. Sci. U.S.A. 45, 1601–1607. 10.1073/pnas.45.11.1601 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...