Collective Variable for Metadynamics Derived From AlphaFold Output
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35769910
PubMed Central
PMC9234394
DOI
10.3389/fmolb.2022.878133
PII: 878133
Knihovny.cz E-zdroje
- Klíčová slova
- AlphaFold, collective variable, deep learning, free-energy simulation, metadynamics, protein folding, protein structure prediction,
- Publikační typ
- časopisecké články MeSH
AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.
Zobrazit více v PubMed
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. (2015). GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 135, 224504. 10.1016/j.softx.2015.06.001 DOI
Barducci A., Bussi G., Parrinello M. (2008). Well-tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 100, 020603. 10.1103/PhysRevLett.100.020603 PubMed DOI
Bernstein F. C., Koetzle T. F., Williams G. J. B., Meyer E. F., Brice M. D., Rodgers J. R., et al. (1977). The Protein Data Bank: a Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 112, 535–542. 10.1016/S0022-2836(77)80200-3 PubMed DOI
Blanco F. J., Rivas G., Serrano L. (1994). A Short Linear Peptide that Folds into a Native Stable β-hairpin in Aqueous Solution. Nat. Struct. Mol. Biol. 1, 584–590. 10.1038/nsb0994-584 PubMed DOI
Branduardi D., Gervasio F. L., Parrinello M. (2007). From A to B in Free Energy Space. J. Chem. Phys. 126, 054103. 10.1063/1.2432340 PubMed DOI
Bussi G., Donadio D., Parrinello M. (2007). Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 126, 014101. 10.1063/1.2408420 PubMed DOI
Bussi G., Gervasio F. L., Laio A., Parrinello M. (2006). Free-Energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 128, 13435–13441. 10.1021/ja062463w PubMed DOI
Darden T., York D., Pedersen L. (1993). Particle Mesh Ewald: An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 98, 10089–10092. 10.1063/1.464397 DOI
Daura X., Gademann K., Jaun B., Seebach D., van Gunsteren W. F., Mark A. E. (1999). Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed. 38, 236–240. 10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.0.co;2-m DOI
Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., et al. (1991). A Novel, Highly Stable Fold of the Immunoglobulin Binding Domain of Streptococcal Protein G. Science 253, 657–661. 10.1126/science.1871600 PubMed DOI
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. (1997). LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 18, 1463–1472. 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h DOI
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. (1973). Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79, 926–935. 10.1063/1.445869 DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature 596, 583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Laio A., Parrinello M. (2002). Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U.S.A. 99, 12562–12566. 10.1073/pnas.202427399 PubMed DOI PMC
Lindorff-Larsen K., Piana S., Dror R. O., Shaw D. E. (2011). How Fast-Folding Proteins Fold. Science 334, 517–520. 10.1126/science.1208351 PubMed DOI
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., et al. (2010). Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins 78, 1950–1958. 10.1002/prot.22711 PubMed DOI PMC
Nassar R., Brini E., Parui S., Liu C., Dignon G. L., Dill K. A. (2022). Accelerating Protein Folding Molecular Dynamics Using Inter-residue Distances from Machine Learning Servers. J. Chem. Theory Comput. 18, 1929–1935. 10.1021/acs.jctc.1c00916 PubMed DOI PMC
Neidigh J. W., Fesinmeyer R. M., Andersen N. H. (2002). Designing a 20-residue Protein. Nat. Struct. Biol. 9, 425–430. 10.1038/nsb798 PubMed DOI
Parrinello M., Rahman A. (1981). Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 52, 7182–7190. 10.1063/1.328693 DOI
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084 PubMed DOI
Pietrucci F., Laio A. (2009). A Collective Variable for the Efficient Exploration of Protein Beta-Sheet Structures: Application to SH3 and GB1. J. Chem. Theory Comput. 5, 2197–2201. 10.1021/ct900202f PubMed DOI
Sanchez-Pulido L., Ponting C. P. (2021). Extending the Horizon of Homology Detection with Coevolution-Based Structure Prediction. J. Mol. Biol. 433, 167106. From Protein Sequence to Structure at Warp Speed: How Alphafold Impacts Biology. 10.1016/j.jmb.2021.167106 PubMed DOI PMC
Senior A. W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., et al. (2020). Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 577, 706–710. 10.1038/s41586-019-1923-7 PubMed DOI
Spiwok V., Králová B. (2011). Metadynamics in the Conformational Space Nonlinearly Dimensionally Reduced by Isomap. J. Chem. Phys. 135, 224504. 10.1063/1.3660208 PubMed DOI
Spiwok V., Sucur Z., Hosek P. (2015). Enhanced Sampling Techniques in Biomolecular Simulations. Biotechnol. Adv. 33, 1130–1140. 10.1016/j.biotechadv.2014.11.011 PubMed DOI
Sugita Y., Okamoto Y. (1999). Replica-exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 314, 141–151. 10.1016/S0009-2614(99)01123-9 DOI
The PLUMED consortium (2019). Promoting Transparency and Reproducibility in Enhanced Molecular Simulations. Nat. Methods 16, 670–673. 10.1038/s41592-019-0506-8 PubMed DOI
Trapl D., Horvacanin I., Mareska V., Ozcelik F., Unal G., Spiwok V. (2019). Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations. Front. Mol. Biosci. 6, 25. 10.3389/fmolb.2019.00025 PubMed DOI PMC
Trapl D., Spiwok V. (2020). Analysis of the Results of Metadynamics Simulations by Metadynminer and Metadynminer3d. [Dataset]. 10.48550/arXiv.2009.02241 DOI
Tribello G. A., Bonomi M., Branduardi D., Camilloni C., Bussi G. (2014). PLUMED 2: New Feathers for an Old Bird. Comput. Phys. Commun. 185, 604–613. 10.1016/j.cpc.2013.09.018 DOI
Zimm B. H., Doty P., Iso K. (1959). Determination of the Parameters for Helix Formation in Poly-γ-Benzyl-L-Glutamate. Proc. Natl. Acad. Sci. U.S.A. 45, 1601–1607. 10.1073/pnas.45.11.1601 PubMed DOI PMC