Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31222760
DOI
10.1111/pce.13601
Knihovny.cz E-zdroje
- Klíčová slova
- growth promotion, hormone signalling, microbial volatile compounds, photosynthesis, plant-microbe interactions, redox proteomics,
- MeSH
- Alternaria * MeSH
- Arabidopsis účinky léků metabolismus MeSH
- cytokininy metabolismus MeSH
- fotosyntéza účinky léků MeSH
- kyselina abscisová metabolismus MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- proteiny huseníčku metabolismus MeSH
- proteom MeSH
- těkavé organické sloučeniny farmakologie MeSH
- thioredoxin-disulfidreduktasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyselina abscisová MeSH
- NTRC protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteom MeSH
- těkavé organické sloučeniny MeSH
- thioredoxin-disulfidreduktasa MeSH
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Zobrazit více v PubMed
Akter, S., Huang, J., Bodra, N., de Smet, B., Wahni, K., Rombaut, D., … Messens, J. (2015). DYn-2 based identification of Arabidopsis sulfenomes. Molecular and Cellular Proteomics, 14(5), 1183-1200. https://doi.org/10.1074/mcp.M114.046896
Aliverti, A., Piubelli, L., Zanetti, G., Curti, B., Lübberstedt, T., & Herrmann, R. G. (1993). The role of cysteine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed mutagenesis. Biochemistry, 32(25), 6374-6380. https://doi.org/10.1021/bi00076a010
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Bahaji, A., Baroja-Fernández, E., Ricarte-Bermejo, A., Sánchez-López, Á. M., Muñoz, F. J., Romero, J. M., … Pozueta-Romero, J. (2015). Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. Plant Science, 238(4), 135-147.
Baslam, M., Baroja-Fernández, E., Ricarte-Bermejo, A., Sánchez-López, Á. M., Aranjuelo, I., Bahaji, A., … Pozueta-Romero, J. (2017). Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. PLoS ONE, 12(2), e0171245. https://doi.org/10.1371/journal.pone.0171245
Bhargava, A., Clabaugh, I., To, J. P., Maxwell, B. B., Chiang, Y.-H., Schaller, G. E., … Kieber, J. J. (2013). Identification of cytokinin responsive genes using microarray meta-analysis and RNA-seq in Arabidopsis. Plant Physiology, 162(1), 272-294. https://doi.org/10.1104/pp.113.217026
Brandes, H. K., Larimer, F. W., & Hartman, F. C. (1996). The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. Journal of Biological Chemistry, 271(7), 3333-3335. https://doi.org/10.1074/jbc.271.7.3333
Brenner, W. G., & Schmülling, T. (2015). Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Frontiers in Plant Science, 6, 29.
Buchanan, B. B., & Balmer, Y. (2005). Redox regulation: A broadening horizon. Annual Review of Plant Biology, 56(1), 187-220. https://doi.org/10.1146/annurev.arplant.56.032604.144246
Carrillo, L. R., Froehlich, J. E., Cruz, J. A., Savage, L. J., & Kramer, D. M. (2016). Multi-level regulation of the chloroplast ATP synthase: The chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant Journal, 87(6), 654-663. https://doi.org/10.1111/tpj.13226
Caspar, T., Preiss, J., Kakefuda, G., Lin, T.-P., Somerville, C., & Benbow, L. (1991). Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiology, 95(4), 1181-1188. https://doi.org/10.1104/pp.95.4.1181
Ceccarelli, E. A., Arakaki, A. K., Cortez, N., & Carrillo, N. (2004). Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochimica et Biophysica Acta, 1698(2), 155-165. https://doi.org/10.1016/j.bbapap.2003.12.005
Chen, J., Wu, F. H., Wang, W. H., Zheng, C. J., Lin, G. H., Dong, X. J., … Zheng, H. L. (2011). Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany, 62(13), 4481-4493. https://doi.org/10.1093/jxb/err145
Chiadmi, M., Navaza, A., Miginiac-Maslow, M., Jacquot, J. P., & Cherfils, J. (1999). Redox signalling in the chloroplast: Structure of oxidized pea fructose-1,6-bisphosphate phosphatase. The EMBO Journal, 18(23), 6809-6815. https://doi.org/10.1093/emboj/18.23.6809
Cortleven, A., & Valcke, R. (2012). Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: Lessons from cytokinin. Physiologia Plantarum, 144(4), 394-408. https://doi.org/10.1111/j.1399-3054.2011.01558.x
Couturier, J., Chibani, K., Jacquot, J.-P., & Rouhier, N. (2013). Cysteine-based redox regulation and signaling in plants. Frontiers in Plant Science, 4, 105.
Da, Q., Wang, P., Wang, M., Sun, T., Jin, H., Liu, B., … Wang, H.-B. (2017). Thioredoxin and NADPH-dependent thioredoxin reductase C regulation of tetrapyrrole biosynthesis. Plant Physiology, 175(2), 652-666. https://doi.org/10.1104/pp.16.01500
De Smet, B., Willems, P., Fernandez-Fernandez, A. D., Alseekh, S., Fernie, A. R., Messens, J., & Van Breusegem, F. (2019). In vivo detection of protein cysteine sulfenylation in plastids. Plant Journal, 97(4), 765-778. https://doi.org/10.1111/tpj.14146
Delaplace, P., Delory, B. M., Baudson, C., Mendaluk-Saunier de Cazenave, M., Spaepen, S., Varin, S., … du Jardin, P. (2015). Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biology, 15, 195.
Ditengou, F. A., Müller, A., Rosenkranz, M., Felten, J., Lasok, H., Van Doorn, M. M., … Polle, A. (2015). Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 6, 6279. https://doi.org/10.1038/ncomms7279
Dorfer, V., Pichler, P., Stranzl, T., Stadlmann, J., Taus, T., Winkler, S., & Mechtler, K. (2014). MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. Journal of Proteome Research, 13(8), 3679-3684. https://doi.org/10.1021/pr500202e
Du, S.-Y., Zhang, X.-F., Lu, Z., Xin, Q., Wu, Z., Jiang, T., … Zhang, D.-P. (2012). Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Molecular Biology, 80, 519-537. https://doi.org/10.1007/s11103-012-9965-3
Dunford, R. P., Durrant, M. C., Catley, M. A., & Dyer, T. A. (1998). Location of redox-active cysteins in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosynthesis Research, 58(58), 221-230. https://doi.org/10.1023/A:1006178826976
Ezquer, I., Li, J., Ovecka, M., Baroja-Fernández, E., Muñoz, F. J., Montero, M., … Pozueta-Romero, J. (2010). Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant and Cell Physiology, 51(10), 1674-1693. https://doi.org/10.1093/pcp/pcq126
Fares, A., Rossignol, M., & Peltier, J. B. (2011). Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochemical and Biophysical Research Communications, 416, 331-336. https://doi.org/10.1016/j.bbrc.2011.11.036
Floková, K., Tarkowská, D., Miersch, O., Strnad, M., Wasternack, C., & Novák, O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry, 105, 147-157. https://doi.org/10.1016/j.phytochem.2014.05.015
Fukao, Y., Ferjani, A., Tomioka, R., Nagasaki, N., Kurata, R., Nishimori, Y., … Maeshima, M. (2011). iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiology, 155(4), 1893-1907. https://doi.org/10.1104/pp.110.169730
García-Gómez, P., Almagro, G., Sánchez-López, Á. M., Bahaji, A., Ameztoy, K., Ricarte-Bermejo, A., … Pozueta-Romero, J. (2019). Volatile compounds other than CO2 emitted by different microorganisms promote distinct post-transcriptionally regulated responses in Arabidopsis. Plant, Cell & Environment, 42(5), 1729-1746. https://doi.org/10.1111/pce.13490
Garnica-Vergara, A., Barrera-Ortiz, S., Muñoz-Parra, E., Raya-González, J., Méndez-Bravo, A., Macías-Rodríguez, L., … López-Bucio, J. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209(4), 1496-1512. https://doi.org/10.1111/nph.13725
Guo, J., Gaffrey, M. J., Su, D., Liu, T., Camp, D. G., Smith, R. D., & Qian, W.-J. (2014). Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols, 9(1), 64-75. https://doi.org/10.1038/nprot.2013.161
Gutierrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., Reyes de la Cruz, H., & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51(1), 75-83.
Haldrup, A., Naver, H., & Scheller, H. V. (1999). The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of photosystem I. Plant Journal, 17(6), 689-698. https://doi.org/10.1046/j.1365-313X.1999.00419.x
He, Y., Cook, C. W., Ahn, S. M., Jing, L., Yang, Z., Crawford, N. M., & Pei, Z. (2008). Transition nitric oxide represses the Arabidopsis floral transition. Science, 305(5692), 1968-1971.
Hu, J., Huang, X., Chen, L., Sun, X., Lu, C., Zhang, L., … Zuo, J. (2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiology, 167(4), 1731-1746. https://doi.org/10.1104/pp.15.00026
Humplík, J. F., Bergougnoux, V., Jandová, M., Šimura, J., Pěnčík, A., Tomanec, O., … Fellner, M. (2015). Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.). PLoS ONE, 10(2), e0117793. https://doi.org/10.1371/journal.pone.0117793
Hung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6(1), 19-26. https://doi.org/10.1016/j.funeco.2012.09.005
Johnson, G. N. (2005). Cyclic electron transport in C3 plants: Fact or artefact. Journal of Experimental Botany, 56(411), 407-416. https://doi.org/10.1093/jxb/eri106
Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6, 151.
Karamoko, M., Gabilly, S. T., & Hamel, P. P. (2013). Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. Frontiers in Plant Science, 4, 476.
Keech, O., Gardeström, P., Kleczkowski, L. A., & Rouhier, N. (2017). The redox control of photorespiration: From biochemical and physiological aspects to biotechnological considerations. Plant, Cell & Environment, 40(4), 553-569. https://doi.org/10.1111/pce.12713
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168
Kirchsteiger, K., Ferrández, J., Pascual, M. B., González, M., & Cejudo, F. J. (2012). NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. The Plant Cell, 24(4), 1534-1548. https://doi.org/10.1105/tpc.111.092304
Kirchsteiger, K., Pulido, P., González, M., & Cejudo, F. J. (2009). NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana. Molecular Plant, 2(2), 298-307. https://doi.org/10.1093/mp/ssn082
Koskela, M. M., Dahlström, K. M., Goñi, G., Lehtimäki, N., Nurmi, M., Velazquez-Campoy, A., … Mulo, P. (2018). Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Physiologia Plantarum, 162(2), 177-190. https://doi.org/10.1111/ppl.12621
Krall, J. P., & Edwards, G. E. (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum, 86(1), 180-187. https://doi.org/10.1111/j.1399-3054.1992.tb01328.x
Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schöttler, M. A., … Dietz, K. J. (2006). Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant Journal, 45(6), 968-981. https://doi.org/10.1111/j.1365-313X.2006.02665.x
Lazár, D. (2015). Parameters of photosynthetic energy partitioning. Journal of Plant Physiology, 175, 131-147. https://doi.org/10.1016/j.jplph.2014.10.021
Lepistö, A., Kangasja, S., & Luomala, E. (2009). Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiology, 149(3), 1261-1276. https://doi.org/10.1104/pp.108.133777
Lepistö, A., Pakula, E., Toivola, J., Krieger-Liszkay, A., Vignols, F., & Rintamäki, E. (2013). Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 64(12), 3843-3854. https://doi.org/10.1093/jxb/ert216
Li, J., Ezquer, I., Bahaji, A., Montero, M., Ovecka, M., Baroja-Fernández, E., … Pozueta-Romero, J. (2011). Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Molecular Plant-Microbe Interactions, 24(10), 1165-1178. https://doi.org/10.1094/MPMI-05-11-0112
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Lintala, M., Allahverdiyeva, Y., Kidron, H., Piippo, M., Battchikova, N., Suorsa, M., … Mulo, P. (2007). Structural and functional characterization of ferredoxin-NADP+ oxidoreductase using knock-out mutants of Arabidopsis. The Plant Journal, 49(6), 1041-1052. https://doi.org/10.1111/j.1365-313X.2006.03014.x
Liu, P., Zhang, H., Wang, H., & Xia, Y. (2014). Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Proteomics, 14(6), 750-762. https://doi.org/10.1002/pmic.201300307
Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54(392), 2393-2401. https://doi.org/10.1093/jxb/erg262
Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Pérez-Pérez, M. E., Francia, F., … Lemaire, S. D. (2013). Redox regulation of the Calvin-Benson cycle: Something old, something new. Frontiers in Plant Science, 4, 479.
Molina-Favero, C., Creus, C. M., Simontacchi, M., Puntarulo, S., & Lamattina, L. (2008). Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 21(7), 1001-1009. https://doi.org/10.1094/MPMI-21-7-1001
Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.-H., Liu, Y.-X., … Sheen, J. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300(5617), 332-336. https://doi.org/10.1126/science.1080585
Morales, F., Abadia, A., & Abadia, J. (1991). Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiology, 97(3), 886-893. https://doi.org/10.1104/pp.97.3.886
Motohashi, K., & Hisabori, T. (2006). HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. Journal of Biological Chemistry, 281(46), 35039-35047. https://doi.org/10.1074/jbc.M605938200
Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., & Sato, F. (2005). Functional dissection of two Arabidopsis PsbO proteins PsbO1 and PsbO2. FEBS Journal, 272(9), 2165-2175. https://doi.org/10.1111/j.1742-4658.2005.04636.x
Naranjo, B., Mignée, C., Krieger-Liszkay, A., Hornero-Méndez, D., Gallardo-Guerrero, L., Cejudo, F. J., & Lindahl, M. (2016). The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant, Cell and Environment, 39(4), 804-822. https://doi.org/10.1111/pce.12652
Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126(3), 467-475. https://doi.org/10.1016/j.cell.2006.05.050
Nguyen, H. M., Sako, K., Matsui, A., Suzuki, Y., Mostofa, M. G., Ha, C. V., … Seki, M. (2017). Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Frontiers in Plant Science, 8, 1001.
Nikkanen, L., Toivola, J., & Rintamäki, E. (2016). Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant, Cell and Environment, 39(8), 1691-1705. https://doi.org/10.1111/pce.12718
Novák, O., Hauserová, E., Amakorová, P., Dolezal, K., & Strnad, M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69(11), 2214-2224. https://doi.org/10.1016/j.phytochem.2008.04.022
Ögren, E., & Evans, J. R. (1993). Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta, 189(2), 182-190.
Ojeda, V., Pérez-Ruiz, J. M., & Cejudo, F. J. (2018). 2-Cys peroxiredoxins participate in the oxidation of chloroplast enzymes in the dark. Molecular Plant, 11(11), 1377-1388. https://doi.org/10.1016/j.molp.2018.09.005
Ojeda, V., Pérez-Ruiz, J. M., González, M.-C., Nájera, V. A., Sahrawy, M., Serrato, A. J., … Cejudo, F. J. (2017). NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiology, 174(3), 1436-1488. https://doi.org/10.1104/pp.17.00481
Parker, J., Zhu, N., Zhu, M., & Chen, S. (2012). Profiling thiol redox proteome using isotope tagging mass spectrometry. Journal of Visualized Experiments, 21(61), 3766-3772.
Pérez-Ruiz, J. M., Guinea, M., Puerto-Galán, L., & Cejudo, F. J. (2014). NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Molecular Plant, 7(7), 1252-1255. https://doi.org/10.1093/mp/ssu032
Pérez-Ruiz, J. M., Naranjo, B., Ojeda, V., Guinea, M., & Cejudo, F. J. (2017). NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proceedings of the National Academy of Sciences of the United States of America, 114(45), 12069-12074. https://doi.org/10.1073/pnas.1706003114
Pérez-Ruiz, J. M., Spınola, C., Kirchsteiger, K., Moreno, J., Sahrawy, M., Pe, J. M., & Cejudo, F. J. (2006). Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. The Plant Cell, 18(9), 2356-2368. https://doi.org/10.1105/tpc.106.041541
Petersson, U. A., Kieselbach, T., García-Cerdán, J. G., & Schröder, W. P. (2006). The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Letters, 580(26), 6055-6061. https://doi.org/10.1016/j.febslet.2006.10.001
Piechulla, B., Lemfack, M. C., & Kai, M. (2017). Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell & Environment, 40(10), 2042-2067. https://doi.org/10.1111/pce.13011
Puerto-Galán, L., Pérez-Ruiz, J. M., Guinea, M., & Cejudo, F. J. (2015). The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 66(10), 2957-2966. https://doi.org/10.1093/jxb/eru512
Pulido, P., Spínola, M. C., Kirchsteiger, K., Guinea, M., Pascual, M. B., Sahrawy, M., … Cejudo, F. J. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany, 61(14), 4043-4054. https://doi.org/10.1093/jxb/erq218
Queval, G., & Noctor, G. (2007). A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry, 363(1), 58-69. https://doi.org/10.1016/j.ab.2007.01.005
Richter, A. S., Peter, E., Rothbart, M., Schlicke, H., Toivola, J., Rintamäki, E., & Grimm, B. (2013). Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiology, 162(1), 63-73. https://doi.org/10.1104/pp.113.217141
Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57(1), 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
Rouhier, N., Gelhaye, E., Gualberto, J., Jordy, M., de Fray, E., Hirasawa, M., … Jacquot, J.-P. (2004). Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiology, 134(3), 1027-1038. https://doi.org/10.1104/pp.103.035865
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4927-4932. https://doi.org/10.1073/pnas.0730845100
Sánchez-López, Á. M., Bahaji, A., de Diego, N., Baslam, M., Li, J., Muñoz, F. J., … Novák, O. (2016). Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiology, 172(3), 1989-2001. https://doi.org/10.1104/pp.16.00945
Sánchez-López, Á. M., Baslam, M., de Diego, N., Muñoz, F. J., Bahaji, A., Almagro, G., … Novák, O. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, Cell & Environment, 39(12), 2592-2608. https://doi.org/10.1111/pce.12759
Schürmann, P., & Buchanan, B. B. (2008). The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxidants and Redox Signaling, 10(7), 1235-1274. https://doi.org/10.1089/ars.2007.1931
Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., & Cejudo, F. J. (2004). A novel NADPH thioredoxin reductase, localised in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279(42), 43821-43827. https://doi.org/10.1074/jbc.M404696200
Shang, Y., Yan, L., Liu, Z.-Q., Cao, Z., Mei, C., Xin, Q., … Zhang, D.-P. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. The Plant Cell, 22(6), 1909-1935. https://doi.org/10.1105/tpc.110.073874
Shen, Y.-Y., Wang, X.-F., Wu, F.-Q., Du, S.-Y., Cao, Z., Shang, Y., … Fan, R. C. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443(7113), 823-826. https://doi.org/10.1038/nature05176
Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., … Mitsui, T. (2015). Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnology Journal, 13(9), 1251-1263. https://doi.org/10.1111/pbi.12314
Stenbaek, A., Hansson, A., Wulff, R. P., Hansson, M., Dietz, K. J., & Jensen, P. E. (2008). NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS Letters, 582(18), 2773-2778. https://doi.org/10.1016/j.febslet.2008.07.006
Takahashi, M., Furuhashi, T., Ishikawa, N., Horiguchi, G., Sakamoto, A., Tsukaya, H., & Morikawa, H. (2014). Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. New Phytologist, 201(4), 1304-1315. https://doi.org/10.1111/nph.12609
Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). MapMan: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
Thormählen, I., Meitzel, T., Groysman, J., Öchsner, A. B., von Roepenack-Lahaye, E., Naranjo, B., … Geigenberger, P. (2015). Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiology, 169(3), 1766-1786. https://doi.org/10.1104/pp.15.01122
Tsuzuki, T., Takahashi, K., Inoue, S., Okigaki, Y., Tomiyama, M., Hossain, M. A., … Kinoshita, T. (2011). Mg-chelatase H subunit affects ABA signalling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. Journal of Plant Research, 124(4), 527-538. https://doi.org/10.1007/s10265-011-0426-x
Valerio, C., Costa, A., Marri, L., Issakidis-bourguet, E., Pupillo, P., Trost, P., & Sparla, F. (2010). Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. Journal of Experimental Botany, 62(2), 545-555. https://doi.org/10.1093/jxb/erq288
Ventriglia, T., Kuhn, M. L., Ruiz, M. T., Ribeiro-Pedro, M., Valverde, F., Ballicora, M. A., … Romero, J. M. (2008). Two Arabidopsis ADP-glucose pyrophophorylase large subunits (APL1 and APL2) are catalytic. Plant Physiology, 148(1), 65-76. https://doi.org/10.1104/pp.108.122846
Villeret, V., Huang, S., Zhang, Y., Xue, Y., & Lipscomb, W. N. (1995). Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 Å resolution. Biochemistry, 34(13), 4299-4306. https://doi.org/10.1021/bi00013a019
von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4), 376-387. https://doi.org/10.1007/BF00384257
Wu, F.-Q., Xin, Q., Cao, Z., Liu, Z.-Q., Du, S.-Y., Mei, C., … Zhang, X. F. (2009). The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis. Plant Physiology, 150(4), 1940-1954. https://doi.org/10.1104/pp.109.140731
Yoshida, K., & Hisabori, T. (2016). Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences of the United States of America, 113, 3867-3976.
Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Paré, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant Journal, 56(2), 264-273. https://doi.org/10.1111/j.1365-313X.2008.03593.x
Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction