Coordination effects on the binding of late 3d single metal species to cyanographene

. 2022 Dec 21 ; 25 (1) : 286-296. [epub] 20221221

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36475541

Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.

Zobrazit více v PubMed

Cheng N. Zhang L. Doyle-Davis K. Sun X. Single-Atom Catalysts: From Design to Application. Electrochem. Energy Rev. 2019;2:539–573. doi: 10.1007/s41918-019-00050-6. DOI

Yang X.-F. Wang A. Qiao B. Li J. Liu J. Zhang T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46:1740–1748. doi: 10.1021/ar300361m. PubMed DOI

Liang S. Hao C. Shi Y. The Power of Single-Atom Catalysis. ChemCatChem. 2015;7:2559–2567. doi: 10.1002/cctc.201500363. DOI

Gawande M. B. Fornasiero P. Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020;10:2231–2259. doi: 10.1021/acscatal.9b04217. DOI

Qi K. Chhowalla M. Voiry D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today. 2020;40:173–192. doi: 10.1016/j.mattod.2020.07.002. DOI

Wang J. Kong H. Zhang J. Hao Y. Shao Z. Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021;116:100717. doi: 10.1016/j.pmatsci.2020.100717. DOI

Zhang H. Liu G. Shi L. Ye J. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018;8:1701343. doi: 10.1002/aenm.201701343. DOI

Georgakilas V. Perman J. A. Tuček J. Zbořil R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI

Bakandritsos A. Kadam R. G. Kumar P. Zoppellaro G. Medved’ M. Tuček J. Montini T. Tomanec O. Andrýsková P. Drahoš B. Varma R. S. Otyepka M. Gawande M. B. Fornasiero P. Zbořil R. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019;31:1900323. doi: 10.1002/adma.201900323. PubMed DOI

Kadam R. G. Zhang T. Zaoralová D. Medveď M. Bakandritsos A. Tomanec O. Petr M. Zhu Chen J. Miller J. T. Otyepka M. Zbořil R. Asefa T. Gawande M. B. Single Co-Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small. 2021;17:2006477. doi: 10.1002/smll.202006477. PubMed DOI

Langer R. Fako E. Błoński P. Vavrečka M. Bakandritsos A. Otyepka M. López N. Anchoring of single-platinum-adatoms on cyanographene: Experiment and theory. Appl. Mater. Today. 2020;18:100462. doi: 10.1016/j.apmt.2019.100462. DOI

Zaoralová D. Mach R. Lazar P. Medveď M. Otyepka M. Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Single-Atom Catalysts. Adv. Mater. Interfaces. 2021;8:2001392. doi: 10.1002/admi.202001392. DOI

Liu J.-B. Gong H.-S. Ye G.-L. Fei H.-L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41:1703–1726. doi: 10.1007/s12598-021-01904-z. DOI

Majumder M. Saini H. Dědek I. Schneemann A. Chodankar N. R. Ramarao V. Santosh M. S. Nanjundan A. K. Kment Š. Dubal D. Otyepka M. Zbořil R. Jayaramulu K. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano. 2021;15:17275–17298. doi: 10.1021/acsnano.1c08455. PubMed DOI

Ha M. Kim D. Y. Umer M. Gladkikh V. Myung C. W. Kim K. S. Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 2021;14:3455–3468. doi: 10.1039/D1EE00154J. DOI

Blanco M. Agnoli S. Granozzi G. Graphene Acid: A Versatile 2D Platform for Catalysis. Isr. J. Chem. 2022;62:e202100118. doi: 10.1002/ijch.202100118. DOI

Blanco M. Mosconi D. Tubaro C. Biffis A. Badocco D. Pastore P. Otyepka M. Bakandritsos A. Liu Z. Ren W. Agnoli S. Granozzi G. Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chem. 2019;21:5238–5247. doi: 10.1039/C9GC01436E. DOI

Panáček D. Hochvaldová L. Bakandritsos A. Malina T. Langer M. Belza J. Martincová J. Večeřová R. Lazar P. Poláková K. Kolařík J. Válková L. Kolář M. Otyepka M. Panáček A. Zbořil R. Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Adv. Sci. 2021;8:2003090. doi: 10.1002/advs.202003090. PubMed DOI PMC

Kolařík J. Bakandritsos A. Bad’ura Z. Lo R. Zoppellaro G. Kment Š. Naldoni A. Zhang Y. Petr M. Tomanec O. Filip J. Otyepka M. Hobza P. Zbořil R. Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano. 2021;15:3349–3358. doi: 10.1021/acsnano.0c10093. PubMed DOI

Zhuo H.-Y. Zhang X. Liang J.-X. Yu Q. Xiao H. Li J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem. Rev. 2020;120:12315–12341. doi: 10.1021/acs.chemrev.0c00818. PubMed DOI

Bakandritsos A. Pykal M. Błoński P. Jakubec P. Chronopoulos D. D. Poláková K. Georgakilas V. Čépe K. Tomanec O. Ranc V. Bourlinos A. B. Zbořil R. Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC

Kaiser S. K. Chen Z. Faust Akl D. Mitchell S. Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020;120:11703–11809. doi: 10.1021/acs.chemrev.0c00576. PubMed DOI

Li X. Rong H. Zhang J. Wang D. Li Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020;13:1842–1855. doi: 10.1007/s12274-020-2755-3. DOI

Pan Y. Chen Y. Wu K. Chen Z. Liu S. Cao X. Cheong W.-C. Meng T. Luo J. Zheng L. Liu C. Wang D. Peng Q. Li J. Chen C. Regulating the coordination structure of single-atom Fe–NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019;10:4290. doi: 10.1038/s41467-019-12362-8. PubMed DOI PMC

Cao L. Luo Q. Liu W. Lin Y. Liu X. Cao Y. Zhang W. Wu Y. Yang J. Yao T. Wei S. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019;2:134–141. doi: 10.1038/s41929-018-0203-5. DOI

Shang Y. Duan X. Wang S. Yue Q. Gao B. Xu X. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. 2022;33:663–673. doi: 10.1016/j.cclet.2021.07.050. DOI

Gong Y.-N. Zhong W. Li Y. Qiu Y. Zheng L. Jiang J. Jiang H.-L. Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. J. Am. Chem. Soc. 2020;142:16723–16731. doi: 10.1021/jacs.0c07206. PubMed DOI

Hossain M. D. Liu Z. Zhuang M. Yan X. Xu G. Gadre C. A. Tyagi A. Abidi I. H. Sun C. Wong H. Guda A. Hao Y. Pan X. Amine K. Luo Z. Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Adv. Energy Mater. 2019;9:1803689. doi: 10.1002/aenm.201803689. DOI

Zhang W. Sun F.-L. Fang Q.-J. Yu Y.-F. Pan J.-K. Wang J.-G. Zhuang G.-L. Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H2O2 Synthesis: A Density Functional Theory Study. J. Phys. Chem. C. 2022;126:2349–2364. doi: 10.1021/acs.jpcc.1c08365. DOI

Tian B. Ma S. Zhan Y. Jiang X. Gao T. Stability and catalytic activity to NOx and NH3 of single-atom manganese catalyst with graphene-based substrate: A DFT study. Appl. Surf. Sci. 2021;541:148460. doi: 10.1016/j.apsusc.2020.148460. DOI

Zhang J. Yang H. Liu B. Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review. Adv. Energy Mater. 2021;11:2002473. doi: 10.1002/aenm.202002473. DOI

Ling C. Shi L. Ouyang Y. Zeng X. C. Wang J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Lett. 2017;17:5133–5139. doi: 10.1021/acs.nanolett.7b02518. PubMed DOI

Zhao J. Chen Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc. 2017;139:12480–12487. doi: 10.1021/jacs.7b05213. PubMed DOI

Adamo C. Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Weigend F. Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/B508541A. PubMed DOI

Pašteka L. F. Rajský T. Urban M. Toward Understanding the Bonding Character in Complexes of Coinage Metals with Lone-Pair Ligands. CCSD(T) and DFT Computations. J. Phys. Chem. A. 2013;117:4472–4485. doi: 10.1021/jp401174p. PubMed DOI

Marenich A. V. Cramer C. J. Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Luo S. Averkiev B. Yang K. R. Xu X. Truhlar D. G. Density Functional Theory of Open–Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. J. Chem. Theory Comput. 2014;10:102–121. doi: 10.1021/ct400712k. PubMed DOI

Liu J. He X. Zhang J. Z. H. Qi L.-W. Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory. Chem. Sci. 2018;9:2065–2073. doi: 10.1039/C7SC04205A. PubMed DOI PMC

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016

Swaddle T. W. Fabes L. Octahedral–tetrahedral equilibria in aqueous cobalt(ii) solutions at high temperatures. Can. J. Chem. 1980;58:1418–1426. doi: 10.1139/v80-223. DOI

Feller D. Glendening E. D. de Jong W. A. Structures and binding enthalpies of M+(H2O)n clusters, M = Cu, Ag, Au. J. Chem. Phys. 1999;110:1475–1491. doi: 10.1063/1.477814. DOI

Burda J. V. Pavelka M. Šimánek M. Theoretical model of copper Cu(i)/Cu(ii) hydration. DFT and ab initio quantum chemical study. J. Mol. Struct. 2004;683:183–193. doi: 10.1016/j.theochem.2004.06.013. DOI

Fujii T. de Groot F. M. F. Sawatzky G. A. Voogt F. C. Hibma T. Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:3195–3202.

Puthirath Balan A. Radhakrishnan S. Woellner C. F. Sinha S. K. Deng L. de los Reyes C. Rao B. M. Paulose M. Neupane R. Apte A. Kochat V. Vajtai R. Harutyunyan A. R. Chu C.-W. Costin G. Galvao D. S. Martí A. A. van Aken P. A. Varghese O. K. Tiwary C. S. Malie Madom Ramaswamy Iyer A. Ajayan P. M. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018;13:602–609. doi: 10.1038/s41565-018-0134-y. PubMed DOI

Gupta R. P. Sen S. K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B: Solid State. 1975;12:15–19. doi: 10.1103/PhysRevB.12.15. DOI

Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. St. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...