Coordination effects on the binding of late 3d single metal species to cyanographene
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36475541
PubMed Central
PMC9913128
DOI
10.1039/d2cp04076j
Knihovny.cz E-zdroje
- MeSH
- grafit * MeSH
- kationty MeSH
- kovy chemie MeSH
- měď chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- grafit * MeSH
- kationty MeSH
- kovy MeSH
- měď MeSH
Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.
Zobrazit více v PubMed
Cheng N. Zhang L. Doyle-Davis K. Sun X. Single-Atom Catalysts: From Design to Application. Electrochem. Energy Rev. 2019;2:539–573. doi: 10.1007/s41918-019-00050-6. DOI
Yang X.-F. Wang A. Qiao B. Li J. Liu J. Zhang T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46:1740–1748. doi: 10.1021/ar300361m. PubMed DOI
Liang S. Hao C. Shi Y. The Power of Single-Atom Catalysis. ChemCatChem. 2015;7:2559–2567. doi: 10.1002/cctc.201500363. DOI
Gawande M. B. Fornasiero P. Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020;10:2231–2259. doi: 10.1021/acscatal.9b04217. DOI
Qi K. Chhowalla M. Voiry D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today. 2020;40:173–192. doi: 10.1016/j.mattod.2020.07.002. DOI
Wang J. Kong H. Zhang J. Hao Y. Shao Z. Ciucci F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021;116:100717. doi: 10.1016/j.pmatsci.2020.100717. DOI
Zhang H. Liu G. Shi L. Ye J. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018;8:1701343. doi: 10.1002/aenm.201701343. DOI
Georgakilas V. Perman J. A. Tuček J. Zbořil R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015;115:4744–4822. doi: 10.1021/cr500304f. PubMed DOI
Bakandritsos A. Kadam R. G. Kumar P. Zoppellaro G. Medved’ M. Tuček J. Montini T. Tomanec O. Andrýsková P. Drahoš B. Varma R. S. Otyepka M. Gawande M. B. Fornasiero P. Zbořil R. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019;31:1900323. doi: 10.1002/adma.201900323. PubMed DOI
Kadam R. G. Zhang T. Zaoralová D. Medveď M. Bakandritsos A. Tomanec O. Petr M. Zhu Chen J. Miller J. T. Otyepka M. Zbořil R. Asefa T. Gawande M. B. Single Co-Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small. 2021;17:2006477. doi: 10.1002/smll.202006477. PubMed DOI
Langer R. Fako E. Błoński P. Vavrečka M. Bakandritsos A. Otyepka M. López N. Anchoring of single-platinum-adatoms on cyanographene: Experiment and theory. Appl. Mater. Today. 2020;18:100462. doi: 10.1016/j.apmt.2019.100462. DOI
Zaoralová D. Mach R. Lazar P. Medveď M. Otyepka M. Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Single-Atom Catalysts. Adv. Mater. Interfaces. 2021;8:2001392. doi: 10.1002/admi.202001392. DOI
Liu J.-B. Gong H.-S. Ye G.-L. Fei H.-L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41:1703–1726. doi: 10.1007/s12598-021-01904-z. DOI
Majumder M. Saini H. Dědek I. Schneemann A. Chodankar N. R. Ramarao V. Santosh M. S. Nanjundan A. K. Kment Š. Dubal D. Otyepka M. Zbořil R. Jayaramulu K. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano. 2021;15:17275–17298. doi: 10.1021/acsnano.1c08455. PubMed DOI
Ha M. Kim D. Y. Umer M. Gladkikh V. Myung C. W. Kim K. S. Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 2021;14:3455–3468. doi: 10.1039/D1EE00154J. DOI
Blanco M. Agnoli S. Granozzi G. Graphene Acid: A Versatile 2D Platform for Catalysis. Isr. J. Chem. 2022;62:e202100118. doi: 10.1002/ijch.202100118. DOI
Blanco M. Mosconi D. Tubaro C. Biffis A. Badocco D. Pastore P. Otyepka M. Bakandritsos A. Liu Z. Ren W. Agnoli S. Granozzi G. Palladium nanoparticles supported on graphene acid: a stable and eco-friendly bifunctional C–C homo- and cross-coupling catalyst. Green Chem. 2019;21:5238–5247. doi: 10.1039/C9GC01436E. DOI
Panáček D. Hochvaldová L. Bakandritsos A. Malina T. Langer M. Belza J. Martincová J. Večeřová R. Lazar P. Poláková K. Kolařík J. Válková L. Kolář M. Otyepka M. Panáček A. Zbořil R. Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Adv. Sci. 2021;8:2003090. doi: 10.1002/advs.202003090. PubMed DOI PMC
Kolařík J. Bakandritsos A. Bad’ura Z. Lo R. Zoppellaro G. Kment Š. Naldoni A. Zhang Y. Petr M. Tomanec O. Filip J. Otyepka M. Hobza P. Zbořil R. Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano. 2021;15:3349–3358. doi: 10.1021/acsnano.0c10093. PubMed DOI
Zhuo H.-Y. Zhang X. Liang J.-X. Yu Q. Xiao H. Li J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem. Rev. 2020;120:12315–12341. doi: 10.1021/acs.chemrev.0c00818. PubMed DOI
Bakandritsos A. Pykal M. Błoński P. Jakubec P. Chronopoulos D. D. Poláková K. Georgakilas V. Čépe K. Tomanec O. Ranc V. Bourlinos A. B. Zbořil R. Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano. 2017;11:2982–2991. doi: 10.1021/acsnano.6b08449. PubMed DOI PMC
Kaiser S. K. Chen Z. Faust Akl D. Mitchell S. Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020;120:11703–11809. doi: 10.1021/acs.chemrev.0c00576. PubMed DOI
Li X. Rong H. Zhang J. Wang D. Li Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020;13:1842–1855. doi: 10.1007/s12274-020-2755-3. DOI
Pan Y. Chen Y. Wu K. Chen Z. Liu S. Cao X. Cheong W.-C. Meng T. Luo J. Zheng L. Liu C. Wang D. Peng Q. Li J. Chen C. Regulating the coordination structure of single-atom Fe–NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019;10:4290. doi: 10.1038/s41467-019-12362-8. PubMed DOI PMC
Cao L. Luo Q. Liu W. Lin Y. Liu X. Cao Y. Zhang W. Wu Y. Yang J. Yao T. Wei S. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019;2:134–141. doi: 10.1038/s41929-018-0203-5. DOI
Shang Y. Duan X. Wang S. Yue Q. Gao B. Xu X. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. 2022;33:663–673. doi: 10.1016/j.cclet.2021.07.050. DOI
Gong Y.-N. Zhong W. Li Y. Qiu Y. Zheng L. Jiang J. Jiang H.-L. Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. J. Am. Chem. Soc. 2020;142:16723–16731. doi: 10.1021/jacs.0c07206. PubMed DOI
Hossain M. D. Liu Z. Zhuang M. Yan X. Xu G. Gadre C. A. Tyagi A. Abidi I. H. Sun C. Wong H. Guda A. Hao Y. Pan X. Amine K. Luo Z. Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Adv. Energy Mater. 2019;9:1803689. doi: 10.1002/aenm.201803689. DOI
Zhang W. Sun F.-L. Fang Q.-J. Yu Y.-F. Pan J.-K. Wang J.-G. Zhuang G.-L. Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H2O2 Synthesis: A Density Functional Theory Study. J. Phys. Chem. C. 2022;126:2349–2364. doi: 10.1021/acs.jpcc.1c08365. DOI
Tian B. Ma S. Zhan Y. Jiang X. Gao T. Stability and catalytic activity to NOx and NH3 of single-atom manganese catalyst with graphene-based substrate: A DFT study. Appl. Surf. Sci. 2021;541:148460. doi: 10.1016/j.apsusc.2020.148460. DOI
Zhang J. Yang H. Liu B. Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review. Adv. Energy Mater. 2021;11:2002473. doi: 10.1002/aenm.202002473. DOI
Ling C. Shi L. Ouyang Y. Zeng X. C. Wang J. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Lett. 2017;17:5133–5139. doi: 10.1021/acs.nanolett.7b02518. PubMed DOI
Zhao J. Chen Z. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. J. Am. Chem. Soc. 2017;139:12480–12487. doi: 10.1021/jacs.7b05213. PubMed DOI
Adamo C. Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Weigend F. Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/B508541A. PubMed DOI
Pašteka L. F. Rajský T. Urban M. Toward Understanding the Bonding Character in Complexes of Coinage Metals with Lone-Pair Ligands. CCSD(T) and DFT Computations. J. Phys. Chem. A. 2013;117:4472–4485. doi: 10.1021/jp401174p. PubMed DOI
Marenich A. V. Cramer C. J. Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Luo S. Averkiev B. Yang K. R. Xu X. Truhlar D. G. Density Functional Theory of Open–Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. J. Chem. Theory Comput. 2014;10:102–121. doi: 10.1021/ct400712k. PubMed DOI
Liu J. He X. Zhang J. Z. H. Qi L.-W. Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory. Chem. Sci. 2018;9:2065–2073. doi: 10.1039/C7SC04205A. PubMed DOI PMC
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016
Swaddle T. W. Fabes L. Octahedral–tetrahedral equilibria in aqueous cobalt(ii) solutions at high temperatures. Can. J. Chem. 1980;58:1418–1426. doi: 10.1139/v80-223. DOI
Feller D. Glendening E. D. de Jong W. A. Structures and binding enthalpies of M+(H2O)n clusters, M = Cu, Ag, Au. J. Chem. Phys. 1999;110:1475–1491. doi: 10.1063/1.477814. DOI
Burda J. V. Pavelka M. Šimánek M. Theoretical model of copper Cu(i)/Cu(ii) hydration. DFT and ab initio quantum chemical study. J. Mol. Struct. 2004;683:183–193. doi: 10.1016/j.theochem.2004.06.013. DOI
Fujii T. de Groot F. M. F. Sawatzky G. A. Voogt F. C. Hibma T. Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:3195–3202.
Puthirath Balan A. Radhakrishnan S. Woellner C. F. Sinha S. K. Deng L. de los Reyes C. Rao B. M. Paulose M. Neupane R. Apte A. Kochat V. Vajtai R. Harutyunyan A. R. Chu C.-W. Costin G. Galvao D. S. Martí A. A. van Aken P. A. Varghese O. K. Tiwary C. S. Malie Madom Ramaswamy Iyer A. Ajayan P. M. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018;13:602–609. doi: 10.1038/s41565-018-0134-y. PubMed DOI
Gupta R. P. Sen S. K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B: Solid State. 1975;12:15–19. doi: 10.1103/PhysRevB.12.15. DOI
Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. St. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI