Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics
Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34194925
PubMed Central
PMC8224420
DOI
10.1002/advs.202003090
PII: ADVS2562
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial, cytocompatibility, graphene, silver resistant,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- bakteriální infekce farmakoterapie MeSH
- bakteriální léková rezistence účinky léků MeSH
- kovové nanočástice chemie terapeutické užití MeSH
- stříbro chemie terapeutické užití MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- stříbro MeSH
The ability of bacteria to develop resistance to antibiotics is threatening one of the pillars of modern medicine. It was recently understood that bacteria can develop resistance even to silver nanoparticles by starting to produce flagellin, a protein which induces their aggregation and deactivation. This study shows that silver covalently bound to cyanographene (GCN/Ag) kills silver-nanoparticle-resistant bacteria at concentrations 30 times lower than silver nanoparticles, a challenge which has been so far unmet. Tested also against multidrug resistant strains, the antibacterial activity of GCN/Ag is systematically found as potent as that of free ionic silver or 10 nm colloidal silver nanoparticles. Owing to the strong and multiple dative bonds between the nitrile groups of cyanographene and silver, as theory and experiments confirm, there is marginal silver ion leaching, even after six months of storage, and thus very high cytocompatibility to human cells. Molecular dynamics simulations suggest strong interaction of GCN/Ag with the bacterial membrane, and as corroborated by experiments, the antibacterial activity does not rely on the release of silver nanoparticles or ions. Endowed with these properties, GCN/Ag shows that rigid supports selectively and densely functionalized with potent silver-binding ligands, such as cyanographene, may open new avenues against microbial resistance.
Zobrazit více v PubMed
“Global action plan on antimicrobial resistance,” can be found under http://www.who.int/antimicrobial‐resistance/publications/global‐action‐plan/en/ (accessed: March 2021).
de Kraker M. E. A., Stewardson A. J., Harbarth S., PLoS Med. 2016, 13, e1002184. PubMed PMC
Baker S., Science 2015, 347, 1064. PubMed
Muzammil S., Hayat S., Fakhar‐E‐Alam M., Aslam B., Siddique M. H., Nisar M. A., Saqalein M., Atif M., Sarwar A., Khurshid A., Amin N., Wang Z., Front. Biosci. Elite Ed. 2018, 10, 352. PubMed
Baptista P. V., McCusker M. P., Carvalho A., Ferreira D. A., Mohan N. M., Martins M., Fernandes A. R., Front. Microbiol. 2018, 9, 1441. PubMed PMC
de Miguel I., Prieto I., Albornoz A., Sanz V., Weis C., Turon P., Quidant R., Nano Lett. 2019, 19, 2524. PubMed
Li J., Liu W., Kilian D., Zhang X., Gelinsky M., Chu P. K., Mater. Horiz. 2019, 6, 1271.
Pandey R. P., Rasool K., Madhavan V. E., Aïssa B., Gogotsi Y., Mahmoud K. A., J. Mater. Chem. A 2018, 6, 3522.
Travlou N. A., Algarra M., Alcoholado C., Cifuentes‐Rueda M., Labella A. M., Lázaro‐Martínez J. M., Rodríguez‐Castellón E., Bandosz T. J., ACS Appl. Bio Mater. 2018, 1, 693. PubMed
Zou X., Zhang L., Wang Z., Luo Y., J. Am. Chem. Soc. 2016, 138, 2064. PubMed
Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z., Huang Q., Fan C., Fang H., Zhou R., Nat. Nanotechnol. 2013, 8, 594. PubMed
Xin Q., Shah H., Nawaz A., Xie W., Akram M. Z., Batool A., Tian L., Jan S. U., Boddula R., Guo B., Liu Q., Gong J. R., Adv. Mater. 2019, 31, 1804838. PubMed
Li X., Bai H., Yang Y., Yoon J., Wang S., Zhang X., Adv. Mater. 2019, 31, 1805092. PubMed
Peddinti B. S. T., Scholle F., Vargas M. G., Smith S. D., Ghiladi R. A., Spontak R. J., Mater. Horiz. 2019, 6, 2056.
Wang Y., Yang Y., Shi Y., Song H., Yu C., Adv. Mater. 2019, 9, 696.
Wang L., Zhang X., Yu X., Gao F., Shen Z., Zhang X., Ge S., Liu J., Gu Z., Chen C., Adv. Mater. 2019, 31, 1901965. PubMed
Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K., J. Appl. Microbiol. 2012, 112, 841. PubMed
Ouay B. L.e, Stellacci F., Nano Today 2015, 10, 339.
Chernousova S., Epple M., Angew. Chem., Int. Ed. 2013, 52, 1636. PubMed
Panáček A., Kvítek L., Smékalová M., Večeřová R., Kolář M., Röderová M., Dyčka F., Šebela M., Prucek R., Tomanec O., Zbořil R., Nat. Nanotechnol. 2018, 13, 65. PubMed
Reina G., González‐Domínguez J. M., Criado A., Vázquez E., Bianco A., Prato M., Chem. Soc. Rev. 2017, 46, 4400. PubMed
Shao W., Liu X., Min H., Dong G., Feng Q., Zuo S., ACS Appl. Mater. Interfaces 2015, 7, 6966. PubMed
Kellici S., Acord J., Vaughn A., Power N. P., Morgan D. J., Heil T., Facq S. P., Lampronti G. I., ACS Appl. Mater. Interfaces 2016, 8, 19038. PubMed
Eng A. Y. S., Chua C. K., Pumera M., Nanoscale 2015, 7, 20256. PubMed
Loh K. P., Bao Q., Eda G., Chhowalla M., Nat. Chem. 2010,8, 1456. PubMed
Lemire J. A., Harrison J. J., Turner R. J., Nat. Rev. Microbiol. 2013, 11, 371. PubMed
Pearson R. G., J. Am. Chem. Soc. 1963, 85, 3533.
Bakandritsos A., Pykal M., Boński P., Jakubec P., Chronopoulos D. D., Poláková K., Georgakilas V., Čépe K., Tomanec O., Ranc V., Bourlinos A. B., Zbořil R., Otyepka M., ACS Nano 2017, 11, 2982. PubMed PMC
Panáček A., Kvítek L., Prucek R., Kolář M., R.Večeřová, N. P. , Sharma V. K., Nevěčná T., Zbořil R., J. Phys. Chem. B 2006, 110, 16248. PubMed
Pettinari C., Marchetti F., Orbisaglia S., Pettinari R., Ngoune J., Gómez M., Santos C., Álvarez E., CrystEngComm 2013, 15, 3892.
Sun Q., Bai Y., He G., Duan C., Lin Z., Meng Q., Chem. Commun. 2006, 2777. PubMed
Maiti N., Thomas S., Debnath A., Kapoor S., RSC Adv. 2016, 6, 56406.
Lee K. J., Lee Y.‐I., Shim I.‐K., Joung J., Oh Y. S., J. Colloid Interface Sci. 2006, 304, 92. PubMed
Mukherjee P., Roy M., Mandal B. P., Dey G. K., Mukherjee P. K., Ghatak J., Tyagi A. K., Kale S. P., Nanotechnology 2008, 19, 075103. PubMed
Perros M., Science 2015, 647, 6226. PubMed
Su H.‐L., Lin S.‐H., Wei J.‐C., Pao I.‐C., Chiao S.‐H., Huang C.‐C., Lin S.‐Z., Lin J.‐J., PLoS One 2011, 6, e21125. PubMed PMC
Courtney C. M., Goodman S. M., Nagy T. A., Levy M., Bhusal P., Madinger N. E., Chatterjee A., Science 2017, 3, e1701776. PubMed PMC
Tacconelli E., Margrini N., WHO 2017, 7.
Chen S., Quan Y., Yu Y.‐L., Wang J.‐H., ACS Biomater. Sci. Eng. 2017, 3, 313. PubMed
Kim W., Zhu W., Hendricks G. L., Van Tyne D., Steele A. D., Keohane C. E., Fricke N., Conery A. L., Shen S., Pan W., Lee K., Rajamuthiah R., Fuchs B. B., Vlahovska P. M., Wuest W. M., Gilmore M. S., Gao H., Ausubel F. M., Mylonakis E., Nature 2018, 556, 103. PubMed PMC
Smith P. A., Koehler M. F. T., Girgis H. S., Yan D., Chen Y., Chen Y., Crawford J. J., Durk M. R., Higuchi R. I., Kang J., Murray J., Paraselli P., Park S., Phung W., Quinn J. G., Roberts T. C., Rougé L., Schwarz J. B., Skippington E., Wai J., Xu M., Yu Z., Zhang H., Tan M.‐W., Heise C. E., Nature 2018, 561, 189. PubMed
EUCAST recommendations for MIC determination, can be found under the link on “Broth microdilution ‐ EUCAST reading guide v 3.0 (1 January, 2021).” at: https://www.eucast.org/ast_of_bacteria/mic_determination/ (accessed: March 2021).
Jorge de Souza T. A., Rosa Souza L. R., Franchi L. P., Ecotoxicol. Environ. Saf. 2019, 171, 691. PubMed
Zhao R., Lv M., Li Y., Sun M., Kong W., Wang L., Song S., Fan C., Jia L., Qiu S., Sun Y., Song H., Hao R., ACS Appl. Mater. Interfaces 2017, 9, 15328. PubMed
Tang J., Chen Q., Xu L., Zhang S., Feng L., Cheng L., Xu H., Liu Z., Peng R., ACS Appl. Mater. Interfaces 2013, 5, 3867. PubMed
Song B., Zhang C., Zeng G., Gong J., Chang Y., Jiang Y., Arch. Biochem. Biophys. 2016, 604, 167. PubMed
Mosselhy D. A., He W., Li D., Meng Y., Feng Q., J. Nanopart. Res. 2016, 18, 222.
Klueh U., Wagner V., Kelly S., Johnson A., Bryers J. D., J. Biomed. Mater. Res. 2000, 53, 621. PubMed
Kwan K. H. L., Yeung K. W. K., Liu X., Wong K. K. Y., Shum H.o C., Lam Y. W., Cheng S. H., Cheung K. M. C., To M. K. T., Nanomedicine 2014, 11, 1594. PubMed
Sondi I., Salopek‐Sondi B., J. Colloid Interface Sci. 2014, 5, 245. PubMed
Li H., Huang J., Song Y., Zhang M., Wang H., Lu F., Huang H., Liu Y., Dai X., Gu Z., Yang Z., Zhou R., Kang Z., ACS Appl. Mater. Interfaces 2018, 10, 26936. PubMed
Hartmann M., Berditsch M., Hawecker J., Ardakani M. F., Gerthsen D., Ulrich A. S., Antimicrob. Agents Chemother. 2010, 54, 3132. PubMed PMC
Boonsai P., Phuwapraisirisan P., Chanchao C., Int. J. Med. Sci. 2014, 11, 327. PubMed PMC
Yossa N., Patel J., Macarisin D., Millner P., Murphy C., Bauchan G., Lo Y. M., J. Food Process. Preserv. 2014, 38, 749.
Ito K., Sato T., Yura T., Cell 1977, 11, 551. PubMed
Dawaliby R., Trubbia C., Delporte C., Noyon C., Ruysschaert J.‐M., Van Antwerpen P., Govaerts C., J. Biol. Chem. 2016, 291, 3658. PubMed PMC
Noutsi P., Gratton E., Chaieb S., PLoS One 2016, 6, 313. PubMed PMC
Single Atom Engineered Antibiotics Overcome Bacterial Resistance
Coordination effects on the binding of late 3d single metal species to cyanographene
Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts