E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_ PrF_2024_020
Univerzita Palackého v Olomouci (Palacký University Olomouc)
PubMed
39572718
PubMed Central
PMC11582817
DOI
10.1038/s42003-024-07266-3
PII: 10.1038/s42003-024-07266-3
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- bakteriální léková rezistence * účinky léků MeSH
- biofilmy účinky léků růst a vývoj MeSH
- Escherichia coli * účinky léků MeSH
- kovové nanočástice * chemie MeSH
- mikrobiální testy citlivosti * MeSH
- Staphylococcus aureus * účinky léků MeSH
- stříbro * farmakologie chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- stříbro * MeSH
Nanostructured materials with antibacterial activity face the same threat as conventional antibiotics - bacterial resistance, which reduces their effectiveness. However, unlike antibiotics, research into the emergence and mechanisms of bacterial resistance to antibacterial nanomaterials is still in its early stages. Here we show how Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria develop resistance to silver nanoparticles, resulting in an increase in the minimum inhibitory concentration from 1.69 mg/L for S. aureus and 3.38 mg/L for E. coli to 54 mg/L with repeated exposure over 12 and 6 cultivation steps, respectively. The mechanism of resistance is the same for both types of bacteria and involves the aggregation of silver nanoparticles leading to the formation of black precipitates. However, the way in which Gram-positive and Gram-negative bacteria induce aggregation of silver nanoparticles is completely different. Chemical analysis of the surface of the silver precipitates shows that aggregation is triggered by flagellin production in E. coli and by bacterial biofilm formation in S. aureus. However, resistance in both types of bacteria can be overcome by using pomegranate rind extract, which inhibits both flagellin and biofilm production, or by stabilizing the silver nanoparticles by covalently binding them to a composite material containing graphene sheets, which protects the silver nanoparticles from aggregation induced by the bacterial biofilm produced by S. aureus. This research improves the understanding of bacterial resistance mechanisms to nanostructured materials, which differ from resistance mechanisms to conventional antibiotics, and provides potential strategies to combat bacterial resistance and develop more effective antimicrobial treatments.
Zobrazit více v PubMed
O´Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, (2014).
Baptista, P. V. et al. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans. Front. Microbiol.9, 1–26 (2018). PubMed PMC
Muzammil, S. et al. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci.10, 352–374 (2018). PubMed
Makabenta, J. M. V. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol.19, 23–36 (2021). PubMed PMC
Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. T. Metals to combat antimicrobial resistance. Nat. Rev. Chem.7, 202–224 (2023). PubMed PMC
Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol.15, 1–20 (2017). PubMed PMC
Smith, W. P. J., Wucher, B. R., Nadell, C. D. & Foster, K. R. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat. Rev. Microbiol.21, 519–534 (2023). PubMed
Graves, J. L. Jr et al. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet.6, 42 (2015). PubMed PMC
Salas-Orozco, M. et al. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J. Nanomater2019, 7630316 (2019).
Faghihzadeh, F., Anaya, N. M., Astudillo-Castro, C. & Oyanedel-Craver, V. Kinetic, metabolic and macromolecular response of bacteria to chronic nanoparticle exposure in continuous culture. Environ. Sci. Nano5, 1386–1396 (2018).
Stabryla, L. M. et al. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol.16, 996–1003 (2021). PubMed
Gunawan, C., Teoh, W. Y., Marquis, C. P. & Amal, R. Induced adaptation of Bacillus sp. to antimicrobial nanosilver. Small9, 3554–3560 (2013). PubMed
Khan, S., Mukherjee, A. & Chandrasekaran, N. Silver nanoparticles tolerant bacteria from sewage environment. J. Environ. Sci.23, 346–352 (2011). PubMed
Yang, Y. & Alvarez, P. J. J. Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ. Sci. Technol. Lett.2, 221–226 (2015).
Ellis, D. H., Maurer-Gardner, E. I., Sulentic, C. E. W. & Hussain, S. M. Silver nanoparticle antibacterial efficacy and resistance development in key bacterial species. Biomed. Phys. Eng. Express5, 1–13 (2019).
Panáček, A. et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol.13, 65–71 (2018). PubMed
Valentin, E. et al. Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. Nanoscale12, 2384–2392 (2020). PubMed
Elbehiry, A., Al-Dubaib, M., Marzouk, E. & Moussa, I. Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats. Microbiologyopen8, e698 (2019). PubMed PMC
Kędziora, A. et al. Consequences of long-term bacteria’s exposure to silver nanoformulations with different physicochemical properties. Int. J. Nanomed.15, 199–213 (2020). PubMed PMC
Panáček, A. et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B110, 16248–16253 (2006). PubMed
Jacqueline, C. & Caillon, J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J. Antimicrob. Chemother.69, 37–40 (2014). PubMed
Usui, M., Yoshii, Y., Thiriet-Rupert, S., Ghigo, J. M. & Beloin, C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun. Biol.6, 275 (2023). PubMed PMC
Harrison, J. J., Ceri, H. & Turner, R. J. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol.5, 928–938 (2007). PubMed
Black, C. E. & Costerton, J. W. Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing. Surg. Clin. North Am.90, 1147–1160 (2010). PubMed
Hall, C. W. & Mah, T. F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev.41, 276–301 (2017). PubMed
Venkatesan, N., Perumal, G. & Doble, M. Bacterial resistance in biofilm-associated bacteria. Fut. Microbiol.10, 1743–1750 (2015). PubMed
Craft, K. M., Nguyen, J. M., Berg, L. J. & Townsend, S. D. Methicillin-resistant: Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm10, 1231–1241 (2019). PubMed PMC
Dsouza, F. P., Dinesh, S. & Sharma, S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch. Microbiol.206, 1–34 (2024). PubMed
El et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol.44, 1260–1266 (2010). PubMed
Joshi, A. S., Singh, P. & Mijakovic, I. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int. J. Mol. Sci.21, 1–24 (2020). PubMed PMC
Mann, R. et al. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. J Nanobiotechnol.19, 291 (2021). PubMed PMC
Christensen, G. D. et al. Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. J. Clin. Microbiol.22, 996–1006 (1985). PubMed PMC
Panáček, A. et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces142, 392–399 (2016). PubMed
Meléndez, P. A. & Capriles, V. A. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine13, 272–276 (2006). PubMed
Braga, L. C. et al. Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production. J. Ethnopharmacol.96, 335–339 (2005). PubMed
Braga, L. C. et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol.51, 541–547 (2005). PubMed
Sorrenti, V. et al. Beneficial effects of pomegranate peel extract and probiotics on pre-adipocyte differentiation. Front. Microbiol.10, 660 (2019). PubMed PMC
Er-rahmani, S. et al. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. Environ. Sci. Pollut. Res. Int.31, 34859–34880 (2024). PubMed
Salim, A. et al. Antimicrobial and antibiofilm activities of pomegranate peel phenolic compounds: varietal screening through a multivariate approach. J. Bioresour. Bioprod.8, 146–161 (2023).
Hassan, M. G. et al. Pomegranate extract-mediated synthesis of silver nanoparticles: a potential dual-anticancer and antimicrobial agent. Inorg. Chem. Commun.10.1016/j.inoche.2024.112853 (2024).
Nasiriboroumand, M., Montazer, M. & Barani, H. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J. Photochem. Photobiol. B179, 98–104 (2018). PubMed
Panáček, D. et al. Silver covalently bound to cyanographene overcomes bacterial resistance to silver nanoparticles and antibiotics. Adv. Sci.2003090, 3–10 (2021). PubMed PMC
Hochvaldová, L. et al. Restoration of antibacterial activity of inactive antibiotics via combined treatment with a cyanographene/Ag nanohybrid. Sci. Rep.12, 1–9 (2022). PubMed PMC
Stepanovic, S. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. J. Compil.115, 891–900 (2007). PubMed
Asadishad, B., Hidalgo, G. & Tufenkji, N. Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic Escherichia coli strain CFT073. FEMS Microbiol Lett.334, 87–94 (2012). PubMed
Bakandritsos, A. et al. Cyanographene and graphene acid: emerging derivatives enabling high-yield and selective functionalization of graphene. ACS Nano11, 2982–2991 (2017). PubMed PMC
Hochvaldova, L. et al. Numerical source data for graphs [Data set]. Zenodo. 10.5281/zenodo.14054828 (2024).