Linear-Structure Single-Atom Gold(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38125981
PubMed Central
PMC10729017
DOI
10.1021/acscatal.3c03937
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A strategy for the synthesis of a gold-based single-atom catalyst (SAC) via a one-step room temperature reduction of Au(III) salt and stabilization of Au(I) ions on nitrile-functionalized graphene (cyanographene; G-CN) is described. The graphene-supported G(CN)-Au catalyst exhibits a unique linear structure of the Au(I) active sites promoting a multistep mode of action in dehydrogenative coupling of organosilanes with alcohols under mild reaction conditions as proven by advanced XPS, XAFS, XANES, and EPR techniques along with DFT calculations. The linear structure being perfectly accessible toward the reactant molecules and the cyanographene-induced charge transfer resulting in the exclusive Au(I) valence state contribute to the superior efficiency of the emerging two-dimensional SAC. The developed G(CN)-Au SAC, despite its low metal loading (ca. 0.6 wt %), appear to be the most efficient catalyst for Si-H bond activation with a turnover frequency of up to 139,494 h-1 and high selectivities, significantly overcoming all reported homogeneous gold catalysts. Moreover, it can be easily prepared in a multigram batch scale, is recyclable, and works well toward more than 40 organosilanes. This work opens the door for applications of SACs with a linear structure of the active site for advanced catalytic applications.
Zobrazit více v PubMed
Liu L.; Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. 10.1021/acs.chemrev.7b00776. PubMed DOI PMC
Chen Z.; Zhang Q.; Chen W.; Dong J.; Yao H.; Zhang X.; Tong X.; Wang D.; Peng Q.; Chen C.; He W.; Li Y. Single-Site AuI Catalyst for Silane Oxidation with Water. Adv. Mater. 2018, 30, 1704720.10.1002/adma.201704720. PubMed DOI
Sun X.; Dawson S. R.; Parmentier T. E.; Malta G.; Davies T. E.; He Q.; Lu L.; Morgan D. J.; Carthey N.; Johnston P.; Kondrat S. A.; Freakley S. J.; Kiely C. J.; Hutchings G. J. Facile Synthesis of Precious-Metal Single-Site Catalysts using Organic Solvents. Nat. Chem. 2020, 12, 560–567. 10.1038/s41557-020-0446-z. PubMed DOI
Malta G.; Kondrat S. A.; Freakley S. J.; Davies C. J.; Lu L.; Dawson S.; Thetford A.; Gibson E. K.; Morgan D. J.; Jones W.; Wells P. P.; Johnston P.; Catlow C. R. A.; Kiely C. J.; Hutchings G. J. Identification of Single-Site Gold Catalysis in Acetylene Hydrochlorination. Science 2017, 355, 1399.10.1126/science.aal3439. PubMed DOI
Wei S.; Li A.; Liu J.-C.; Li Z.; Chen W.; Gong Y.; Zhang Q.; Cheong W.-C.; Wang Y.; Zheng L.; Xiao H.; Chen C.; Wang D.; Peng Q.; Gu L.; Han X.; Li J.; Li Y. Direct Observation of Noble Metal Nanoparticles Transforming to Thermally Stable Single Atoms. Nat. Nanotechnol. 2018, 13, 856–861. 10.1038/s41565-018-0197-9. PubMed DOI
Chen Z.; Vorobyeva E.; Mitchell S.; Fako E.; Ortuño M. A.; López N.; Collins S. M.; Midgley P. A.; Richard S.; Vilé G.; Pérez-Ramírez J. A Heterogeneous Single-Atom Palladium Catalyst Surpassing Homogeneous Systems for Suzuki Coupling. Nat. Nanotechnol. 2018, 13, 702–707. 10.1038/s41565-018-0167-2. PubMed DOI
Xiong Y.; Dong J.; Huang Z.-Q.; Xin P.; Chen W.; Wang Y.; Li Z.; Jin Z.; Xing W.; Zhuang Z.; Ye J.; Wei X.; Cao R.; Gu L.; Sun S.; Zhuang L.; Chen X.; Yang H.; Chen C.; Peng Q.; Chang C.-R.; Wang D.; Li Y. Single-Atom Rh/N-doped Carbon Electrocatalyst for Formic Acid Oxidation. Nat. Nanotechnol. 2020, 15, 390–397. 10.1038/s41565-020-0665-x. PubMed DOI
Xiao M.; Zhu J.; Li G.; Li N.; Li S.; Cano Z. P.; Ma L.; Cui P.; Xu P.; Jiang G.; Jin H.; Wang S.; Wu T.; Lu J.; Yu A.; Su D.; Chen Z. A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645. 10.1002/anie.201905241. PubMed DOI
Haruta M. Size- and Support-Dependency in the Catalysis of Gold. Catal. Today 1997, 36, 153–166. 10.1016/S0920-5861(96)00208-8. DOI
Chen M.; Goodman D. W. Catalytically Active Gold: From Nanoparticles to Ultrathin Films. Acc. Chem. Res. 2006, 39, 739–746. 10.1021/ar040309d. PubMed DOI
Liu Y.; Tsunoyama H.; Akita T.; Xie S.; Tsukuda T. Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. ACS Catal. 2011, 1, 2–6. 10.1021/cs100043j. DOI
Corma A.; Concepción P.; Boronat M.; Sabater M. J.; Navas J.; Yacaman M. J.; Larios E.; Posadas A.; López-Quintela M. A.; Buceta D.; Mendoza E.; Guilera G.; Mayoral A. Exceptional Oxidation Activity with Size-Controlled Supported Gold Clusters of Low Atomicity. Nat. Chem. 2013, 5, 775.10.1038/nchem.1721. PubMed DOI
Hutchings G. J. Catalysis by Gold. Catal. Today 2005, 100, 55–61. 10.1016/j.cattod.2004.12.016. DOI
Yang Q.; Jiang H. Oxidation or Reduction State of Au Stabilized by an MOF: Active Site Identification for the Three-Component Coupling Reaction. Small Methods 2018, 2, 1800216.10.1002/smtd.201800216. DOI
Pietrasik J.; Zaborski M. Sol–Gel Process of Alkoxysilanes in an Elastomer Medium. Polym. Int. 2005, 54, 1119–1125. 10.1002/pi.1812. DOI
Kamiya K.; Katayama A.; Suzuki H.; Nishida K.; Hashimoto T.; Matsuoka J.; Nasu H. Preparation of Silicon Oxycarbide Glass Fibers by Sol-Gel Method—Effect of Starting Sol Composition on Tensile Strength of Fibers. J. Sol-Gel Sci. Technol. 1999, 14, 95–102. 10.1023/A:1008784032647. DOI
Denmark S. E.; Regens C. S. Palladium-Catalyzed Cross-Coupling Reactions of Organosilanols and Their Salts: Practical Alternatives to Boron- and Tin-Based Methods. Acc. Chem. Res. 2008, 41, 1486–1499. 10.1021/ar800037p. PubMed DOI PMC
Corey E. J.; Venkateswarlu A. Protection of Hydroxyl Groups as Tert-Butyldimethylsilyl Derivatives. J. Am. Chem. Soc. 1972, 94, 6190–6191. 10.1021/ja00772a043. DOI
Hatano B.; Toyota S.; Toda F. Efficient Solvent-free Silylation of Alcohols with RSiCl. Green. Chem. 2001, 3, 140–142. 10.1039/b102447g. DOI
Lee M.; Ko S.; Chang S. Highly Selective and Practical Hydrolytic Oxidation of Organosilanes to Silanols Catalyzed by a Ruthenium Complex. J. Am. Chem. Soc. 2000, 122, 12011–12012. 10.1021/ja003079g. DOI
Chen B.; Li F.; Mei Q.; Yang Y.; Liu H.; Yuan G.; Han B. Synthesis of Nitrogen and Sulfur Co-Doped Hierarchical Porous Carbons and Metal-Free Oxidative Coupling of Silanes with Alcohols. Chem. Commun. 2017, 53, 13019–13022. 10.1039/C7CC07931A. PubMed DOI
Lin J.-D.; Bi Q.-Y.; Tao L.; Jiang T.; Liu Y.-M.; He H.-Y.; Cao Y.; Wang Y.-D. Wettability-Driven Palladium Catalysis for Enhanced Dehydrogenative Coupling of Organosilanes. ACS Catal. 2017, 7, 1720–1727. 10.1021/acscatal.6b03233. DOI
Wang X.; Li P.; Li Z.; Chen W.; Zhou H.; Zhao Y.; Wang X.; Zheng L.; Dong J.; Lin Y.; Zheng X.; Yan W.; Yang J.; Yang Z.; Qu Y.; Yuan T.; Wu Y.; Li Y. 2D MOF Induced Accessible and Exclusive Co Single Sites for an Efficient O-Silylation of Alcohols with Silanes. Chem. Commun. 2019, 55, 6563–6566. 10.1039/C9CC01717H. PubMed DOI
Liu K.; Badamdorj B.; Yang F.; Janik M. J.; Antonietti M. Accelerated Anti-Markovnikov Alkene Hydrosilylation with Humic-Acid-Supported Electron-Deficient Platinum Single Atoms. Angew. Chem., Int. Ed. 2021, 60, 24220–24226. 10.1002/anie.202109689. PubMed DOI PMC
Dhiman M.; Chalke B.; Polshettiwar V. Organosilane Oxidation with a Half Million Turnover Number using Fibrous Nanosilica Supported Ultrasmall Nanoparticles and Pseudo-Single Atoms of Gold. J. Mater. Chem. A 2017, 5, 1935–1940. 10.1039/C6TA09434A. DOI
Li W.; Wang A.; Yang X.; Huang Y.; Zhang T. Au/SiO2 as a Highly Active Catalyst for the Selective Oxidation of Silanes to Silanols. Chem. Commun. 2012, 48, 9183–9185. 10.1039/c2cc33949h. PubMed DOI
Kaiser S. K.; Lin R.; Mitchell S.; Fako E.; Krumeich F.; Hauert R.; Safonova O. V.; Kondratenko V. A.; Kondratenko E. V.; Collins S. M.; Midgley P. A.; López N.; Pérez-Ramírez J. Controlling the Speciation and Reactivity of Carbon-Supported Gold Nanostructures for Catalysed Acetylene Hydrochlorination. Chem. Sci. 2019, 10, 359–369. 10.1039/C8SC03186J. PubMed DOI PMC
Zhong J.-H.; Jin X.; Meng L.; Wang X.; Su H.-S.; Yang Z.-L.; Williams C. T.; Ren B. Probing the Electronic and Catalytic Properties of a Bimetallic Surface with 3 nm Resolution. Nat. Nanotechnol. 2017, 12, 132–136. 10.1038/nnano.2016.241. PubMed DOI
Bakandritsos A.; Pykal M.; Błoński P.; Jakubec P.; Chronopoulos D. D.; Poláková K.; Georgakilas V.; Čépe K.; Tomanec O.; Ranc V.; Bourlinos A. B.; Zbořil R.; Otyepka M. Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano 2017, 11, 2982–2991. 10.1021/acsnano.6b08449. PubMed DOI PMC
Asensio J. M.; Bouzouita D.; van Leeuwen P. W. N. M.; Chaudret B. σ-H–H, σ-C–H, and σ-Si–H Bond Activation Catalyzed by Metal Nanoparticles. Chem. Rev. 2020, 120, 1042–1084. 10.1021/acs.chemrev.9b00368. PubMed DOI
Langer R.; Fako E.; Błoński P.; Vavrečka M.; Bakandritsos A.; Otyepka M.; López N. Anchoring of Single-Platinum-Adatoms on Cyanographene: Experiment and Theory. Appl. Mater. Today 2020, 18, 10046210.1016/j.apmt.2019.100462. DOI
Panáček D.; Hochvaldová L.; Bakandritsos A.; Malina T.; Langer M.; Belza J.; Martincová J.; Večeřová R.; Lazar P.; Poláková K.; Kolařík J.; Válková L.; Kolář M.; Otyepka M.; Panáček A.; Zbořil R. Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Adv. Sci. 2021, 8, 2003090.10.1002/advs.202170065. PubMed DOI PMC
Engesser T. A.; Friedmann C.; Martens A.; Kratzert D.; Malinowski P. J.; Krossing I. Homoleptic Gold Acetonitrile Complexes with Medium to Very Weakly Coordinating Counterions: Effect on Aurophilicity?. Chem. - Eur. J. 2016, 22, 15085–15094. 10.1002/chem.201602797. PubMed DOI
Orpen A. G.; Brammer L.; Allen F. H.; Watson D. G.; Taylor R.: Typical Interatomic Distances: Organometallic Compounds and Coordination Complexes of the d- and f-Block Metals. In International Tables for Crystallography, Set, Volumes A - G; International Union of Crystallography; pp 812–896.
Villa A.; Dimitratos N.; Chan-Thaw C. E.; Hammond C.; Veith G. M.; Wang D.; Manzoli M.; Prati L.; Hutchings G. J. Characterisation of Gold Catalysts. Chem. Soc. Rev. 2016, 45, 4953–4994. 10.1039/C5CS00350D. PubMed DOI
Zaoralová D.; Mach R.; Lazar P.; Medved’ M.; Otyepka M. Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Single-Atom Catalysts. Adv. Mater. Interfaces 2021, 8, 2001392.10.1002/admi.202001392. DOI
Bakandritsos A.; Kadam R. G.; Kumar P.; Zoppellaro G.; Medved’ M.; Tuček J.; Montini T.; Tomanec O.; Andrýsková P.; Drahoš B.; Varma R. S.; Otyepka M.; Gawande M. B.; Fornasiero P.; Zbořil R. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019, 31, 1900323.10.1002/adma.201900323. PubMed DOI
John J.; Gravel E.; Hagège A.; Li H.; Gacoin T.; Doris E. Catalytic Oxidation of Silanes by Carbon Nanotube-Gold Nanohybrids. Angew. Chem., Int. Ed. 2011, 50, 7533–7536. 10.1002/anie.201101993. PubMed DOI
Ventura-Espinosa D.; Carretero-Cerdán A.; Baya M.; García H.; Mata J. A. Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier. Chem. - Eur. J. 2017, 23, 10815–10821. 10.1002/chem.201700243. PubMed DOI
Dhakshinamoorthy A.; Concepcion P.; Garcia H. Dehydrogenative Coupling of Silanes with Alcohols Catalyzed by Cu3(BTC)2. Chem. Commun. 2016, 52, 2725–2728. 10.1039/C5CC10216B. PubMed DOI
Kaas R. L.; Kardos J. L. The Interaction of Alkoxy Silane Coupling Agents with Silica Surfaces. Polym. Eng. Sci. 1971, 11, 11–18. 10.1002/pen.760110104. DOI
Chandrasekhar V.; Boomishankar R.; Nagendran S. Recent Developments in the Synthesis and Structure of Organosilanols. Chem. Rev. 2004, 104, 5847–5910. 10.1021/cr0306135. PubMed DOI
Lickiss P. D.; Lucas R. Oxidation of Sterically Hindered Organosilicon Hydrides Using Potassium Permanganate. J. Organomet. Chem. 1996, 521, 229–234. 10.1016/0022-328X(95)06068-8. DOI
Valliant-Saunders K.; Gunn E.; Shelton G. R.; Hrovat D. A.; Borden W. T.; Mayer J. M. Oxidation of Tertiary Silanes by Osmium Tetroxide. Inorg. Chem. 2007, 46, 5212–5219. 10.1021/ic062468u. PubMed DOI
Sommer L. H.; Ulland L. A.; Parker G. A. Stereochemistry of Asymmetric Silicon. XX. Hydroxylation and Carbene Insertion Reactions of R3SiH. J. Am. Chem. Soc. 1972, 94, 3469–3471. 10.1021/ja00765a036. DOI
Adam W.; Mitchell C. M.; Saha-Möller C. R.; Weichold O. Host–Guest Chemistry in a Urea Matrix: Catalytic and Selective Oxidation of Triorganosilanes to the Corresponding Silanols by Methyltrioxorhenium and the Urea/Hydrogen Peroxide Adduct. J. Am. Chem. Soc. 1999, 121, 2097–2103. 10.1021/ja9826542. DOI
John J.; Gravel E.; Hagège A.; Li H.; Gacoin T.; Doris E. Catalytic Oxidation of Silanes by Carbon Nanotube–Gold Nanohybrids. Angew. Chem., Int. Ed. 2011, 50, 7533–7536. 10.1002/anie.201101993. PubMed DOI
Greco R.; Goessler W.; Cantillo D.; Kappe C. O. Benchmarking Immobilized Di- and Triarylphosphine Palladium Catalysts for Continuous-Flow Cross-Coupling Reactions: Efficiency, Durability, and Metal Leaching Studies. ACS Catal. 2015, 5, 1303–1312. 10.1021/cs5020089. DOI
Stoian D.; Bansode A.; Medina F.; Urakawa A. Catalysis under Microscope: Unraveling the Mechanism of Catalyst de- and re-Activation in the Continuous Dimethyl Carbonate Synthesis from CO2 And Methanol in the Presence of a Dehydrating Agent. Catal. Today 2017, 283, 2–10. 10.1016/j.cattod.2016.03.038. DOI
Baumann M.; Moody T. S.; Smyth M.; Wharry S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org. Process Res. Dev. 2020, 24, 1802–1813. 10.1021/acs.oprd.9b00524. DOI