Single Atom Engineering for Electrocatalysis: Fundamentals and Applications

. 2025 Jul 04 ; 15 (13) : 11617-11663. [epub] 20250620

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40636740

The global transition to sustainable energy production revolves around innovations in electrocatalysis, the cornerstone of energy conversion technologies. Over the years, catalysts have evolved from bulk materials to nanoparticles (NPs) and nanoclusters (NCs), culminating in single-atom catalysts (SACs), which represent the peak of catalyst engineering. SACs have revolutionized electrocatalytic processes by maximizing atom efficiency and offering tunable electronic properties, lowering the energy barrier associated with the absorption and desorption of key reaction intermediates, thus promoting specific reaction pathways. This review delves into the synthesis, characterization, and theoretical modeling of SACs, offering a comprehensive analysis of state-of-the-art methodologies. It highlights recent breakthroughs in diverse electrocatalytic reactions, including the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting, the oxygen reduction reaction (ORR) for Zn-air batteries and fuel cells, the CO2 reduction reaction (CO2RR), and green ammonia synthesis. The discussion emphasizes the unique mechanisms that drive the exceptional performance of SACs, shedding light on their unparalleled activity, selectivity, and stability. By integrating experimental insights with computational advances, this work outlines a path for the rational design of next-generation SACs tailored to a broad spectrum of electrocatalytic applications. While summarizing the current landscape of electrocatalysis by SACs, it also outlines future directions to address the energy challenges of tomorrow, serving as a valuable resource for advancing the field.

Zobrazit více v PubMed

Zhu J., Hu L., Zhao P., Lee L. Y. S., Wong K.-Y.. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020;120(2):851–918. doi: 10.1021/acs.chemrev.9b00248. PubMed DOI

Song J., Wei C., Huang Z.-F., Liu C., Zeng L., Wang X., Xu Z. J.. A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chem. Soc. Rev. 2020;49(7):2196–2214. doi: 10.1039/C9CS00607A. PubMed DOI

Yu Z.-Y., Duan Y., Feng X.-Y., Yu X., Gao M.-R., Yu S.-H.. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021;33(31):2007100. doi: 10.1002/adma.202007100. PubMed DOI

Tian X., Lu X. F., Xia B. Y., Lou X. W.. Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule. 2020;4(1):45–68. doi: 10.1016/j.joule.2019.12.014. DOI

Zhou T., Zhang N., Wu C., Xie Y.. Surface/Interface Nanoengineering for Rechargeable Zn–Air Batteries. Energy Environ. Sci. 2020;13(4):1132–1153. doi: 10.1039/C9EE03634B. DOI

Li W., Wang D., Zhang Y., Tao L., Wang T., Zou Y., Wang Y., Chen R., Wang S.. Defect Engineering for Fuel-Cell Electrocatalysts. Adv. Mater. 2020;32(19):1907879. doi: 10.1002/adma.201907879. PubMed DOI

Wang G., Chen J., Ding Y., Cai P., Yi L., Li Y., Tu C., Hou Y., Wen Z., Dai L.. Electrocatalysis for CO2 Conversion: From Fundamentals to Value-Added Products. Chem. Soc. Rev. 2021;50(8):4993–5061. doi: 10.1039/D0CS00071J. PubMed DOI

Jin S., Hao Z., Zhang K., Yan Z., Chen J.. Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization. Angew. Chem., Int. Ed. 2021;60(38):20627–20648. doi: 10.1002/anie.202101818. PubMed DOI

Yang B., Ding W., Zhang H., Zhang S.. Recent Progress in Electrochemical Synthesis of Ammonia from Nitrogen: Strategies to Improve the Catalytic Activity and Selectivity. Energy Environ. Sci. 2021;14(2):672–687. doi: 10.1039/D0EE02263B. DOI

Liu D., Qiao L., Peng S., Bai H., Liu C., Ip W. F., Lo K. H., Liu H., Ng K. W., Wang S., Yang X., Pan H.. Recent Advances in Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Adv. Funct. Mater. 2023;33(43):2303480. doi: 10.1002/adfm.202303480. DOI

Wang Y., Zheng X., Wang D.. Design Concept for Electrocatalysts. Nano Res. 2022;15(3):1730–1752. doi: 10.1007/s12274-021-3794-0. DOI

Mirkin C. A., Sargent E. H., Schrag D. P.. Energy Transition Needs New Materials. Science (80-.) 2024;384(6697):713. doi: 10.1126/science.adq3799. PubMed DOI

Hansen J. N., Prats H., Toudahl K. K., Mørch Secher N., Chan K., Kibsgaard J., Chorkendorff I.. Is There Anything Better than Pt for HER? ACS Energy Lett. 2021;6(4):1175–1180. doi: 10.1021/acsenergylett.1c00246. PubMed DOI PMC

Astruc D.. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020;120(2):461–463. doi: 10.1021/acs.chemrev.8b00696. PubMed DOI

Xie C., Niu Z., Kim D., Li M., Yang P.. Surface and Interface Control in Nanoparticle Catalysis. Chem. Rev. 2020;120(2):1184–1249. doi: 10.1021/acs.chemrev.9b00220. PubMed DOI

Liu L., Corma A.. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018;118(10):4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC

Yan H., Xiang H., Liu J., Cheng R., Ye Y., Han Y., Yao C.. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. Small. 2022;18(23):2200812. doi: 10.1002/smll.202200812. PubMed DOI

Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T.. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nat. Chem. 2011;3(8):634–641. doi: 10.1038/nchem.1095. PubMed DOI

Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T.. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46(8):1740–1748. doi: 10.1021/ar300361m. PubMed DOI

Zhu C., Fu S., Shi Q., Du D., Lin Y.. Single-Atom Electrocatalysts. Angew. Chem., Int. Ed. 2017;56(45):13944–13960. doi: 10.1002/anie.201703864. PubMed DOI

Zhou Y., Jiang Y., Ji Y., Lang R., Fang Y., Wu C.-D.. The Opportunities and Challenges in Single-Atom Catalysis. ChemCatChem. 2023;15(5):e202201176. doi: 10.1002/cctc.202201176. DOI

Ren Y., Wang J., Zhang M., Wang Y., Cao Y., Kim D. H., Liu Y., Lin Z.. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. Small. 2024;20(22):2308213. doi: 10.1002/smll.202308213. PubMed DOI

Lu B., Liu Q., Chen S.. Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catal. 2020;10(14):7584–7618. doi: 10.1021/acscatal.0c01950. DOI

Wang Y., Su H., He Y., Li L., Zhu S., Shen H., Xie P., Fu X., Zhou G., Feng C., Zhao D., Xiao F., Zhu X., Zeng Y., Shao M., Chen S., Wu G., Zeng J., Wang C.. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem. Rev. 2020;120(21):12217–12314. doi: 10.1021/acs.chemrev.0c00594. PubMed DOI

Zhang Q., Guan J.. Single-Atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020;30(31):2000768. doi: 10.1002/adfm.202000768. DOI

Humayun M., Israr M., Khan A., Bououdina M.. State-of-the-Art Single-Atom Catalysts in Electrocatalysis: From Fundamentals to Applications. Nano Energy. 2023;113:108570. doi: 10.1016/j.nanoen.2023.108570. DOI

Li W., Guo Z., Yang J., Li Y., Sun X., He H., Li S., Zhang J.. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022;5(3):9. doi: 10.1007/s41918-022-00169-z. DOI

Luo G., Song M., Zhang Q., An L., Shen T., Wang S., Hu H., Huang X., Wang D.. Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters. Nano-Micro Lett. 2024;16(1):241. doi: 10.1007/s40820-024-01463-9. PubMed DOI PMC

Tieu P., Yan X., Xu M., Christopher P., Pan X.. Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review. Small. 2021;17(16):2006482. doi: 10.1002/smll.202006482. PubMed DOI

Sarma B. B., Maurer F., Doronkin D. E., Grunwaldt J.-D.. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-Ray Spectroscopic Tools. Chem. Rev. 2023;123(1):379–444. doi: 10.1021/acs.chemrev.2c00495. PubMed DOI PMC

Jing H., Zhu P., Zheng X., Zhang Z., Wang D., Li Y.. Theory-Oriented Screening and Discovery of Advanced Energy Transformation Materials in Electrocatalysis. Adv. Powder Mater. 2022;1(1):100013. doi: 10.1016/j.apmate.2021.10.004. DOI

Zhang Q., Guan J.. Atomically Dispersed Catalysts for Hydrogen/Oxygen Evolution Reactions and Overall Water Splitting. J. Power Sources. 2020;471:228446. doi: 10.1016/j.jpowsour.2020.228446. DOI

Xu H., Zhao Y., He G., Chen H.. Race on Engineering Noble Metal Single-Atom Electrocatalysts for Water Splitting. Int. J. Hydrogen Energy. 2022;47(31):14257–14279. doi: 10.1016/j.ijhydene.2022.02.152. DOI

Wan C., Duan X., Huang Y.. Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction. Adv. Energy Mater. 2020;10(14):1903815. doi: 10.1002/aenm.201903815. DOI

Zhang J., Yang H., Liu B.. Coordination Engineering of Single-Atom Catalysts for the Oxygen Reduction Reaction: A Review. Adv. Energy Mater. 2021;11(3):2002473. doi: 10.1002/aenm.202002473. DOI

Li M., Wang H., Luo W., Sherrell P. C., Chen J., Yang J.. Heterogeneous Single-Atom Catalysts for Electrochemical CO2 Reduction Reaction. Adv. Mater. 2020;32(34):2001848. doi: 10.1002/adma.202001848. PubMed DOI

Wang Y., Liu Y., Liu W., Wu J., Li Q., Feng Q., Chen Z., Xiong X., Wang D., Lei Y.. Regulating the Coordination Structure of Metal Single Atoms for Efficient Electrocatalytic CO2 Reduction. Energy Environ. Sci. 2020;13(12):4609–4624. doi: 10.1039/D0EE02833A. DOI

Zhai Y., Zhu Z., Zhu C., Chen K., Zhang X., Tang J., Chen J.. Single-Atom Catalysts Boost Nitrogen Electroreduction Reaction. Mater. Today. 2020;38:99–113. doi: 10.1016/j.mattod.2020.03.022. DOI

Qi K., Chhowalla M., Voiry D.. Single Atom Is Not Alone: Metal–Support Interactions in Single-Atom Catalysis. Mater. Today. 2020;40:173–192. doi: 10.1016/j.mattod.2020.07.002. DOI

Gloag L., Somerville S. V., Gooding J. J., Tilley R. D.. Co-Catalytic Metal–Support Interactions in Single-Atom Electrocatalysts. Nat. Rev. Mater. 2024;9(3):173–189. doi: 10.1038/s41578-023-00633-2. DOI

Jia C., Sun Q., Liu R., Mao G., Maschmeyer T., Gooding J. J., Zhang T., Dai L., Zhao C.. Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications. Adv. Mater. 2024;36(42):2404659. doi: 10.1002/adma.202404659. PubMed DOI

Li S., Lu X., Liu S., Zhou J., Liu Y., Zhang H., Shen R., Sun K., Jiang J., Wang Y., Li B.. Structure Design and Electrochemical Properties of Carbon-Based Single Atom Catalysts in Energy Catalysis: A Review. J. Energy Chem. 2024;98:196–236. doi: 10.1016/j.jechem.2024.06.028. DOI

Yang H. B., Hung S.-F., Liu S., Yuan K., Miao S., Zhang L., Huang X., Wang H.-Y., Cai W., Chen R., Gao J., Yang X., Chen W., Huang Y., Chen H. M., Li C. M., Zhang T., Liu B.. Atomically Dispersed Ni­(I) as the Active Site for Electrochemical CO2 Reduction. Nat. Energy. 2018;3(2):140–147. doi: 10.1038/s41560-017-0078-8. DOI

Jiang K., Back S., Akey A. J., Xia C., Hu Y., Liang W., Schaak D., Stavitski E., Nørskov J. K., Siahrostami S., Wang H.. Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nat. Commun. 2019;10(1):3997. doi: 10.1038/s41467-019-11992-2. PubMed DOI PMC

Sun J.-F., Xu Q.-Q., Qi J.-L., Zhou D., Zhu H.-Y., Yin J.-Z.. Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustain. Chem. Eng. 2020;8(39):14630–14656. doi: 10.1021/acssuschemeng.0c04324. DOI

Qian S., Xu F., Fan Y., Cheng N., Xue H., Yuan Y., Gautier R., Jiang T., Tian J.. Tailoring Coordination Environments of Single-Atom Electrocatalysts for Hydrogen Evolution by Topological Heteroatom Transfer. Nat. Commun. 2024;15(1):2774. doi: 10.1038/s41467-024-47061-6. PubMed DOI PMC

Hannagan R. T., Giannakakis G., Flytzani-Stephanopoulos M., Sykes E. C. H.. Single-Atom Alloy Catalysis. Chem. Rev. 2020;120(21):12044–12088. doi: 10.1021/acs.chemrev.0c00078. PubMed DOI

Chen C.-H., Wu D., Li Z., Zhang R., Kuai C.-G., Zhao X.-R., Dong C.-K., Qiao S.-Z., Liu H., Du X.-W.. Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution. Adv. Energy Mater. 2019;9(20):1803913. doi: 10.1002/aenm.201803913. DOI

Cao Y., Chen S., Bo S., Fan W., Li J., Jia C., Zhou Z., Liu Q., Zheng L., Zhang F.. Single Atom Bi Decorated Copper Alloy Enables C–C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products. Angew. Chem., Int. Ed. 2023;62(30):e202303048. doi: 10.1002/anie.202303048. PubMed DOI

Li R., Luo L., Ma X., Wu W., Wang M., Zeng J.. Single Atoms Supported on Metal Oxides for Energy Catalysis. J. Mater. Chem. A. 2022;10(11):5717–5742. doi: 10.1039/D1TA08016D. DOI

Duan X., Li T., Jiang X., Liu X., Xin L., Yang H., Kuang Y., Sun X.. Catalytic Applications of Single-Atom Metal-Anchored Hydroxides: Recent Advances and Perspective. Mater. Rep. Energy. 2022;2(3):100146. doi: 10.1016/j.matre.2022.100146. DOI

Kuznetsov D. A., Chen Z., Abdala P. M., Safonova O. V., Fedorov A., Müller C. R.. Single-Atom-Substituted Mo2CTx:Fe-Layered Carbide for Selective Oxygen Reduction to Hydrogen Peroxide: Tracking the Evolution of the MXene Phase. J. Am. Chem. Soc. 2021;143(15):5771–5778. doi: 10.1021/jacs.1c00504. PubMed DOI

Li H., Wang W., Xue S., He J., Liu C., Gao G., Di S., Wang S., Wang J., Yu Z., Li L.. Superstructure-Assisted Single-Atom Catalysis on Tungsten Carbides for Bifunctional Oxygen Reactions. J. Am. Chem. Soc. 2024;146(13):9124–9133. doi: 10.1021/jacs.3c14354. PubMed DOI

Feng J., Gao H., Zheng L., Chen Z., Zeng S., Jiang C., Dong H., Liu L., Zhang S., Zhang X.. A Mn-N3 Single-Atom Catalyst Embedded in Graphitic Carbon Nitride for Efficient CO2 Electroreduction. Nat. Commun. 2020;11(1):4341. doi: 10.1038/s41467-020-18143-y. PubMed DOI PMC

Yang S., Kim J., Tak Y. J., Soon A., Lee H.. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. Angew. Chem., Int. Ed. 2016;55(6):2058–2062. doi: 10.1002/anie.201509241. PubMed DOI

Zhou K. L., Han C. B., Wang Z., Ke X., Wang C., Jin Y., Zhang Q., Liu J., Wang H., Yan H.. Atomically Dispersed Platinum Modulated by Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Adv. Sci. 2021;8(12):2100347. doi: 10.1002/advs.202100347. PubMed DOI PMC

Luo Z., Guo Y., He C., Guan Y., Zhang L., Li Y., Zhang Q., He C., Sun X., Ren X.. Creating High-Entropy Single Atoms on Transition Disulfides through Substrate-Induced Redox Dynamics for Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. 2024;136(32):e202405017. doi: 10.1002/ange.202405017. PubMed DOI

Zhang J., Zhao Y., Guo X., Chen C., Dong C.-L., Liu R.-S., Han C.-P., Li Y., Gogotsi Y., Wang G.. Single Platinum Atoms Immobilized on an MXene as an Efficient Catalyst for the Hydrogen Evolution Reaction. Nat. Catal. 2018;1(12):985–992. doi: 10.1038/s41929-018-0195-1. DOI

Li J., Chen S., Quan F., Zhan G., Jia F., Ai Z., Zhang L.. Accelerated Dinitrogen Electroreduction to Ammonia via Interfacial Polarization Triggered by Single-Atom Protrusions. Chem. 2020;6(4):885–901. doi: 10.1016/j.chempr.2020.01.013. DOI

Mo Q., Chen C., Li S., Liu J., Zhang L., Su C.-Y.. Advance of Single-Atom Catalysts Confined into Pristine Metal-Organic Frameworks and Their Energy-Related Applications. ChemCatChem. 2024;16(16):e202301753. doi: 10.1002/cctc.202301753. DOI

Ohri N., Hua Y., Baidoun R., Kim D.. Pyrolytic Synthesis of Carbon-Supported Single-Atom Catalysts. Chem. Catal. 2023;3(12):100837. doi: 10.1016/j.checat.2023.100837. DOI

Sun S., Zhang G., Gauquelin N., Chen N., Zhou J., Yang S., Chen W., Meng X., Geng D., Banis M. N., Li R., Ye S., Knights S., Botton G. A., Sham T.-K., Sun X.. Single-Atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Sci. Rep. 2013;3(1):1775. doi: 10.1038/srep01775. DOI

Park C., Shin H., Jeon M., Cho S.-H., Kim J., Kim I.-D.. Single-Atom Catalysts in Conductive Metal–Organic Frameworks: Enabling Reversible Gas Sensing at Room Temperature. ACS Nano. 2024;18(38):26066–26075. doi: 10.1021/acsnano.4c05815. PubMed DOI

Al-Hilfi S. H., Jiang X., Heuer J., Akula S., Tammeveski K., Hu G., Yang J., Wang H. I., Bonn M., Landfester K., Müllen K., Zhou Y.. Single-Atom Catalysts through Pressure-Controlled Metal Diffusion. J. Am. Chem. Soc. 2024;146(29):19886–19895. doi: 10.1021/jacs.4c03066. PubMed DOI PMC

Roy S., Li Z., Chen Z., Mata A. C., Kumar P., Sarma S. C., Teixeira I. F., Silva I. F., Gao G., Tarakina N. V., Kibria M. G., Singh C. V., Wu J., Ajayan P. M.. Cooperative Copper Single-Atom Catalyst in 2D Carbon Nitride for Enhanced CO2 Electrolysis to Methane. Adv. Mater. 2024;36(13):2300713. doi: 10.1002/adma.202300713. PubMed DOI

George S. M.. Atomic Layer Deposition: An Overview. Chem. Rev. 2010;110(1):111–131. doi: 10.1021/cr900056b. PubMed DOI

Johnson R. W., Hultqvist A., Bent S. F.. A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications. Mater. Today. 2014;17(5):236–246. doi: 10.1016/j.mattod.2014.04.026. DOI

Pakkala, A. ; Putkonen, M. . Atomic Layer Deposition. In Handbook of Deposition Technologies for Films and Coatings; Elsevier, 2010; pp 364–391. 10.1016/B978-0-8155-2031-3.00008-9. DOI

Stambula S., Gauquelin N., Bugnet M., Gorantla S., Turner S., Sun S., Liu J., Zhang G., Sun X., Botton G. A.. Chemical Structure of Nitrogen-Doped Graphene with Single Platinum Atoms and Atomic Clusters as a Platform for the PEMFC Electrode. J. Phys. Chem. C. 2014;118(8):3890–3900. doi: 10.1021/jp408979h. DOI

Wang C., Gu X.-K., Yan H., Lin Y., Li J., Liu D., Li W.-X., Lu J.. Water-Mediated Mars–Van Krevelen Mechanism for CO Oxidation on Ceria-Supported Single-Atom Pt1 Catalyst. ACS Catal. 2017;7(1):887–891. doi: 10.1021/acscatal.6b02685. DOI

Cao L., Liu W., Luo Q., Yin R., Wang B., Weissenrieder J., Soldemo M., Yan H., Lin Y., Sun Z., Ma C., Zhang W., Chen S., Wang H., Guan Q., Yao T., Wei S., Yang J., Lu J.. Atomically Dispersed Iron Hydroxide Anchored on Pt for Preferential Oxidation of CO in H2 . Nature. 2019;565(7741):631–635. doi: 10.1038/s41586-018-0869-5. PubMed DOI

Zhong M., Zhao J., Fang Y., Wu D., Zhang L., Du C., Liu S., Yang S., Wan S., Jiang Y., Huang J., Xiong H.. Depositing Pd on the Outmost Surface of Pd1Ni/SiO2 Single-Atom Alloy via Atomic Layer Deposition for Selective Hydrogenation of Acetylene. Appl. Catal., A. 2023;662:119288. doi: 10.1016/j.apcata.2023.119288. DOI

Zhang L., Banis M. N., Sun X.. Single-Atom Catalysts by the Atomic Layer Deposition Technique. Natl. Sci. Rev. 2018;5(5):628–630. doi: 10.1093/nsr/nwy054. DOI

Kale M. B., Borse R. A., Gomaa Abdelkader Mohamed A., Wang Y.. Electrocatalysts by Electrodeposition: Recent Advances, Synthesis Methods, and Applications in Energy Conversion. Adv. Funct. Mater. 2021;31(25):2101313. doi: 10.1002/adfm.202101313. DOI

Tian N., Zhou Z.-Y., Sun S.-G., Ding Y., Wang Z. L.. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science. 2007;316(5825):732–735. doi: 10.1126/science.1140484. PubMed DOI

Peters B. K., Rodriguez K. X., Reisberg S. H., Beil S. B., Hickey D. P., Kawamata Y., Collins M., Starr J., Chen L., Udyavara S., Klunder K., Gorey T. J., Anderson S. L., Neurock M., Minteer S. D., Baran P. S.. Scalable and Safe Synthetic Organic Electroreduction Inspired by Li-Ion Battery Chemistry. Science. 2019;363(6429):838–845. doi: 10.1126/science.aav5606. PubMed DOI PMC

Shi Y., Lee C., Tan X., Yang L., Zhu Q., Loh X., Xu J., Yan Q.. Atomic-Level Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Struct. 2022;3(3):2100185. doi: 10.1002/sstr.202100185. DOI

Xue Y., Huang B., Yi Y., Guo Y., Zuo Z., Li Y., Jia Z., Liu H., Li Y.. Anchoring Zero Valence Single Atoms of Nickel and Iron on Graphdiyne for Hydrogen Evolution. Nat. Commun. 2018;9(1):1460. doi: 10.1038/s41467-018-03896-4. PubMed DOI PMC

Zhang J., Liu J., Xi L., Yu Y., Chen N., Sun S., Wang W., Lange K. M., Zhang B.. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018;140(11):3876–3879. doi: 10.1021/jacs.8b00752. PubMed DOI

Zhou M., Dick J. E., Bard A. J.. Electrodeposition of Isolated Platinum Atoms and Clusters on BismuthCharacterization and Electrocatalysis. J. Am. Chem. Soc. 2017;139(48):17677–17682. doi: 10.1021/jacs.7b10646. PubMed DOI

Zhou M., Bao S., Bard A. J.. Probing Size and Substrate Effects on the Hydrogen Evolution Reaction by Single Isolated Pt Atoms, Atomic Clusters, and Nanoparticles. J. Am. Chem. Soc. 2019;141(18):7327–7332. doi: 10.1021/jacs.8b13366. PubMed DOI

Jin Z., Bard A. J.. Atom-by-Atom Electrodeposition of Single Isolated Cobalt Oxide Molecules and Clusters for Studying the Oxygen Evolution Reaction. Proc. Natl. Acad. Sci. U. S. A. 2020;117(23):12651–12656. doi: 10.1073/pnas.2002168117. PubMed DOI PMC

Zhang T., Jin J., Chen J., Fang Y., Han X., Chen J., Li Y., Wang Y., Liu J., Wang L.. Pinpointing the Axial Ligand Effect on Platinum Single-Atom-Catalyst towards Efficient Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2022;13(1):6875. doi: 10.1038/s41467-022-34619-5. PubMed DOI PMC

Lei Z., Cai W., Rao Y., Wang K., Jiang Y., Liu Y., Jin X., Li J., Lv Z., Jiao S., Zhang W., Yan P., Zhang S., Cao R.. Coordination Modulation of Iridium Single-Atom Catalyst Maximizing Water Oxidation Activity. Nat. Commun. 2022;13(1):24. doi: 10.1038/s41467-021-27664-z. PubMed DOI PMC

Gao Q., Yao B., Pillai H. S., Zang W., Han X., Liu Y., Yu S.-W., Yan Z., Min B., Zhang S., Zhou H., Ma L., Xin H., He Q., Zhu H.. Synthesis of Core/Shell Nanocrystals with Ordered Intermetallic Single-Atom Alloy Layers for Nitrate Electroreduction to Ammonia. Nat. Synth. 2023;2(7):624–634. doi: 10.1038/s44160-023-00258-x. DOI

Gao Q., Han X., Liu Y., Zhu H.. Electrifying Energy and Chemical Transformations with Single-Atom Alloy Nanoparticle Catalysts. ACS Catal. 2024;14(8):6045–6061. doi: 10.1021/acscatal.4c00365. PubMed DOI PMC

Lan J., Wei Z., Lu Y.-R., Chen D., Zhao S., Chan T.-S., Tan Y.. Efficient Electrosynthesis of Formamide from Carbon Monoxide and Nitrite on a Ru-Dispersed Cu Nanocluster Catalyst. Nat. Commun. 2023;14(1):2870. doi: 10.1038/s41467-023-38603-5. PubMed DOI PMC

Wang B., Li J., Li D., Xu J., Liu S., Jiang Q., Zhang Y., Duan Z., Zhang F.. Single Atom Iridium Decorated Nickel Alloys Supported on Segregated MoO 2 for Alkaline Water Electrolysis. Adv. Mater. 2024;36(11):2305437. doi: 10.1002/adma.202305437. PubMed DOI

Cui M., Xu B., Shi X., Zhai Q., Dou Y., Li G., Bai Z., Ding Y., Sun W., Liu H., Dou S.. Metal–Organic Framework-Derived Single-Atom Catalysts for Electrocatalytic Energy Conversion Applications. J. Mater. Chem. A. 2024;12(30):18921–18947. doi: 10.1039/D4TA03518F. DOI

Huang H., Shen K., Chen F., Li Y.. Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catal. 2020;10(12):6579–6586. doi: 10.1021/acscatal.0c01459. DOI

Zou L., Wei Y., Hou C., Li C., Xu Q.. Single-Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small. 2021;17(16):2004809. doi: 10.1002/smll.202004809. PubMed DOI

Zhou X., Ke M.-K., Huang G.-X., Chen C., Chen W., Liang K., Qu Y., Yang J., Wang Y., Li F., Yu H.-Q., Wu Y.. Identification of Fenton-like Active Cu Sites by Heteroatom Modulation of Electronic Density. Proc. Natl. Acad. Sci. U. S. A. 2022;119(8):e2119492119. doi: 10.1073/pnas.2119492119. PubMed DOI PMC

Gu Z., Zhang Y., Fu Y., Hu D., Peng F., Tang Y., Yang H.. Coordination Desymmetrization of Copper Single-Atom Catalyst for Efficient Nitrate Reduction. Angew. Chem., Int. Ed. 2024;63(38):e202409125. doi: 10.1002/anie.202409125. PubMed DOI

Gao F., Huang J., Ruan Y., Li H., Gong P., Wang F., Tang Q., Jiang Y.. Unraveling the Structure Transition and Peroxidase Mimic Activity of Copper Sites over Atomically Dispersed Copper-Doped Carbonized Polymer Dots. Angew. Chem., Int. Ed. 2023;62(7):e202214042. doi: 10.1002/anie.202214042. PubMed DOI

Cai Y., Fu J., Zhou Y., Chang Y.-C., Min Q., Zhu J.-J., Lin Y., Zhu W.. Insights on Forming N,O-Coordinated Cu Single-Atom Catalysts for Electrochemical Reduction CO2 to Methane. Nat. Commun. 2021;12(1):586. doi: 10.1038/s41467-020-20769-x. PubMed DOI PMC

Cheng X., He J., Ji H., Zhang H., Cao Q., Sun W., Yan C., Lu J.. Coordination Symmetry Breaking of Single-Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia. Adv. Mater. 2022;34(36):2205767. doi: 10.1002/adma.202205767. PubMed DOI

Lee H., Lee S.-Y.. High Metal Loaded Cu­(I)­N3 Single-Atom Catalysts: Superior Methane Conversion Activity and Selectivity under Mild Conditions. J. Mater. Chem. A. 2023;11(29):15691–15701. doi: 10.1039/D3TA02450D. DOI

Lee H., Kwon C., Vikneshvaran S., Lee S., Lee S.-Y.. Partial Oxidation of Methane to Methyl Oxygenates with Enhanced Selectivity Using a Single-Atom Copper Catalyst on Amorphous Carbon Support. Appl. Surf. Sci. 2023;639:158289. doi: 10.1016/j.apsusc.2023.158289. DOI

Li F., Han G.-F., Noh H.-J., Kim S.-J., Lu Y., Jeong H. Y., Fu Z., Baek J.-B.. Boosting Oxygen Reduction Catalysis with Abundant Copper Single Atom Active Sites. Energy Environ. Sci. 2018;11(8):2263–2269. doi: 10.1039/C8EE01169A. DOI

Wu H., Li H., Zhao X., Liu Q., Wang J., Xiao J., Xie S., Si R., Yang F., Miao S., Guo X., Wang G., Bao X.. Highly Doped and Exposed Cu­(I)–N Active Sites within Graphene towards Efficient Oxygen Reduction for Zinc–Air Batteries. Energy Environ. Sci. 2016;9(12):3736–3745. doi: 10.1039/C6EE01867J. DOI

Xia C., Qiu Y., Xia Y., Zhu P., King G., Zhang X., Wu Z., Kim J. Y., Cullen D. A., Zheng D., Li P., Shakouri M., Heredia E., Cui P., Alshareef H. N., Hu Y., Wang H.. General Synthesis of Single-Atom Catalysts with High Metal Loading Using Graphene Quantum Dots. Nat. Chem. 2021;13(9):887–894. doi: 10.1038/s41557-021-00734-x. PubMed DOI

Gu C.-H., Wang S., Zhang A.-Y., Liu C., Jiang J., Yu H.-Q.. Slow-Release Synthesis of Cu Single-Atom Catalysts with the Optimized Geometric Structure and Density of State Distribution for Fenton-like Catalysis. Proc. Natl. Acad. Sci. U. S. A. 2023;120(43):e2311585120. doi: 10.1073/pnas.2311585120. PubMed DOI PMC

Hai X., Xi S., Mitchell S., Harrath K., Xu H., Akl D. F., Kong D., Li J., Li Z., Sun T., Yang H., Cui Y., Su C., Zhao X., Li J., Pérez-Ramírez J., Lu J.. Scalable Two-Step Annealing Method for Preparing Ultra-High-Density Single-Atom Catalyst Libraries. Nat. Nanotechnol. 2022;17(2):174–181. doi: 10.1038/s41565-021-01022-y. PubMed DOI

Wang Y., Li C., Han X., Bai J., Wang X., Zheng L., Hong C., Li Z., Bai J., Leng K., Lin Y., Qu Y.. General Negative Pressure Annealing Approach for Creating Ultra-High-Loading Single Atom Catalyst Libraries. Nat. Commun. 2024;15(1):5675. doi: 10.1038/s41467-024-50061-1. PubMed DOI PMC

Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y.. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule. 2018;2(7):1242–1264. doi: 10.1016/j.joule.2018.06.019. DOI

Li X., Pereira-Hernández X. I., Chen Y., Xu J., Zhao J., Pao C.-W., Fang C.-Y., Zeng J., Wang Y., Gates B. C., Liu J.. Functional CeOx Nanoglues for Robust Atomically Dispersed Catalysts. Nature. 2022;611(7935):284–288. doi: 10.1038/s41586-022-05251-6. PubMed DOI

Ma S., Dong F., Wu S., Ling W., Han W., Han W., Tang Z.. Silica-Assisted Pt1/CeO2 Single-Atom Catalyst for Enhancing the Catalytic Combustion Performance of VOCs by Inducing H2O Activation. Appl. Catal., B. 2024;354:124152. doi: 10.1016/j.apcatb.2024.124152. DOI

Lee H., Kwon C., Keum C., Kim H.-E., Lee H., Han B., Lee S.-Y.. Methane Partial Oxidation by Monomeric Cu Active Center Confined on ZIF-7. Chem. Eng. J. 2022;450:138472. doi: 10.1016/j.cej.2022.138472. DOI

Giulimondi V., Vanni M., Damir S., Zou T., Mitchell S., Krumeich F., Ruiz-Ferrando A., López N., Gata-Cuesta J. J., Guillén-Gosálbez G., Smit J. J., Johnston P., Pérez-Ramírez J.. Convergent Active Site Evolution in Platinum Single Atom Catalysts for Acetylene Hydrochlorination and Implications for Toxicity Minimization. ACS Catal. 2024;14(18):13652–13664. doi: 10.1021/acscatal.4c03533. PubMed DOI PMC

Zhao H., Yu R., Ma S., Xu K., Chen Y., Jiang K., Fang Y., Zhu C., Liu X., Tang Y., Wu L., Wu Y., Jiang Q., He P., Liu Z., Tan L.. The Role of Cu1–O3 Species in Single-Atom Cu/ZrO2 Catalyst for CO2 Hydrogenation. Nat. Catal. 2022;5(9):818–831. doi: 10.1038/s41929-022-00840-0. DOI

Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T.. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020;120(21):11986–12043. doi: 10.1021/acs.chemrev.0c00797. PubMed DOI

Millet M.-M., Algara-Siller G., Wrabetz S., Mazheika A., Girgsdies F., Teschner D., Seitz F., Tarasov A., Levchenko S. V., Schlögl R., Frei E.. Ni Single Atom Catalysts for CO2 Activation. J. Am. Chem. Soc. 2019;141(6):2451–2461. doi: 10.1021/jacs.8b11729. PubMed DOI PMC

Liu Y., Wang X., Li X., Ye Z., Sham T.-K., Xu P., Cao M., Zhang Q., Yin Y., Chen J.. Universal and Scalable Synthesis of Photochromic Single-Atom Catalysts for Plastic Recycling. Nat. Commun. 2024;15(1):9357. doi: 10.1038/s41467-024-53774-5. PubMed DOI PMC

Liu P., Yan J., Huang H., Song W.. Cu/Co Bimetallic Conductive MOFs: Electronic Modulation for Enhanced Nitrate Reduction to Ammonia. Chem. Eng. J. 2023;466:143134. doi: 10.1016/j.cej.2023.143134. DOI

Li J., Liu P., Mao J., Yan J., Song W.. Structural and Electronic Modulation of Conductive MOFs for Efficient Oxygen Evolution Reaction Electrocatalysis. J. Mater. Chem. A. 2021;9(18):11248–11254. doi: 10.1039/D1TA01970H. DOI

Yan J., Li J., Liu P., Huang H., Song W.. Enhanced Ammonia Selectivity on Electrochemical Nitrate Reduction: Cu–Ni Metal–Organic Frameworks with Tandem Active Sites for Cascade Catalysis. Green Chem. 2023;25(21):8645–8651. doi: 10.1039/D3GC02613B. DOI

Zhang E., Dong A., Yin K., Ye C., Zhou Y., Tan C., Li M., Zheng X., Wang Y., Gao X., Li H., Wang D., Guo S.. Electron Localization in Rationally Designed Pt1Pd Single-Atom Alloy Catalyst Enables High-Performance Li–O2 Batteries. J. Am. Chem. Soc. 2024;146(4):2339–2344. doi: 10.1021/jacs.3c12734. PubMed DOI

Tang S., Xie M., Yu S., Zhan X., Wei R., Wang M., Guan W., Zhang B., Wang Y., Zhou H., Zheng G., Liu Y., Warner J. H., Yu G.. General Synthesis of High-Entropy Single-Atom Nanocages for Electrosynthesis of Ammonia from Nitrate. Nat. Commun. 2024;15(1):6932. doi: 10.1038/s41467-024-51112-3. PubMed DOI PMC

Stolle A., Szuppa T., Leonhardt S. E. S., Ondruschka B.. Ball Milling in Organic Synthesis: Solutions and Challenges. Chem. Soc. Rev. 2011;40(5):2317. doi: 10.1039/c0cs00195c. PubMed DOI

Cui X., Li H., Wang Y., Hu Y., Hua L., Li H., Han X., Liu Q., Yang F., He L., Chen X., Li Q., Xiao J., Deng D., Bao X.. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. Chem. 2018;4(8):1902–1910. doi: 10.1016/j.chempr.2018.05.006. DOI

Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X.. A Single Iron Site Confined in a Graphene Matrix for the Catalytic Oxidation of Benzene at Room Temperature. Sci. Adv. 2015;1(11):e1500462. doi: 10.1126/sciadv.1500462. PubMed DOI PMC

Gan T., Liu Y., He Q., Zhang H., He X., Ji H.. Facile Synthesis of Kilogram-Scale Co-Alloyed Pt Single-Atom Catalysts via Ball Milling for Hydrodeoxygenation of 5-Hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2020;8(23):8692–8699. doi: 10.1021/acssuschemeng.0c02065. DOI

Jin H., Sultan S., Ha M., Tiwari J. N., Kim M. G., Kim K. S.. Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Adv. Funct. Mater. 2020;30(25):2000531. doi: 10.1002/adfm.202000531. DOI

Gan T., He Q., Zhang H., Xiao H., Liu Y., Zhang Y., He X., Ji H.. Unveiling the Kilogram-Scale Gold Single-Atom Catalysts via Ball Milling for Preferential Oxidation of CO in Excess Hydrogen. Chem. Eng. J. 2020;389:124490. doi: 10.1016/j.cej.2020.124490. DOI

He X., Deng Y., Zhang Y., He Q., Xiao D., Peng M., Zhao Y., Zhang H., Luo R., Gan T., Ji H., Ma D.. Mechanochemical Kilogram-Scale Synthesis of Noble Metal Single-Atom Catalysts. Cell Rep. Phys. Sci. 2020;1(1):100004. doi: 10.1016/j.xcrp.2019.100004. DOI

Zhong H., Su Y., Wu Y., Gu J., Ma R., Luo Y., Lin H., Tao M., Chen J., Liang Z., Wang K., Zheng X., Chen Z., Peng J., Lv Z., Gong Z., Huang J., Yang Y.. Long-Life and High-Loading All-Solid-State Li–S Batteries Enabled by Acetylene Black with Dispersed Co-N4 as Single Atom Catalyst. Adv. Energy Mater. 2023;13(25):2300767. doi: 10.1002/aenm.202300767. DOI

Guan X., Han R., Asakura H., Wang B., Chen L., Yan J. H. C., Guan S., Keenan L., Hayama S., van Spronsen M. A., Held G., Zhang J., Gu H., Ren Y., Zhang L., Yao Z., Zhu Y., Regoutz A., Tanaka T., Guo Y., Wang F. R.. Subsurface Single-Atom Catalyst Enabled by Mechanochemical Synthesis for Oxidation Chemistry. Angew. Chem., Int. Ed. 2024;63(42):e202410457. doi: 10.1002/anie.202410457. PubMed DOI

Sun J., Tu R., Xu Y., Yang H., Yu T., Zhai D., Ci X., Deng W.. Machine Learning Aided Design of Single-Atom Alloy Catalysts for Methane Cracking. Nat. Commun. 2024;15(1):6036. doi: 10.1038/s41467-024-50417-7. PubMed DOI PMC

Yang X., Zhu B., Gao Z., Yang C., Zhou J., Han A., Liu J.. A Vacuum Vapor Deposition Strategy to Fe Single-Atom Catalysts with Densely Active Sites for High-Performance Zn–Air Battery. Adv. Sci. 2024;11(34):2306594. doi: 10.1002/advs.202306594. PubMed DOI PMC

Guo Y., Zhu Q., Wang Z., Ye Y., Hu J., Shang J., Li B., Du Z., Yang S.. Minutes-Fast Production of Vacancy-Enriched MXenes as an Efficient Platform for Single-Atom Electrocatalysts. Adv. Energy Mater. 2024;14(17):2304149. doi: 10.1002/aenm.202304149. DOI

Wen M., Sun N., Jiao L., Zang S., Jiang H.. Microwave-Assisted Rapid Synthesis of MOF-Based Single-Atom Ni Catalyst for CO2 Electroreduction at Ampere-Level Current. Angew. Chem. 2024;136(10):e202318338. doi: 10.1002/ange.202318338. PubMed DOI

Wang B., Zhu X., Pei X., Liu W., Leng Y., Yu X., Wang C., Hu L., Su Q., Wu C., Yao Y., Lin Z., Zou Z.. Room-Temperature Laser Planting of High-Loading Single-Atom Catalysts for High-Efficiency Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2023;145(25):13788–13795. doi: 10.1021/jacs.3c02364. PubMed DOI

Yuan H., Jiang D., Li Z., Liu X., Tang Z., Zhang X., Zhao L., Huang M., Liu H., Song K., Zhou W.. Laser Synthesis of PtMo Single-Atom Alloy Electrode for Ultralow Voltage Hydrogen Generation. Adv. Mater. 2024;36(5):2305375. doi: 10.1002/adma.202305375. PubMed DOI

Yang J., Qiu Z., Zhao C., Wei W., Chen W., Li Z., Qu Y., Dong J., Luo J., Li Z., Wu Y.. In Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surface-Bound Nickel Single-Atom Catalysts. Angew. Chem., Int. Ed. 2018;57(43):14095–14100. doi: 10.1002/anie.201808049. PubMed DOI

Wang Z., Yang J., Cao J., Chen W., Wang G., Liao F., Zhou X., Zhou F., Li R., Yu Z.-Q., Zhang G., Duan X., Wu Y.. Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO2 into Tunable Syngas. ACS Nano. 2020;14(5):6164–6172. doi: 10.1021/acsnano.0c02162. PubMed DOI

Qi K., Cui X., Gu L., Yu S., Fan X., Luo M., Xu S., Li N., Zheng L., Zhang Q., Ma J., Gong Y., Lv F., Wang K., Huang H., Zhang W., Guo S., Zheng W., Liu P.. Single-Atom Cobalt Array Bound to Distorted 1T MoS2 with Ensemble Effect for Hydrogen Evolution Catalysis. Nat. Commun. 2019;10(1):5231. doi: 10.1038/s41467-019-12997-7. PubMed DOI PMC

Jones J., Xiong H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Pereira Hernández X. I., Wang Y., Datye A. K.. Thermally Stable Single-Atom Platinum-on-Ceria Catalysts via Atom Trapping. Science (80-.) 2016;353(6295):150–154. doi: 10.1126/science.aaf8800. PubMed DOI

Wei S., Li A., Liu J.-C., Li Z., Chen W., Gong Y., Zhang Q., Cheong W.-C., Wang Y., Zheng L., Xiao H., Chen C., Wang D., Peng Q., Gu L., Han X., Li J., Li Y.. Direct Observation of Noble Metal Nanoparticles Transforming to Thermally Stable Single Atoms. Nat. Nanotechnol. 2018;13(9):856–861. doi: 10.1038/s41565-018-0197-9. PubMed DOI

Tavakkoli M., Holmberg N., Kronberg R., Jiang H., Sainio J., Kauppinen E. I., Kallio T., Laasonen K.. Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catal. 2017;7(5):3121–3130. doi: 10.1021/acscatal.7b00199. DOI

Jiang K., Liu B., Luo M., Ning S., Peng M., Zhao Y., Lu Y.-R., Chan T.-S., de Groot F. M. F., Tan Y.. Single Platinum Atoms Embedded in Nanoporous Cobalt Selenide as Electrocatalyst for Accelerating Hydrogen Evolution Reaction. Nat. Commun. 2019;10(1):1743. doi: 10.1038/s41467-019-09765-y. PubMed DOI PMC

Xuan N., Chen J., Shi J., Yue Y., Zhuang P., Ba K., Sun Y., Shen J., Liu Y., Ge B., Sun Z.. Single-Atom Electroplating on Two Dimensional Materials. Chem. Mater. 2019;31(2):429–435. doi: 10.1021/acs.chemmater.8b03796. DOI

Wang Z., Yang J., Gan J., Chen W., Zhou F., Zhou X., Yu Z., Zhu J., Duan X., Wu Y.. Electrochemical Conversion of Bulk Platinum into Platinum Single-Atom Sites for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2020;8(21):10755–10760. doi: 10.1039/D0TA02351E. DOI

Chen R., Yang C., Cai W., Wang H.-Y., Miao J., Zhang L., Chen S., Liu B.. Use of Platinum as the Counter Electrode to Study the Activity of Nonprecious Metal Catalysts for the Hydrogen Evolution Reaction. ACS Energy Lett. 2017;2(5):1070–1075. doi: 10.1021/acsenergylett.7b00219. DOI

Cherevko S., Zeradjanin A. R., Keeley G. P., Mayrhofer K. J. J.. A Comparative Study on Gold and Platinum Dissolution in Acidic and Alkaline Media. J. Electrochem. Soc. 2014;161(12):H822–H830. doi: 10.1149/2.0881412jes. DOI

Matsumoto M., Miyazaki T., Imai H.. Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments. J. Phys. Chem. C. 2011;115(22):11163–11169. doi: 10.1021/jp201959h. DOI

Wang H., Wang X., Pan J., Zhang L., Zhao M., Xu J., Liu B., Shi W., Song S., Zhang H.. Ball-Milling Induced Debonding of Surface Atoms from Metal Bulk for Construing High-Performance Dual-Site Single-Atom Catalysts. Angew. Chem. 2021;133(43):23338–23342. doi: 10.1002/ange.202109356. PubMed DOI

Han G.-F., Li F., Rykov A. I., Im Y.-K., Yu S.-Y., Jeon J.-P., Kim S.-J., Zhou W., Ge R., Ao Z., Shin T. J., Wang J., Jeong H. Y., Baek J.-B.. Abrading Bulk Metal into Single Atoms. Nat. Nanotechnol. 2022;17(4):403–407. doi: 10.1038/s41565-022-01075-7. PubMed DOI

De Backer A., Martinez G. T., Rosenauer A., Van Aert S.. Atom Counting in HAADF STEM Using a Statistical Model-Based Approach: Methodology, Possibilities, and Inherent Limitations. Ultramicroscopy. 2013;134:23–33. doi: 10.1016/j.ultramic.2013.05.003. PubMed DOI

Liu J.. Aberration-Corrected Scanning Transmission Electron Microscopy in Single-Atom Catalysis: Probing the Catalytically Active Centers. Chin. J. Catal. 2017;38(9):1460–1472. doi: 10.1016/S1872-2067(17)62900-0. DOI

Zhu Y., Klingenhof M., Gao C., Koketsu T., Weiser G., Pi Y., Liu S., Sui L., Hou J., Li J., Jiang H., Xu L., Huang W.-H., Pao C.-W., Yang M., Hu Z., Strasser P., Ma J.. Facilitating Alkaline Hydrogen Evolution Reaction on the Hetero-Interfaced Ru/RuO2 through Pt Single Atoms Doping. Nat. Commun. 2024;15(1):1447. doi: 10.1038/s41467-024-45654-9. PubMed DOI PMC

Egerton R. F., Watanabe M.. Characterization of Single-Atom Catalysts by EELS and EDX Spectroscopy. Ultramicroscopy. 2018;193:111–117. doi: 10.1016/j.ultramic.2018.06.013. PubMed DOI

Suenaga K., Sato Y., Liu Z., Kataura H., Okazaki T., Kimoto K., Sawada H., Sasaki T., Omoto K., Tomita T., Kaneyama T., Kondo Y.. Visualizing and Identifying Single Atoms Using Electron Energy-Loss Spectroscopy with Low Accelerating Voltage. Nat. Chem. 2009;1(5):415–418. doi: 10.1038/nchem.282. PubMed DOI

Yang J., Liu W., Xu M., Liu X., Qi H., Zhang L., Yang X., Niu S., Zhou D., Liu Y., Su Y., Li J.-F., Tian Z.-Q., Zhou W., Wang A., Zhang T.. Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N3 as an Active Site for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2021;143(36):14530–14539. doi: 10.1021/jacs.1c03788. PubMed DOI

Zhou Y., Lu R., Tao X., Qiu Z., Chen G., Yang J., Zhao Y., Feng X., Müllen K.. Boosting Oxygen Electrocatalytic Activity of Fe–N–C Catalysts by Phosphorus Incorporation. J. Am. Chem. Soc. 2023;145(6):3647–3655. doi: 10.1021/jacs.2c12933. PubMed DOI PMC

Cao X., Tian Y., Ma J., Guo W., Cai W., Zhang J.. Strong p-d Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction. Adv. Mater. 2024;36(6):2309648. doi: 10.1002/adma.202309648. PubMed DOI

Shah K., Dai R., Mateen M., Hassan Z., Zhuang Z., Liu C., Israr M., Cheong W.-C., Hu B., Tu R., Zhang C., Chen X., Peng Q., Chen C., Li Y.. Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angew. Chem., Int. Ed. 2022;61(4):e202114951. doi: 10.1002/anie.202114951. PubMed DOI

Zhang E., Tao L., An J., Zhang J., Meng L., Zheng X., Wang Y., Li N., Du S., Zhang J., Wang D., Li Y.. Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew. Chem., Int. Ed. 2022;61(12):e202117347. doi: 10.1002/anie.202117347. PubMed DOI

Yasin G., Ali S., Ibraheem S., Kumar A., Tabish M., Mushtaq M. A., Ajmal S., Arif M., Khan M. A., Saad A., Qiao L., Zhao W.. Simultaneously Engineering the Synergistic-Effects and Coordination-Environment of Dual-Single-Atomic Iron/Cobalt-Sites as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries. ACS Catal. 2023;13(4):2313–2325. doi: 10.1021/acscatal.2c05654. DOI

Yang J., Qi H., Li A., Liu X., Yang X., Zhang S., Zhao Q., Jiang Q., Su Y., Zhang L., Li J.-F., Tian Z.-Q., Liu W., Wang A., Zhang T.. Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. J. Am. Chem. Soc. 2022;144(27):12062–12071. doi: 10.1021/jacs.2c02262. PubMed DOI

Luo F., Pan S., Xie Y., Li C., Yu Y., Yang Z.. Atomically Dispersed Ni Electrocatalyst for Superior Urea-Assisted Water Splitting. J. Energy Chem. 2024;90:1–6. doi: 10.1016/j.jechem.2023.10.007. DOI

Zhang Y., Chen X., Wang W., Yin L., Crittenden J. C.. Electrocatalytic Nitrate Reduction to Ammonia on Defective Au1Cu­(111) Single-Atom Alloys. Appl. Catal., B. 2022;310:121346. doi: 10.1016/j.apcatb.2022.121346. DOI

Agrachev M., Giulimondi V., Surin I., Mitchell S., Jeschke G., Pérez-Ramírez J.. Electron Paramagnetic Resonance Spectroscopy for the Analysis of Single-Atom Catalysts. Chem. Catal. 2024;4:101136. doi: 10.1016/j.checat.2024.101136. DOI

Faust Akl D., Giannakakis G., Ruiz-Ferrando A., Agrachev M., Medrano-García J. D., Guillén-Gosálbez G., Jeschke G., Clark A. H., Safonova O. V., Mitchell S., López N., Pérez-Ramírez J.. Reaction-Induced Formation of Stable Mononuclear Cu­(I)Cl Species on Carbon for Low-Footprint Vinyl Chloride Production. Adv. Mater. 2023;35(26):2211464. doi: 10.1002/adma.202211464. PubMed DOI

Surin I., Tang Z., Geiger J., Damir S., Eliasson H., Agrachev M., Krumeich F., Mitchell S., Kondratenko V. A., Kondratenko E. V., Jeschke G., Erni R., López N., Pérez-Ramírez J.. Low-Valent Manganese Atoms Stabilized on Ceria for Nitrous Oxide Synthesis. Adv. Mater. 2023;35(24):2211260. doi: 10.1002/adma.202211260. PubMed DOI

Pinheiro Araújo T., Mondelli C., Agrachev M., Zou T., Willi P. O., Engel K. M., Grass R. N., Stark W. J., Safonova O. V., Jeschke G., Mitchell S., Pérez-Ramírez J.. Flame-Made Ternary Pd-In2O3-ZrO2 Catalyst with Enhanced Oxygen Vacancy Generation for CO2 Hydrogenation to Methanol. Nat. Commun. 2022;13(1):5610. doi: 10.1038/s41467-022-33391-w. PubMed DOI PMC

Giamello, E. ; Chiesa, M. ; Paganini, M. C. . Point Defects in Electron Paramagnetic Resonance. In Defects at Oxide Surfaces; Jupille, J. , Thornton, G. , Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp 303–326. 10.1007/978-3-319-14367-5_10. DOI

Kraushofer F., Parkinson G. S.. Single-Atom Catalysis: Insights from Model Systems. Chem. Rev. 2022;122(18):14911–14939. doi: 10.1021/acs.chemrev.2c00259. PubMed DOI PMC

Giessibl F. J.. The QPlus Sensor, a Powerful Core for the Atomic Force Microscope. Rev. Sci. Instrum. 2019;90(1):011101. doi: 10.1063/1.5052264. PubMed DOI

Fang S., Hu Y. H.. Open the Door to the Atomic World by Single-Molecule Atomic Force Microscopy. Matter. 2021;4(4):1189–1223. doi: 10.1016/j.matt.2021.01.013. DOI

Rafsanjani-Abbasi A., Buchner F., Lewis F. J., Puntscher L., Kraushofer F., Sombut P., Eder M., Pavelec J., Rheinfrank E., Franceschi G., Birschitzky V., Riva M., Franchini C., Schmid M., Diebold U., Meier M., Madsen G. K. H., Parkinson G. S.. Digging Its Own Site: Linear Coordination Stabilizes a Pt1/Fe2O3 Single-Atom Catalyst. ACS Nano. 2024;18(39):26920–26927. doi: 10.1021/acsnano.4c08781. PubMed DOI PMC

Sharp M. A., Lee C. J., Mahapatra M., Smith R. S., Kay B. D., Dohnálek Z.. Preparation and Characterization of Model Homotopic Catalysts: Rh Adatoms, Nanoparticles, and Mixed Oxide Surfaces on Fe3O4(001) J. Phys. Chem. C. 2022;126(34):14448–14459. doi: 10.1021/acs.jpcc.2c03426. DOI

Lee C. J., Sharp M. A., Jackson B. A., Mahapatra M., Raugei S., Árnadóttir L., Lee M.-S., Kay B. D., Dohnálek Z.. Dynamic Activation of Single-Atom Catalysts by Reaction Intermediates: Conversion of Formic Acid on Rh/Fe3O4(001) ACS Catal. 2024;14(20):15396–15406. doi: 10.1021/acscatal.4c03582. DOI

Dong S., Li B., Cui X., Tan S., Wang B.. Photoresponses of Supported Au Single Atoms on TiO2(110) through the Metal-Induced Gap States. J. Phys. Chem. Lett. 2019;10(16):4683–4691. doi: 10.1021/acs.jpclett.9b01527. PubMed DOI

Matthey D., Wang J. G., Wendt S., Matthiesen J., Schaub R., Lægsgaard E., Hammer B., Besenbacher F.. Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) Science. 2007;315(5819):1692–1696. doi: 10.1126/science.1135752. PubMed DOI

Hansen J. Ø., Lira E., Galliker P., Wang J.-G., Sprunger P. T., Li Z., Lægsgaard E., Wendt S., Hammer B., Besenbacher F.. Enhanced Bonding of Silver Nanoparticles on Oxidized TiO2(110) J. Phys. Chem. C. 2010;114(40):16964–16972. doi: 10.1021/jp101714r. DOI

Li X., Yang X., Zhang J., Huang Y., Liu B.. In Situ/Operando Techniques for Characterization of Single-Atom Catalysts. ACS Catal. 2019;9(3):2521–2531. doi: 10.1021/acscatal.8b04937. DOI

Liu Y., Su X., Ding J., Zhou J., Liu Z., Wei X., Yang H. B., Liu B.. Progress and Challenges in Structural, In Situ and Operando Characterization of Single-Atom Catalysts by X-ray Based Synchrotron Radiation Techniques. Chem. Soc. Rev. 2024;53(24):11850–11887. doi: 10.1039/D3CS00967J. PubMed DOI

Li S., Yan J., Chen X., Ni C., Chen Y., Liu M., Su H.. Advanced in Situ Characterization Techniques for Studying the Dynamics of Solid-Liquid Interface in Electrocatalytic Reactions. Mater. Today Catal. 2024;7:100068. doi: 10.1016/j.mtcata.2024.100068. DOI

Liu S., Yang H. B., Hung S.-F., Ding J., Cai W., Liu L., Gao J., Li X., Ren X., Kuang Z., Huang Y., Zhang T., Liu B.. Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst. Angew. Chem., Int. Ed. 2020;59(2):798–803. doi: 10.1002/anie.201911995. PubMed DOI

Gu J., Hsu C.-S., Bai L., Chen H. M., Hu X.. Atomically Dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction to CO. Science. 2019;364(6445):1091–1094. doi: 10.1126/science.aaw7515. PubMed DOI

Wang Q., Xiao Y., Yang S., Zhang Y., Wu L., Pan H., Rao D., Chen T., Sun Z., Wang G., Zhu J., Zeng J., Wei S., Zheng X.. Monitoring Electron Flow in Nickel Single-Atom Catalysts during Nitrogen Photofixation. Nano Lett. 2022;22(24):10216–10223. doi: 10.1021/acs.nanolett.2c03595. PubMed DOI

Webster R. D.. Electrochemistry Combined with Electron Paramagnetic Resonance (EPR) Spectroscopy for Studying Catalytic and Energy Storage Processes. Curr. Opin. Electrochem. 2023;40:101308. doi: 10.1016/j.coelec.2023.101308. DOI

Seif-Eddine M., Cobb S. J., Dang Y., Abdiaziz K., Bajada M. A., Reisner E., Roessler M. M.. Operando Film-Electrochemical EPR Spectroscopy Tracks Radical Intermediates in Surface-Immobilized Catalysts. Nat. Chem. 2024;16(6):1015–1023. doi: 10.1038/s41557-024-01450-y. PubMed DOI PMC

Su H., Zhao X., Cheng W., Zhang H., Li Y., Zhou W., Liu M., Liu Q.. Hetero-N-Coordinated Co Single Sites with High Turnover Frequency for Efficient Electrocatalytic Oxygen Evolution in an Acidic Medium. ACS Energy Lett. 2019;4(8):1816–1822. doi: 10.1021/acsenergylett.9b01129. DOI

Xu J., Zhang S., Liu H., Liu S., Yuan Y., Meng Y., Wang M., Shen C., Peng Q., Chen J., Wang X., Song L., Li K., Chen W.. Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Angew. Chem., Int. Ed. 2023;62(39):e202308044. doi: 10.1002/anie.202308044. PubMed DOI

Chen M., Liu D., Qiao L., Zhou P., Feng J., Ng K. W., Liu Q., Wang S., Pan H.. In-Situ/Operando Raman Techniques for in-Depth Understanding on Electrocatalysis. Chem. Eng. J. 2023;461:141939. doi: 10.1016/j.cej.2023.141939. DOI

Hou P. Y., Ager J., Mougin J., Galerie A.. Limitations and Advantages of Raman Spectroscopy for the Determination of Oxidation Stresses. Oxid. Met. 2011;75(5):229–245. doi: 10.1007/s11085-011-9235-9. DOI

Wei J., Qin S.-N., Yang J., Ya H.-L., Huang W.-H., Zhang H., Hwang B. J., Tian Z.-Q., Li J.-F.. Probing Single-Atom Catalysts and Catalytic Reaction Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Angew. Chem., Int. Ed. 2021;60(17):9306–9310. doi: 10.1002/anie.202100198. PubMed DOI

Li P., Jin Z., Fang Z., Yu G.. A Single-Site Iron Catalyst with Preoccupied Active Centers That Achieves Selective Ammonia Electrosynthesis from Nitrate. Energy Environ. Sci. 2021;14(6):3522–3531. doi: 10.1039/D1EE00545F. DOI

Tosoni S., Di Liberto G., Matanovic I., Pacchioni G.. Modelling Single Atom Catalysts for Water Splitting and Fuel Cells: A Tutorial Review. J. Power Sources. 2023;556:232492. doi: 10.1016/j.jpowsour.2022.232492. DOI

Butera V.. Density Functional Theory Methods Applied to Homogeneous and Heterogeneous Catalysis: A Short Review and a Practical User Guide. Phys. Chem. Chem. Phys. 2024;26(10):7950–7970. doi: 10.1039/D4CP00266K. PubMed DOI

Zhang W., Fu Q., Luo Q., Sheng L., Yang J.. Understanding Single-Atom Catalysis in View of Theory. JACS Au. 2021;1(12):2130–2145. doi: 10.1021/jacsau.1c00384. PubMed DOI PMC

Zhang L., Yang J., Yang X., Wang A., Zhang T.. Structural Evolution of Single-Atom Catalysts. Chem. Catal. 2023;3(3):100560. doi: 10.1016/j.checat.2023.100560. DOI

Liu L., Chen T., Chen Z.. Understanding the Dynamic Aggregation in Single-Atom Catalysis. Adv. Sci. 2024;11(13):2308046. doi: 10.1002/advs.202308046. PubMed DOI PMC

Tamtaji M., Cai S., Wu W., Liu T., Li Z., Chang H.-Y., Galligan P. R., Iida S., Li X., Rehman F., Amine K., Goddard W. A., Luo Z.. Single and Dual Metal Atom Catalysts for Enhanced Singlet Oxygen Generation and Oxygen Reduction Reaction. J. Mater. Chem. A. 2023;11(14):7513–7525. doi: 10.1039/D2TA08240C. DOI

Zhang S., Jin M., Shi T., Han M., Sun Q., Lin Y., Ding Z., Zheng L. R., Wang G., Zhang Y., Zhang H., Zhao H.. Electrocatalytically Active Fe-(O-C2)­4 Single-Atom Sites for Efficient Reduction of Nitrogen to Ammonia. Angew. Chem., Int. Ed. 2020;59(32):13423–13429. doi: 10.1002/anie.202005930. PubMed DOI

Xu J., Lund C., Patel P., Kim Y. L., Liu C.. Recent Advances on Computational Modeling of Supported Single-Atom and Cluster Catalysts: Characterization, Catalyst–Support Interaction, and Active Site Heterogeneity. Catalysts. 2024;14(4):224. doi: 10.3390/catal14040224. DOI

Sainna M. A., Nanavati S., Black C., Smith L., Mugford K., Jenkins H., Douthwaite M., Dummer N. F., Catlow C. R. A., Hutchings G. J., Taylor S. H., Logsdail A. J., Willock D. J.. A Combined Periodic DFT and QM/MM Approach to Understand the Radical Mechanism of the Catalytic Production of Methanol from Glycerol. Faraday Discuss. 2021;229(0):108–130. doi: 10.1039/D0FD00005A. PubMed DOI

Patel A. M., Ringe S., Siahrostami S., Bajdich M., Nørskov J. K., Kulkarni A. R.. Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. J. Phys. Chem. C. 2018;122(51):29307–29318. doi: 10.1021/acs.jpcc.8b09430. DOI

Kadam R. G., Medved’ M., Kumar S., Zaoralová D., Zoppellaro G., Bad’ura Z., Montini T., Bakandritsos A., Fonda E., Tomanec O., Otyepka M., Varma R. S., Gawande M. B., Fornasiero P., Zbořil R.. Linear-Structure Single-Atom Gold­(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols. ACS Catal. 2023;13(24):16067–16077. doi: 10.1021/acscatal.3c03937. PubMed DOI PMC

Di Liberto G., Cipriano L. A., Pacchioni G.. Single Atom Catalysts: What Matters Most, the Active Site or the Surrounding? ChemCatChem. 2022;14(19):e202200611. doi: 10.1002/cctc.202200611. DOI

Di Liberto G., Barlocco I., Giordano L., Tosoni S., Pacchioni G.. Single-Atom Electrocatalysis from First Principles: Current Status and Open Challenges. Curr. Opin. Electrochem. 2023;40:101343. doi: 10.1016/j.coelec.2023.101343. DOI

Di Liberto G., Pacchioni G.. Key Ingredients for the Modeling of Single-Atom Electrocatalysts. ChemElectroChem. 2024;11(22):e202400476. doi: 10.1002/celc.202400476. DOI

Fu J., Wang S., Wang Z., Liu K., Li H., Liu H., Hu J., Xu X., Li H., Liu M.. Graphitic Carbon Nitride Based Single-Atom Photocatalysts. Front. Phys. 2020;15(3):33201. doi: 10.1007/s11467-019-0950-z. DOI

Gentile G., Marchi M., Melchionna M., Fornasiero P., Prato M., Filippini G.. Use of Carbon Nitrides as Photoactive Supports in Single-Atom Heterogeneous Catalysis for Synthetic Purposes. Eur. J. Org. Chem. 2022;2022(37):e202200944. doi: 10.1002/ejoc.202200944. DOI

Jyothirmai M. V., Roshini D., Abraham B. M., Singh J. K.. Accelerating the Discovery of g-C3N4-Supported Single Atom Catalysts for Hydrogen Evolution Reaction: A Combined DFT and Machine Learning Strategy. ACS Appl. Energy Mater. 2023;6(10):5598–5606. doi: 10.1021/acsaem.3c00835. DOI

Zhang Y., Cao X., Cao Z.. Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic s-Triazine-Based C3N4 for CO2 Hydrogenation. ACS Appl. Mater. Interfaces. 2022;14(31):35844–35853. doi: 10.1021/acsami.2c09813. PubMed DOI

Lazar P., Otyepková E., Banáš P., Fargašová A., Šafářová K., Lapčík L., Pechoušek J., Zbořil R., Otyepka M.. The Nature of High Surface Energy Sites in Graphene and Graphite. Carbon N. Y. 2014;73:448–453. doi: 10.1016/j.carbon.2014.03.010. DOI

Lakshan N. M., Aluthge D. C., Sameera W. M. C.. Computational Studies of Molybdenum-Containing Metal–Sulfur and Metal–Hydride Clusters. Catalysts. 2024;14(11):816. doi: 10.3390/catal14110816. DOI

Zaoralová D., Mach R., Lazar P., Medved’ M., Otyepka M.. Anchoring of Transition Metals to Graphene Derivatives as an Efficient Approach for Designing Single-Atom Catalysts. Adv. Mater. Interfaces. 2021;8(8):2001392. doi: 10.1002/admi.202001392. DOI

Bakandritsos A., Kadam R. G., Kumar P., Zoppellaro G., Medved’ M., Tuček J., Montini T., Tomanec O., Andrýsková P., Drahoš B., Varma R. S., Otyepka M., Gawande M. B., Fornasiero P., Zbořil R.. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019;31(17):1900323. doi: 10.1002/adma.201900323. PubMed DOI

Maibam A., Krishnamurty S.. Nitrogen Activation to Reduction on a Recyclable V-SAC/BN-Graphene Heterocatalyst Sifted through Dual and Multiphilic Descriptors. J. Colloid Interface Sci. 2021;600:480–491. doi: 10.1016/j.jcis.2021.05.027. PubMed DOI

Padinjareveetil A. K. K., Perales-Rondon J. V., Zaoralová D., Otyepka M., Alduhaish O., Pumera M.. Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production. ACS Appl. Mater. Interfaces. 2023;15(40):47294–47306. doi: 10.1021/acsami.3c12822. PubMed DOI PMC

Barona M., Ahn S., Morris W., Hoover W., Notestein J. M., Farha O. K., Snurr R. Q.. Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes. ACS Catal. 2020;10(2):1460–1469. doi: 10.1021/acscatal.9b03932. DOI

Doudin N., Collinge G., Persaud R. R., Gurunathan P. K., Lee M.-S., Glezakou V.-A., Dixon D. A., Rousseau R., Dohnálek Z.. Binding and Stability of MgO Monomers on Anatase TiO2(101) J. Chem. Phys. 2021;154(20):204703. doi: 10.1063/5.0047521. PubMed DOI

Bramley G. A., Beynon O. T., Stishenko P. V., Logsdail A. J.. The Application of QM/MM Simulations in Heterogeneous Catalysis. Phys. Chem. Chem. Phys. 2023;25(9):6562–6585. doi: 10.1039/D2CP04537K. PubMed DOI

Lu Y., Sen K., Yong C., Gunn D. S. D., Purton J. A., Guan J., Desmoutier A., Abdul Nasir J., Zhang X., Zhu L., Hou Q., Jackson-Masters J., Watts S., Hanson R., Thomas H. N., Jayawardena O., Logsdail A. J., Woodley S. M., Senn H. M., Sherwood P., Catlow C. R. A., Sokol A. A., Keal T. W.. Multiscale QM/MM Modelling of Catalytic Systems with ChemShell. Phys. Chem. Chem. Phys. 2023;25(33):21816–21835. doi: 10.1039/D3CP00648D. PubMed DOI

Abdul Nasir J., Guan J., Keal T. W., Desmoutier A. W., Lu Y., Beale A. M., Catlow C. R. A., Sokol A. A.. Influence of Solvent on Selective Catalytic Reduction of Nitrogen Oxides with Ammonia over Cu-CHA Zeolite. J. Am. Chem. Soc. 2023;145(1):247–259. doi: 10.1021/jacs.2c09823. PubMed DOI PMC

Nastase S. A. F., Logsdail A. J., Catlow C. R. A.. QM/MM Study of the Reactivity of Zeolite Bound Methoxy and Carbene Groups. Phys. Chem. Chem. Phys. 2021;23(32):17634–17644. doi: 10.1039/D1CP02535J. PubMed DOI

Matam S. K., Nastase S. A. F., Logsdail A. J., Catlow C. R. A.. Methanol Loading Dependent Methoxylation in Zeolite H-ZSM-5. Chem. Sci. 2020;11(26):6805–6814. doi: 10.1039/D0SC01924K. PubMed DOI PMC

Wang Z.-M., Liu L.-J., Xiang B., Wang Y., Lyu Y.-J., Qi T., Si Z.-B., Yang H.-Q., Hu C.-W.. The Design and Catalytic Performance of Molybdenum Active Sites on an MCM-41 Framework for the Aerobic Oxidation of 5-Hydroxymethylfurfural to 2­{,}­5-Diformylfuran. Catal. Sci. Technol. 2019;9(3):811–821. doi: 10.1039/C8CY02291G. DOI

Liu L.-J., Wang Z.-M., Fu S., Si Z.-B., Huang Z., Liu T.-H., Yang H.-Q., Hu C.-W.. Catalytic Mechanism for the Isomerization of Glucose into Fructose over an Aluminium-MCM-41 Framework. Catal. Sci. Technol. 2021;11(4):1537–1543. doi: 10.1039/D0CY01984D. DOI

Shi B. X., Kapil V., Zen A., Chen J., Alavi A., Michaelides A.. General Embedded Cluster Protocol for Accurate Modeling of Oxygen Vacancies in Metal-Oxides. J. Chem. Phys. 2022;156(12):124704. doi: 10.1063/5.0087031. PubMed DOI

Abidin A. F. Z., Hamada I.. Oxygen Reduction Reaction on Single-Atom Catalysts From Density Functional Theory Calculations Combined with an Implicit Solvation Model. J. Phys. Chem. C. 2023;127(28):13623–13631. doi: 10.1021/acs.jpcc.3c02224. DOI

Barlocco I., Cipriano L. A., Di Liberto G., Pacchioni G.. Modeling Hydrogen and Oxygen Evolution Reactions on Single Atom Catalysts with Density Functional Theory: Role of the Functional. Adv. Theory Simul. 2023;6(10):2200513. doi: 10.1002/adts.202200513. DOI

Jiang R., Li L., Sheng T., Hu G., Chen Y., Wang L.. Edge-Site Engineering of Atomically Dispersed Fe–N4 by Selective C–N Bond Cleavage for Enhanced Oxygen Reduction Reaction Activities. J. Am. Chem. Soc. 2018;140(37):11594–11598. doi: 10.1021/jacs.8b07294. PubMed DOI

Tong Y., Guo H., Liu D., Yan X., Su P., Liang J., Zhou S., Liu J., Lu G. Q., Dou S. X.. Vacancy Engineering of Iron-Doped W18O49 Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction. Angew. Chem., Int. Ed. 2020;59(19):7356–7361. doi: 10.1002/anie.202002029. PubMed DOI

Xiao K., Lin R.-T., Wei J.-X., Li N., Li H., Ma T., Liu Z.-Q.. Electrochemical Disproportionation Strategy to In-Situ Fill Cation Vacancies with Ru Single Atoms. Nano Res. 2022;15(6):4980–4985. doi: 10.1007/s12274-022-4140-x. DOI

Yin J., Jin J., Lu M., Huang B., Zhang H., Peng Y., Xi P., Yan C.-H.. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. J. Am. Chem. Soc. 2020;142(43):18378–18386. doi: 10.1021/jacs.0c05050. PubMed DOI

de Lara-Castells M. P., Mitrushchenkov A. O., Stoll H.. Combining Density Functional and Incremental Post-Hartree-Fock Approaches for van Der Waals Dominated Adsorbate-Surface Interactions: Ag2/Graphene. J. Chem. Phys. 2015;143(10):102804. doi: 10.1063/1.4919397. PubMed DOI

Basiuk V. A., Prezhdo O. V., Basiuk E. V.. Thermal Smearing in DFT Calculations: How Small Is Really Small? A Case of La and Lu Atoms Adsorbed on Graphene. Mater. Today Commun. 2020;25:101595. doi: 10.1016/j.mtcomm.2020.101595. DOI

Cinquini F., Di Valentin C., Finazzi E., Giordano L., Pacchioni G.. Theory of Oxides Surfaces, Interfaces and Supported Nano-Clusters. Theor. Chem. Acc. 2007;117(5):827–845. doi: 10.1007/s00214-006-0204-3. DOI

Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S.. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry­{,} Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017;19(48):32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI

Misra D., Di Liberto G., Pacchioni G.. CO2 Electroreduction on Single Atom Catalysts: The Role of the DFT Functional. Phys. Chem. Chem. Phys. 2024;26(14):10746–10756. doi: 10.1039/D4CP00175C. PubMed DOI

Tamtaji M., Gao H., Hossain M. D., Galligan P. R., Wong H., Liu Z., Liu H., Cai Y., Goddard W. A., Luo Z.. Machine Learning for Design Principles for Single Atom Catalysts towards Electrochemical Reactions. J. Mater. Chem. A. 2022;10(29):15309–15331. doi: 10.1039/D2TA02039D. DOI

Yu Z., Xu H., Cheng D.. Design of Single Atom Catalysts. Adv. Phys. X. 2021;6(1):1905545. doi: 10.1080/23746149.2021.1905545. DOI

Lu Z., Yadav S., Singh C. V.. Predicting Aggregation Energy for Single Atom Bimetallic Catalysts on Clean and O* Adsorbed Surfaces through Machine Learning Models. Catal. Sci. Technol. 2020;10(1):86–98. doi: 10.1039/C9CY02070E. DOI

Ran N., Song E., Wang Y., Zhou Y., Liu J.. Dynamic Coordination Transformation of Active Sites in Single-Atom MoS2 Catalysts for Boosted Oxygen Evolution Catalysis. Energy Environ. Sci. 2022;15(5):2071–2083. doi: 10.1039/D1EE02750F. DOI

Miertus̃ S., Tomasi J.. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982;65(2):239–245. doi: 10.1016/0301-0104(82)85072-6. DOI

Miertuš S., Scrocco E., Tomasi J.. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981;55(1):117–129. doi: 10.1016/0301-0104(81)85090-2. DOI

Pascual-ahuir J. L., Silla E., Tuñon I.. GEPOL: An Improved Description of Molecular Surfaces. III. A New Algorithm for the Computation of a Solvent-Excluding Surface. J. Comput. Chem. 1994;15(10):1127–1138. doi: 10.1002/jcc.540151009. DOI

Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design; Elsevier, 2005.

Klamt A.. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995;99(7):2224–2235. doi: 10.1021/j100007a062. DOI

Klamt A., Eckert F., Arlt W.. COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures. Annu. Rev. Chem. Biomol. Eng. 2010;1:101–122. doi: 10.1146/annurev-chembioeng-073009-100903. PubMed DOI

Marenich A. V., Cramer C. J., Truhlar D. G.. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Misra D., Di Liberto G., Pacchioni G.. CO2 Electroreduction on Single Atom Catalysts: Is Water Just a Solvent? J. Catal. 2023;422:1–11. doi: 10.1016/j.jcat.2023.04.002. DOI

Kadam R. G., Zhang T., Zaoralová D., Medved’ M., Bakandritsos A., Tomanec O., Petr M., Zhu Chen J., Miller J. T., Otyepka M., Zbořil R., Asefa T., Gawande M. B.. Single Co-Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small. 2021;17(16):2006477. doi: 10.1002/smll.202006477. PubMed DOI

Ho M.-H., O’Hagan M., Dupuis M., DuBois D. L., Bullock R. M., Shaw W. J., Raugei S.. Water-Assisted Proton Delivery and Removal in Bio-Inspired Hydrogen Production Catalysts. Dalton Trans. 2015;44(24):10969–10979. doi: 10.1039/C5DT00782H. PubMed DOI

Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H.. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004;108(46):17886–17892. doi: 10.1021/jp047349j. PubMed DOI

Rong X., Wang H.-J., Lu X.-L., Si R., Lu T.-B.. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction. Angew. Chem., Int. Ed. 2020;59(5):1961–1965. doi: 10.1002/anie.201912458. PubMed DOI

Zhu G., Qi Y., Liu F., Ma S., Xiang G., Jin F., Liu Z., Wang W.. Reconstructing 1D Fe Single-Atom Catalytic Structure on 2D Graphene Film for High-Efficiency Oxygen Reduction Reaction. ChemSusChem. 2021;14(3):866–875. doi: 10.1002/cssc.202002359. PubMed DOI

Ling C., Ouyang Y., Li Q., Bai X., Mao X., Du A., Wang J.. A General Two-Step Strategy–Based High-Throughput Screening of Single Atom Catalysts for Nitrogen Fixation. Small Methods. 2019;3(9):1800376. doi: 10.1002/smtd.201800376. DOI

Li J., Zhang H., Samarakoon W., Shan W., Cullen D. A., Karakalos S., Chen M., Gu D., More K. L., Wang G., Feng Z., Wang Z., Wu G.. Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. Angew. Chem., Int. Ed. 2019;58(52):18971–18980. doi: 10.1002/anie.201909312. PubMed DOI

Wang S., Gao H., Li L., Hui K. S., Dinh D. A., Wu S., Kumar S., Chen F., Shao Z., Hui K. N.. High-Throughput Identification of Highly Active and Selective Single-Atom Catalysts for Electrochemical Ammonia Synthesis through Nitrate Reduction. Nano Energy. 2022;100:107517. doi: 10.1016/j.nanoen.2022.107517. DOI

Zhong L., Li S.. Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catal. 2020;10(7):4313–4318. doi: 10.1021/acscatal.0c00815. DOI

Dybeck E. C., Schieber N. P., Shirts M. R.. Effects of a More Accurate Polarizable Hamiltonian on Polymorph Free Energies Computed Efficiently by Reweighting Point-Charge Potentials. J. Chem. Theory Comput. 2016;12(8):3491–3505. doi: 10.1021/acs.jctc.6b00397. PubMed DOI

Hellmann R.. Intermolecular Potential Energy Surface and Thermophysical Properties of Propane. J. Chem. Phys. 2017;146(11):114304. doi: 10.1063/1.4978412. PubMed DOI

Huang Z., Tang Q.. Axial Coordination Effect on the Oxygen Reduction Reaction of FeN4 Electrocatalysts Based on Grand Canonical Density Functional Theory. J. Phys. Chem. C. 2022;126(51):21606–21615. doi: 10.1021/acs.jpcc.2c06682. DOI

Brimley P., Almajed H., Alsunni Y., Alherz A. W., Bare Z. J. L., Smith W. A., Musgrave C. B.. Electrochemical CO2 Reduction over Metal-/Nitrogen-Doped Graphene Single-Atom Catalysts Modeled Using the Grand-Canonical Density Functional Theory. ACS Catal. 2022;12(16):10161–10171. doi: 10.1021/acscatal.2c01832. DOI

Kühne T. D.. Second Generation Car–Parrinello Molecular Dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014;4(4):391–406. doi: 10.1002/wcms.1176. DOI

Kästner J.. Umbrella Sampling. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1(6):932–942. doi: 10.1002/wcms.66. DOI

Yu Z., Xu H., Cheng D.. Design of Single Atom Catalysts. Adv. Phys. X. 2021;6(1):1905545. doi: 10.1080/23746149.2021.1905545. DOI

van der Heijden O., Park S., Vos R. E., Eggebeen J. J. J., Koper M. T. M.. Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Lett. 2024;9(4):1871–1879. doi: 10.1021/acsenergylett.4c00266. PubMed DOI PMC

Sun H., Xu X., Kim H., Jung W., Zhou W., Shao Z.. Electrochemical Water Splitting: Bridging the Gaps Between Fundamental Research and Industrial Applications. Energy Environ. Mater. 2023;6(5):e12441. doi: 10.1002/eem2.12441. DOI

Liang Q., Brocks G., Bieberle-Hütter A.. Oxygen Evolution Reaction (OER) Mechanism under Alkaline and Acidic Conditions. J. Phys.: Energy. 2021;3(2):026001. doi: 10.1088/2515-7655/abdc85. DOI

Suen N.-T., Hung S.-F., Quan Q., Zhang N., Xu Y.-J., Chen H. M.. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017;46(2):337–365. doi: 10.1039/C6CS00328A. PubMed DOI

Thomsen J. M., Huang D. L., Crabtree R. H., Brudvig G. W.. Iridium-Based Complexes for Water Oxidation. Dalton Trans. 2015;44(28):12452–12472. doi: 10.1039/C5DT00863H. PubMed DOI

Yu J., He Q., Yang G., Zhou W., Shao Z., Ni M.. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal. 2019;9(11):9973–10011. doi: 10.1021/acscatal.9b02457. DOI

Roger I., Shipman M. A., Symes M. D.. Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017;1(1):3. doi: 10.1038/s41570-016-0003. DOI

Zhu C., Shi Q., Feng S., Du D., Lin Y.. Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Lett. 2018;3(7):1713–1721. doi: 10.1021/acsenergylett.8b00640. DOI

Iqbal S., Safdar B., Hussain I., Zhang K., Chatzichristodoulou C.. Trends and Prospects of Bulk and Single-Atom Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2023;13(17):2203913. doi: 10.1002/aenm.202203913. DOI

Hao Y., Hung S.-F., Zeng W.-J., Wang Y., Zhang C., Kuo C.-H., Wang L., Zhao S., Zhang Y., Chen H.-Y., Peng S.. Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics. J. Am. Chem. Soc. 2023;145(43):23659–23669. doi: 10.1021/jacs.3c07777. PubMed DOI

Kumar P., Kannimuthu K., Zeraati A. S., Roy S., Wang X., Wang X., Samanta S., Miller K. A., Molina M., Trivedi D., Abed J., Campos Mata M. A., Al-Mahayni H., Baltrusaitis J., Shimizu G., Wu Y. A., Seifitokaldani A., Sargent E. H., Ajayan P. M., Hu J., Kibria M. G.. High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction. J. Am. Chem. Soc. 2023;145(14):8052–8063. doi: 10.1021/jacs.3c00537. PubMed DOI

Ha M., Kim D. Y., Umer M., Gladkikh V., Myung C. W., Kim K. S.. Tuning Metal Single Atoms Embedded in N x C y Moieties toward High-Performance Electrocatalysis. Energy Environ. Sci. 2021;14(6):3455–3468. doi: 10.1039/D1EE00154J. DOI

Wu L., Guo T., Li T.. Machine Learning-Accelerated Prediction of Overpotential of Oxygen Evolution Reaction of Single-Atom Catalysts. iScience. 2021;24(5):102398. doi: 10.1016/j.isci.2021.102398. PubMed DOI PMC

Rong C., Shen X., Wang Y., Thomsen L., Zhao T., Li Y., Lu X., Amal R., Zhao C.. Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting. Adv. Mater. 2022;34(21):2110103. doi: 10.1002/adma.202110103. PubMed DOI

Zhang X., Zhu X., Bo S., Chen C., Qiu M., Wei X., He N., Xie C., Chen W., Zheng J., Chen P., Jiang S. P., Li Y., Liu Q., Wang S.. Identifying and Tailoring C–N Coupling Site for Efficient Urea Synthesis over Diatomic Fe–Ni Catalyst. Nat. Commun. 2022;13(1):5337. doi: 10.1038/s41467-022-33066-6. PubMed DOI PMC

Sun H., Tung C.-W., Qiu Y., Zhang W., Wang Q., Li Z., Tang J., Chen H.-C., Wang C., Chen H. M.. Atomic Metal–Support Interaction Enables Reconstruction-Free Dual-Site Electrocatalyst. J. Am. Chem. Soc. 2022;144(3):1174–1186. doi: 10.1021/jacs.1c08890. PubMed DOI

ul Haq M., Wu D.-H., Ajmal Z., Ruan Q.-D., Khan S., Zhang L., Wang A.-J., Feng J.-J.. Derived-2D Nb4C3Tx Sheets with Interfacial Self-Assembled Fe-N-C Single-Atom Catalyst for Electrocatalysis in Water Splitting and Durable Zinc-Air Battery. Appl. Catal., B. 2024;344:123632. doi: 10.1016/j.apcatb.2023.123632. DOI

Wang Y., Li X., Zhang M., Zhang J., Chen Z., Zheng X., Tian Z., Zhao N., Han X., Zaghib K., Wang Y., Deng Y., Hu W.. Highly Active and Durable Single-Atom Tungsten-Doped NiS0.5Se0.5 Nanosheet @ NiS0.5Se0.5 Nanorod Heterostructures for Water Splitting. Adv. Mater. 2022;34(13):2107053. doi: 10.1002/adma.202107053. PubMed DOI

Zhao Y., Gao S.-S., Ren P.-H., Ma L.-S., Chen X.-B.. High-Throughput Screening and an Interpretable Machine Learning Model of Single-Atom Hydrogen Evolution Catalysts with an Asymmetric Coordination Environment Constructed from Heteroatom-Doped Graphdiyne. J. Mater. Chem. A. 2025;13(6):4186–4196. doi: 10.1039/D4TA08095E. DOI

Song X., Li Z., Sheng L., Liu Y.. Interpretable Machine Learning for Chiral Induced Symmetry Breaking of Spin Density Boosting Hydrogen Evolution. J. Energy Chem. 2025;103:68–78. doi: 10.1016/j.jechem.2024.11.066. DOI

Khossossi N., Dey P.. Few-Shot Learning for Screening 2D Ga2CoS4–x Supported Single-Atom Catalysts for Hydrogen Production. J. Energy Chem. 2025;100:665–673. doi: 10.1016/j.jechem.2024.09.009. DOI

Zang Y., Lu D.-Q., Wang K., Li B., Peng P., Lan Y.-Q., Zang S.-Q.. A Pyrolysis-Free Ni/Fe Bimetallic Electrocatalyst for Overall Water Splitting. Nat. Commun. 2023;14(1):1792. doi: 10.1038/s41467-023-37530-9. PubMed DOI PMC

Shao M., Chang Q., Dodelet J.-P., Chenitz R.. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016;116(6):3594–3657. doi: 10.1021/acs.chemrev.5b00462. PubMed DOI

Wang H.-F., Tang C., Zhang Q.. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn–Air Batteries. Adv. Funct. Mater. 2018;28(46):1803329. doi: 10.1002/adfm.201803329. DOI

Yan L., Li P., Zhu Q., Kumar A., Sun K., Tian S., Sun X.. Atomically Precise Electrocatalysts for Oxygen Reduction Reaction. Chem. 2023;9(2):280–342. doi: 10.1016/j.chempr.2023.01.003. DOI

Dai Y., Liu B., Zhang Z., Guo P., Liu C., Zhang Y., Zhao L., Wang Z.. Tailoring the D-Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction. Adv. Mater. 2023;35(14):2210757. doi: 10.1002/adma.202210757. PubMed DOI

Li Z., Ji S., Xu C., Leng L., Liu H., Horton J. H., Du L., Gao J., He C., Qi X., Xu Q., Zhu J.. Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Adv. Mater. 2023;35(9):2209644. doi: 10.1002/adma.202209644. PubMed DOI

Wu L., Guo T., Li T.. Rational Design of Transition Metal Single-Atom Electrocatalysts: A Simulation-Based­{,} Machine Learning-Accelerated Study. J. Mater. Chem. A. 2020;8(37):19290–19299. doi: 10.1039/D0TA06207C. DOI

Li W., Feng G., Wang S., Zhong X., Yao Z., Deng S., Wang J.. Accelerating High-Throughput Screening of Hydrogen Peroxide Production via DFT and Machine Learning. J. Mater. Chem. A. 2023;11(28):15426–15436. doi: 10.1039/D3TA01859H. DOI

Zhang M., Li H., Chen J., Ma F.-X., Zhen L., Wen Z., Xu C.-Y.. High-Loading Co Single Atoms and Clusters Active Sites toward Enhanced Electrocatalysis of Oxygen Reduction Reaction for High-Performance Zn–Air Battery. Adv. Funct. Mater. 2023;33(4):2209726. doi: 10.1002/adfm.202209726. DOI

Tian H., Song A., Zhang P., Sun K., Wang J., Sun B., Fan Q., Shao G., Chen C., Liu H., Li Y., Wang G.. High Durability of Fe–N–C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media. Adv. Mater. 2023;35(14):2210714. doi: 10.1002/adma.202210714. PubMed DOI

Zhuang Z., Xia L., Huang J., Zhu P., Li Y., Ye C., Xia M., Yu R., Lang Z., Zhu J., Zheng L., Wang Y., Zhai T., Zhao Y., Wei S., Li J., Wang D., Li Y.. Continuous Modulation of Electrocatalytic Oxygen Reduction Activities of Single-Atom Catalysts through p-n Junction Rectification. Angew. Chem., Int. Ed. 2023;62(5):e202212335. doi: 10.1002/anie.202212335. PubMed DOI

Cui T., Wang Y.-P., Ye T., Wu J., Chen Z., Li J., Lei Y., Wang D., Li Y.. Engineering Dual Single-Atom Sites on 2D Ultrathin N-Doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem., Int. Ed. 2022;61(12):e202115219. doi: 10.1002/anie.202115219. PubMed DOI

Li M., Zhu H., Yuan Q., Li T., Wang M., Zhang P., Zhao Y., Qin D., Guo W., Liu B., Yang X., Liu Y., Pan Y.. Proximity Electronic Effect of Ni/Co Diatomic Sites for Synergistic Promotion of Electrocatalytic Oxygen Reduction and Hydrogen Evolution. Adv. Funct. Mater. 2023;33(4):2210867. doi: 10.1002/adfm.202210867. DOI

Wang Y., Wu J., Tang S., Yang J., Ye C., Chen J., Lei Y., Wang D.. Synergistic Fe–Se Atom Pairs as Bifunctional Oxygen Electrocatalysts Boost Low-Temperature Rechargeable Zn-Air Battery. Angew. Chem., Int. Ed. 2023;62(15):e202219191. doi: 10.1002/anie.202219191. PubMed DOI

Zhou X., Gao J., Hu Y., Jin Z., Hu K., Reddy K. M., Yuan Q., Lin X., Qiu H.-J.. Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-Doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. Nano Lett. 2022;22(8):3392–3399. doi: 10.1021/acs.nanolett.2c00658. PubMed DOI

Liu M., Li N., Cao S., Wang X., Lu X., Kong L., Xu Y., Bu X.-H.. A “Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. Adv. Mater. 2022;34(7):2107421. doi: 10.1002/adma.202107421. PubMed DOI

Xiao F., Wang Q., Xu G.-L., Qin X., Hwang I., Sun C.-J., Liu M., Hua W., Wu H., Zhu S., Li J.-C., Wang J.-G., Zhu Y., Wu D., Wei Z., Gu M., Amine K., Shao M.. Atomically Dispersed Pt and Fe Sites and Pt–Fe Nanoparticles for Durable Proton Exchange Membrane Fuel Cells. Nat. Catal. 2022;5(6):503–512. doi: 10.1038/s41929-022-00796-1. DOI

Wei X., Song S., Cai W., Luo X., Jiao L., Fang Q., Wang X., Wu N., Luo Z., Wang H., Zhu Z., Li J., Zheng L., Gu W., Song W., Guo S., Zhu C.. Tuning the Spin State of Fe Single Atoms by Pd Nanoclusters Enables Robust Oxygen Reduction with Dissociative Pathway. Chem. 2023;9(1):181–197. doi: 10.1016/j.chempr.2022.10.001. DOI

Peter S. C.. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018;3(7):1557–1561. doi: 10.1021/acsenergylett.8b00878. DOI

Kong Q., An X., Liu Q., Xie L., Zhang J., Li Q., Yao W., Yu A., Jiao Y., Sun C.. Copper-Based Catalysts for the Electrochemical Reduction of Carbon Dioxide: Progress and Future Prospects. Mater. Horiz. 2023;10(3):698–721. doi: 10.1039/D2MH01218A. PubMed DOI

Liu L., Li M., Chen F., Huang H.. Recent Advances on Single-Atom Catalysts for CO2 Reduction. Small Struct. 2023;4(3):2200188. doi: 10.1002/sstr.202200188. DOI

Li K., Zhang S., Zhang X., Liu S., Jiang H., Jiang T., Shen C., Yu Y., Chen W.. Atomic Tuning of Single-Atom Fe–N–C Catalysts with Phosphorus for Robust Electrochemical CO2 Reduction. Nano Lett. 2022;22(4):1557–1565. doi: 10.1021/acs.nanolett.1c04382. PubMed DOI

Mou L.-H., Du J., Li Y., Jiang J., Chen L.. Effective Screening Descriptors of Metal–Organic Framework-Supported Single-Atom Catalysts for Electrochemical CO2 Reduction Reactions: A Computational Study. ACS Catal. 2024;14(17):12947–12955. doi: 10.1021/acscatal.4c03937. DOI

Huang Y., Wang J., Hu H., Qiao Z., Li Y., Wang C.. Heteroatom-Doped M-N4-C Single-Atom Catalysts towards Electrochemical Reactions of CO2: A Machine Learning-Assisted DFT Study. Mol. Catal. 2025;572:114793. doi: 10.1016/j.mcat.2024.114793. DOI

Wang Y., Park B. J., Paidi V. K., Huang R., Lee Y., Noh K.-J., Lee K.-S., Han J. W.. Precisely Constructing Orbital Coupling-Modulated Dual-Atom Fe Pair Sites for Synergistic CO2 Electroreduction. ACS Energy Lett. 2022;7(2):640–649. doi: 10.1021/acsenergylett.1c02446. DOI

Zhang Y., Jiao L., Yang W., Xie C., Jiang H.-L.. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO2 Reduction. Angew. Chem., Int. Ed. 2021;60(14):7607–7611. doi: 10.1002/anie.202016219. PubMed DOI

Zhang Z., Zhu J., Chen S., Sun W., Wang D.. Liquid Fluxional Ga Single Atom Catalysts for Efficient Electrochemical CO2 Reduction. Angew. Chem., Int. Ed. 2023;62(3):e202215136. doi: 10.1002/anie.202215136. PubMed DOI

Jin Z., Jiao D., Dong Y., Liu L., Fan J., Gong M., Ma X., Wang Y., Zhang W., Zhang L., Gen Yu Z., Voiry D., Zheng W., Cui X.. Boosting Electrocatalytic Carbon Dioxide Reduction via Self-Relaxation of Asymmetric Coordination in Fe-Based Single Atom Catalyst. Angew. Chem., Int. Ed. 2024;63(6):e202318246. doi: 10.1002/anie.202318246. PubMed DOI

Chen S., Li W.-H., Jiang W., Yang J., Zhu J., Wang L., Ou H., Zhuang Z., Chen M., Sun X., Wang D., Li Y.. MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. Angew. Chem., Int. Ed. 2022;61(4):e202114450. doi: 10.1002/anie.202114450. PubMed DOI

Shi G., Xie Y., Du L., Fu X., Chen X., Xie W., Lu T.-B., Yuan M., Wang M.. Constructing Cu–C Bonds in a Graphdiyne-Regulated Cu Single-Atom Electrocatalyst for CO2 Reduction to CH4 . Angew. Chem., Int. Ed. 2022;61(23):e202203569. doi: 10.1002/anie.202203569. PubMed DOI

Liu M., Wang Q., Luo T., Herran M., Cao X., Liao W., Zhu L., Li H., Stefancu A., Lu Y.-R., Chan T.-S., Pensa E., Ma C., Zhang S., Xiao R., Cortés E.. Potential Alignment in Tandem Catalysts Enhances CO2-to-C2H4 Conversion Efficiencies. J. Am. Chem. Soc. 2024;146(1):468–475. doi: 10.1021/jacs.3c09632. PubMed DOI PMC

Zheng T., Liu C., Guo C., Zhang M., Li X., Jiang Q., Xue W., Li H., Li A., Pao C.-W., Xiao J., Xia C., Zeng J.. Copper-Catalysed Exclusive CO2 to Pure Formic Acid Conversion via Single-Atom Alloying. Nat. Nanotechnol. 2021;16(12):1386–1393. doi: 10.1038/s41565-021-00974-5. PubMed DOI

Song W., Yue L., Fan X., Luo Y., Ying B., Sun S., Zheng D., Liu Q., Hamdy M. S., Sun X.. Recent Progress and Strategies on the Design of Catalysts for Electrochemical Ammonia Synthesis from Nitrate Reduction. Inorg. Chem. Front. 2023;10(12):3489–3514. doi: 10.1039/D3QI00554B. DOI

Schlögl R.. Catalytic Synthesis of AmmoniaA “Never-Ending Story”? Angew. Chem., Int. Ed. 2003;42(18):2004–2008. doi: 10.1002/anie.200301553. PubMed DOI

Wu T., Fan W., Zhang Y., Zhang F.. Electrochemical Synthesis of Ammonia: Progress and Challenges. Mater. Today Phys. 2021;16:100310. doi: 10.1016/j.mtphys.2020.100310. DOI

Mou T., Long J., Frauenheim T., Xiao J.. Advances in Electrochemical Ammonia Synthesis Beyond the Use of Nitrogen Gas as a Source. ChemPlusChem. 2021;86(8):1211–1224. doi: 10.1002/cplu.202100356. PubMed DOI

Wang M., Liu S., Qian T., Liu J., Zhou J., Ji H., Xiong J., Zhong J., Yan C.. Over 56.55% Faradaic Efficiency of Ambient Ammonia Synthesis Enabled by Positively Shifting the Reaction Potential. Nat. Commun. 2019;10(1):341. doi: 10.1038/s41467-018-08120-x. PubMed DOI PMC

Li X., Shen P., Luo Y., Li Y., Guo Y., Zhang H., Chu K.. PdFe Single-Atom Alloy Metallene for N2 Electroreduction. Angew. Chem., Int. Ed. 2022;61(28):e202205923. doi: 10.1002/anie.202205923. PubMed DOI

Zafari M., Nissimagoudar A. S., Umer M., Lee G., Kim K. S.. First Principles and Machine Learning Based Superior Catalytic Activities and Selectivities for N2 Reduction in MBenes, Defective 2D Materials and 2D π-Conjugated Polymer-Supported Single Atom Catalysts. J. Mater. Chem. A. 2021;9(14):9203–9213. doi: 10.1039/D1TA00751C. DOI

Zhang Y., Wang Y., Ma N., Fan J.. Directly Predicting N2 Electroreduction Reaction Free Energy Using Interpretable Machine Learning with Non-DFT Calculated Features. J. Energy Chem. 2024;97:139–148. doi: 10.1016/j.jechem.2024.05.042. DOI

Liu H., Lang X., Zhu C., Timoshenko J., Rüscher M., Bai L., Guijarro N., Yin H., Peng Y., Li J., Liu Z., Wang W., Cuenya B. R., Luo J.. Efficient Electrochemical Nitrate Reduction to Ammonia with Copper-Supported Rhodium Cluster and Single-Atom Catalysts. Angew. Chem., Int. Ed. 2022;61(23):e202202556. doi: 10.1002/anie.202202556. PubMed DOI

Chen K., Ma Z., Li X., Kang J., Ma D., Chu K.. Single-Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia. Adv. Funct. Mater. 2023;33(12):2209890. doi: 10.1002/adfm.202209890. DOI

Wu Z.-Y., Karamad M., Yong X., Huang Q., Cullen D. A., Zhu P., Xia C., Xiao Q., Shakouri M., Chen F.-Y., Kim J. Y., Xia Y., Heck K., Hu Y., Wong M. S., Li Q., Gates I., Siahrostami S., Wang H.. Electrochemical Ammonia Synthesis via Nitrate Reduction on Fe Single Atom Catalyst. Nat. Commun. 2021;12(1):2870. doi: 10.1038/s41467-021-23115-x. PubMed DOI PMC

Li P., Li R., Liu Y., Xie M., Jin Z., Yu G.. Pulsed Nitrate-to-Ammonia Electroreduction Facilitated by Tandem Catalysis of Nitrite Intermediates. J. Am. Chem. Soc. 2023;145(11):6471–6479. doi: 10.1021/jacs.3c00334. PubMed DOI

Lu Z., Liu J., Li H., Li R., Zhang X., Jian X., Gao X., Zhang X., Wu Y., Yue X.. Leveraging Machine Learning to Expedite Screening of Single-Atom Catalysts in Electrochemical Nitrate Reduction to Ammonia. J. Alloys Compd. 2025;1010:177180. doi: 10.1016/j.jallcom.2024.177180. DOI

Xiang J., Zhao H., Chen K., Yang X., Chu K.. Electrocatalytic Nitrite Reduction to Ammonia on an Rh Single-Atom Catalyst. J. Colloid Interface Sci. 2024;659:432–438. doi: 10.1016/j.jcis.2024.01.013. PubMed DOI

Wan Y., Zhang Y., Zhang N., Zhang Z., Chu K.. Single-Atom Zn on MnO2 for Selective Nitrite Electrolysis to Ammonia. Chem. Eng. J. 2024;481:148734. doi: 10.1016/j.cej.2024.148734. DOI

Du W., Sun Z., Chen K., Wang F., Chu K.. Nb1-Zr Dual Active Sites Constructed on ZrO2 Boost Nitrite-to-Ammonia Electroreduction. Chem. Eng. J. 2024;481:148733. doi: 10.1016/j.cej.2024.148733. DOI

Chen K., Zhang Y., Xiang J., Zhao X., Li X., Chu K.. P-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia. ACS Energy Lett. 2023;8(3):1281–1288. doi: 10.1021/acsenergylett.2c02882. DOI

Zhao Y., Li Q.-K., Chi C.-L., Gao S.-S., Tang S.-L., Chen X.-B.. Design and Screening of a NORR Electrocatalyst with Co-Coordinating Active Centers of the Support and Coordination Atoms: A Machine Learning Descriptor for Quantifying Eigen Properties. J. Mater. Chem. A. 2024;12(14):8226–8235. doi: 10.1039/D4TA00570H. DOI

Yang L., Fan J., Zhu W.. Single Atom Decorated Wavy Antimony Nitride for Nitric Oxide Degradation: A First-Principles and Machine Learning Study. Fuel. 2025;380:133219. doi: 10.1016/j.fuel.2024.133219. DOI

Ge R., Wang Y., Li Z., Xu M., Xu S.-M., Zhou H., Ji K., Chen F., Zhou J., Duan H.. Selective Electrooxidation of Biomass-Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickel-Oxide-Supported Ruthenium Single-Atom Catalyst. Angew. Chem., Int. Ed. 2022;61(19):e202200211. doi: 10.1002/anie.202200211. PubMed DOI

Liu Y., Li C., Tan C., Pei Z., Yang T., Zhang S., Huang Q., Wang Y., Zhou Z., Liao X., Dong J., Tan H., Yan W., Yin H., Liu Z.-Q., Huang J., Zhao S.. Electrosynthesis of Chlorine from Seawater-like Solution through Single-Atom Catalysts. Nat. Commun. 2023;14(1):2475. doi: 10.1038/s41467-023-38129-w. PubMed DOI PMC

Wei X., Liu Y., Zhu X., Bo S., Xiao L., Chen C., Nga T. T. T., He Y., Qiu M., Xie C., Wang D., Liu Q., Dong F., Dong C.-L., Fu X.-Z., Wang S.. Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis. Adv. Mater. 2023;35(18):2300020. doi: 10.1002/adma.202300020. PubMed DOI

Tang H.-T., Zhou H.-Y., Pan Y.-M., Zhang J.-L., Cui F.-H., Li W.-H., Wang D.. Single-Atom Manganese-Catalyzed Oxygen Evolution Drives the Electrochemical Oxidation of Silane to Silanol. Angew. Chem., Int. Ed. 2024;63(3):e202315032. doi: 10.1002/anie.202315032. PubMed DOI

Tian Z., Da Y., Wang M., Dou X., Cui X., Chen J., Jiang R., Xi S., Cui B., Luo Y., Yang H., Long Y., Xiao Y., Chen W.. Selective Photoelectrochemical Oxidation of Glucose to Glucaric Acid by Single Atom Pt Decorated Defective TiO2 . Nat. Commun. 2023;14(1):142. doi: 10.1038/s41467-023-35875-9. PubMed DOI PMC

Jeong H., Shin S., Lee H.. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano. 2020;14(11):14355–14374. doi: 10.1021/acsnano.0c06610. PubMed DOI

Roth-Zawadzki A. M., Nielsen A. J., Tankard R. E., Kibsgaard J.. Dual and Triple Atom Electrocatalysts for Energy Conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, Characterization, and Activity Evaluation. ACS Catal. 2024;14(2):1121–1145. doi: 10.1021/acscatal.3c05000. DOI

Ning M., Wang S., Wan J., Xi Z., Chen Q., Sun Y., Li H., Ma T., Jin H.. Dynamic Active Sites in Electrocatalysis. Angew. Chem., Int. Ed. 2024;63(50):e202415794. doi: 10.1002/anie.202415794. PubMed DOI PMC

Shao X., Bian Z., Li B., Zhan F., Cheng X., Shen Y., Li Z., Zhou Q., Cai R., Feng C.. Enhanced Mass Transport on Single-Atom Ni-N-C Catalysts with Hierarchical Pore Structures for Efficient CO2 Electroreduction. Sep. Purif. Technol. 2025;359:130576. doi: 10.1016/j.seppur.2024.130576. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...