Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37782845
PubMed Central
PMC10571008
DOI
10.1021/acsami.3c12822
Knihovny.cz E-zdroje
- Klíčová slova
- PCN-250-Fe3, ammonia synthesis, electrocatalysts, electrochemical nitrate reduction, metal−organic framework, thermal activation,
- Publikační typ
- časopisecké články MeSH
Electrochemical reduction of nitrate into ammonia has lately been identified as one among the promising solutions to address the challenges triggered by the growing global energy demand. Exploring newer electrocatalyst materials is vital to make this process effective and feasible. Recently, metal-organic framework (MOF)-based catalysts are being well investigated for electrocatalytic ammonia synthesis, accounting for their enhanced structural and compositional integrity during catalytic reduction reactions. In this study, we investigate the ability of the PCN-250-Fe3 MOF toward ammonia production in its pristine and activated forms. The activated MOF catalyst delivered a faradaic efficiency of about 90% at -1 V vs RHE and a yield rate of 2.5 × 10-4 mol cm-2 h-1, while the pristine catalyst delivered a 60% faradaic efficiency at the same potential. Theoretical studies further provide insights into the nitrate reduction reaction mechanism catalyzed by the PCN-250-Fe3 MOF catalyst. In short, simpler and cost-effective strategies such as pretreatment of electrocatalysts have an upper hand in aggravating the intrinsic material properties, for catalytic applications, when compared to conventional material modification approaches.
Chemistry Department College of Science King Saud University P O Box 2455 Riyadh 11451 Saudi Arabia
IT4Innovations VŠB Technical University of Ostrava Ostrava Poruba 708 00 Czech Republic
Zobrazit více v PubMed
Chu S.; Majumdar A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488 (7411), 294–303. 10.1038/nature11475. PubMed DOI
Dresselhaus M. S.; Thomas I. L. Alternative Energy Technologies. Nature 2001, 414, 332–337. 10.1038/35104599. PubMed DOI
Si X.; Lu R.; Zhao Z.; Yang X.; Wang F.; Jiang H.; Luo X.; Wang A.; Feng Z.; Xu J.; Lu F. Catalytic Production of Low-Carbon Footprint Sustainable Natural Gas. Nat. Commun. 2022, 13 (1), 258. PubMed PMC
Akshay Kumar K. P.; Ghosh K.; Alduhaish O.; Pumera M. Dip-Coating of MXene and Transition Metal Dichalcogenides on 3D-Printed Nanocarbon Electrodes for the Hydrogen Evolution Reaction. Electrochem. commun. 2021, 122, 106890.10.1016/j.elecom.2020.106890. DOI
Akshay Kumar K. P.; Alduhaish O.; Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochem. commun. 2021, 125, 106977.10.1016/j.elecom.2021.106977. DOI
Li L.; Tang C.; Xia B.; Jin H.; Zheng Y.; Qiao S. Z. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catal. 2019, 9 (4), 2902–2908. 10.1021/acscatal.9b00366. DOI
Wang S.; Ichihara F.; Pang H.; Chen H.; Ye J. Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Adv. Funct. Mater. 2018, 28 (50), 1–26. 10.1002/adfm.201803309. DOI
Schlögl R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”?. Angew. Chemie - Int. Ed. 2003, 42 (18), 2004–2008. 10.1002/anie.200301553. PubMed DOI
Christensen C. H.; Johannessen T.; Sørensen R. Z.; Nørskov J. K. Towards an Ammonia-Mediated Hydrogen Economy?. Catal. Today 2006, 111 (1–2), 140–144. 10.1016/j.cattod.2005.10.011. DOI
Humphreys J.; Lan R.; Tao S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. Res. 2021, 2 (1), 2000043.10.1002/aesr.202000043. DOI
Bernthsen H. A. The Synthesis of Ammonia from Its Elements-II. Sci. Am. 1912, 74 (1930), 410–411. 10.1038/scientificamerican12281912-410supp. DOI
Soloveichik G. Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber–Bosch Process. Nat. Catal. 2019, 2 (5), 377–380. 10.1038/s41929-019-0280-0. DOI
Wan Y.; Xu J.; Lv R. Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Mater. Today 2019, 27 (August), 69–90. 10.1016/j.mattod.2019.03.002. DOI
Guo C.; Ran J.; Vasileff A.; Qiao S.-Z. Rational Design of Electrocatalysts and Photo(Electro)Catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions. Energy Environ. Sci. 2018, 11 (1), 45–56. 10.1039/C7EE02220D. DOI
Kitano M.; Inoue Y.; Yamazaki Y.; Hayashi F.; Kanbara S.; Matsuishi S.; Yokoyama T.; Kim S. W.; Hara M.; Hosono H. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store. Nat. Chem. 2012, 4 (11), 934–940. 10.1038/nchem.1476. PubMed DOI
Van Der Ham C. J. M.; Koper M. T. M.; Hetterscheid D. G. H. Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chem. Soc. Rev. 2014, 43 (15), 5183–5191. 10.1039/C4CS00085D. PubMed DOI
Zhang L.; Ji X.; Ren X.; Ma Y.; Shi X.; Tian Z.; Asiri A. M.; Chen L.; Tang B.; Sun X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv. Mater. 2018, 30, 1800191.10.1002/adma.201800191. PubMed DOI
Chen G. F.; Cao X.; Wu S.; Zeng X.; Ding L. X.; Zhu M.; Wang H. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. J. Am. Chem. Soc. 2017, 139 (29), 9771–9774. 10.1021/jacs.7b04393. PubMed DOI
Qiu W.; Xie X. Y.; Qiu J.; Fang W. H.; Liang R.; Ren X.; Ji X.; Cui G.; Asiri A. M.; Cui G.; Tang B.; Sun X.; et al. High-Performance Artificial Nitrogen Fixation at Ambient Conditions Using a Metal-Free electrocatalyst. Nat. Commun. 2018, 9 (1), 1–8. 10.1038/s41467-018-05758-5. PubMed DOI PMC
Yu X.; Han P.; Wei Z.; Huang L.; Gu Z.; Peng S.; Ma J.; Zheng G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2 (8), 1610–1622. 10.1016/j.joule.2018.06.007. DOI
Geng Z.; Liu Y.; Kong X.; Li P.; Li K.; Liu Z.; Du J.; Shu M.; Si R.; Zeng J. Achieving a Record-High Yield Rate of 120.9 ΜgNH3mgcat.–1h–1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts. Adv. Mater. 2018, 30 (40), 2–7. 10.1002/adma.201803498. PubMed DOI
Wang J.; Yu L.; Hu L.; Chen G.; Xin H.; Feng X. Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential. Nat. Commun. 2018, 9 (1), 1795.10.1038/s41467-018-04213-9. PubMed DOI PMC
Cui X.; Tang C.; Zhang Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv. Energy Mater. 2018, 8 (22), 1–25. 10.1002/aenm.201800369. DOI
Wang Y.; Xu A.; Wang Z.; Huang L.; Li J.; Li F.; Wicks J.; Luo M.; Nam D. H.; Tan C. S.; Ding Y.; Wu J.; Lum Y.; Dinh C. T.; Sinton D.; Zheng G.; Sargent E. H.; et al. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142 (12), 5702–5708. 10.1021/jacs.9b13347. PubMed DOI
van Langevelde P. H.; Katsounaros I.; Koper M. T. M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule 2021, 5 (2), 290–294. 10.1016/j.joule.2020.12.025. DOI
Lu X.; Song H.; Cai J.; Lu S. Recent Development of Electrochemical Nitrate Reduction to Ammonia: A Mini Review. Electrochem. commun. 2021, 129, 107094.10.1016/j.elecom.2021.107094. DOI
Duca M.; Koper M. T. M. Powering Denitrification: The Perspectives of Electrocatalytic Nitrate Reduction. Energy Environ. Sci. 2012, 5 (12), 9726–9742. 10.1039/c2ee23062c. DOI
Scheidler A.; Nixon S.; Lack T. J.; Thyssen N.. EEA. Groundwater Quality and Quantity in Europe. Office for Official Publications of the European Communities Environmental Assessment Report No 3 1999.
Padinjareveetil A. K. K.; Perales-Rondon J. V.; Pumera M. Engineering 3D Printed Structures Towards Electrochemically Driven Green Ammonia Synthesis: A Perspective. Adv. Mater. Technol. 2023, 8 (13), 2202080.10.1002/admt.202202080. DOI
Pérez-Gallent E.; Figueiredo M. C.; Katsounaros I.; Koper M. T. M. Electrocatalytic Reduction of Nitrate on Copper Single Crystals in Acidic and Alkaline Solutions. Electrochim. Acta 2017, 227, 77–84. 10.1016/j.electacta.2016.12.147. DOI
Chen G. F.; Yuan Y.; Jiang H.; Ren S. Y.; Ding L. X.; Ma L.; Wu T.; Lu J.; Wang H. Electrochemical Reduction of Nitrate to Ammonia via Direct Eight-Electron Transfer Using a Copper–Molecular Solid Catalyst. Nat. Energy 2020, 5 (8), 605–613. 10.1038/s41560-020-0654-1. DOI
Liu J. X.; Richards D.; Singh N.; Goldsmith B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 2019, 9 (8), 7052–7064. 10.1021/acscatal.9b02179. DOI
Wang C.; Ye F.; Shen J.; Xue K. H.; Zhu Y.; Li C. In Situ Loading of Cu2O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia. ACS Appl. Mater. Interfaces 2022, 14 (5), 6680–6688. 10.1021/acsami.1c21691. PubMed DOI
Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Electrochemical Ammonia Synthesis via Nitrate Reduction on Fe Single Atom Catalyst. Nat. Commun. 2021, 12 (1), 1–10. 10.1038/s41467-021-23115-x. PubMed DOI PMC
Wang J.; Cai C.; Wang Y.; Yang X.; Wu D.; Zhu Y.; Li M.; Gu M.; Shao M. Electrocatalytic Reduction of Nitrate to Ammonia on Low-Cost Ultrathin CoOx Nanosheets. ACS Catal. 2021, 11 (24), 15135–15140. 10.1021/acscatal.1c03918. DOI
Li L. X.; Sun W. J.; Zhang H. Y.; Wei J. L.; Wang S. X.; He J. H.; Li N. J.; Xu Q. F.; Chen D. Y.; Li H.; Lu J. M. Highly Efficient and Selective Nitrate Electroreduction to Ammonia Catalyzed by Molecular Copper Catalyst@Ti3C2TxMXene. J. Mater. Chem. A 2021, 9 (38), 21771–21778. 10.1039/D1TA06664A. DOI
Wang Q.; Astruc D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120 (2), 1438–1511. 10.1021/acs.chemrev.9b00223. PubMed DOI
Moosavi S. M.; Nandy A.; Jablonka K. M.; Ongari D.; Janet J. P.; Boyd P. G.; Lee Y.; Smit B.; Kulik H. J. Understanding the Diversity of the Metal-Organic Framework Ecosystem. Nat. Commun. 2020, 11 (1), 1–10. 10.1038/s41467-020-17755-8. PubMed DOI PMC
Sakamaki Y.; Tsuji M.; Heidrick Z.; Watson O.; Durchman J.; Salmon C.; Burgin S. R.; Beyzavi H. Preparation and Applications of Metal-Organic Frameworks (MOFs): A Laboratory Activity and Demonstration for High School and/or Undergraduate Students. J. Chem. Educ. 2020, 97 (4), 1109–1116. 10.1021/acs.jchemed.9b01166. PubMed DOI PMC
Zhang S.; Li M.; Li J.; Song Q.; Liu X. High-Ammonia Selective Metal – Organic Framework – Derived Co-Doped Fe/Fe 2 O 3 Catalysts for Electrochemical Nitrate Reduction. Proc. Natil. Acad. Sci. 2022, 119 (6), e2115504119.10.1073/pnas.2115504119. PubMed DOI PMC
Qin J.; Wu K.; Chen L.; Wang X.; Zhao Q.; Liu B.; Ye Z. Achieving High Selectivity for Nitrate Electrochemical Reduction to Ammonia over MOF-Supported RuxOyclusters. J. Mater. Chem. A 2022, 10 (8), 3963–3969. 10.1039/D1TA09441F. DOI
Wang Y.; Yu Y.; Jia R.; Zhang C.; Zhang B. Electrochemical Synthesis of Nitric Acid from Air and Ammonia through Waste Utilization. Natl. Sci. Rev. 2019, 6 (4), 730–738. 10.1093/nsr/nwz019. PubMed DOI PMC
Wang Y.; Zhou W.; Jia R.; Yu Y.; Zhang B. Unveiling the Activity Origin of a Copper-Based electrocatalyst for Selective Nitrate Reduction to Ammonia. Angew. Chemie - Int. Ed. 2020, 59 (13), 5350–5354. 10.1002/anie.201915992. PubMed DOI
Zhao Y.; Truhlar D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125 (19), 194101.10.1063/1.2370993. PubMed DOI
Schäfer A.; Horn H.; Ahlrichs R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571–2577. 10.1063/1.463096. DOI
Glendening E. D.; Reed A. E.; Carpenter J. E.; Weinhold F. A.03 Citation, NBO Version 3.1 https://gaussian.com/citation_a03/
Verma P.; Xu X.; Truhlar D. G. Adsorption on Fe-MOF-74 for C1-C3 Hydrocarbon Separation. J. Phys. Chem. C 2013, 117 (24), 12648–12660. 10.1021/jp402884h. DOI
Barona M.; Ahn S.; Morris W.; Hoover W.; Notestein J. M.; Farha O. K.; Snurr R. Q. Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes. ACS Catal. 2020, 10 (2), 1460–1469. 10.1021/acscatal.9b03932. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI
Nørskov J. K.; Rossmeisl J.; Logadottir A.; Lindqvist L.; Kitchin J. R.; Bligaard T.; Jónsson H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886–17892. 10.1021/jp047349j. DOI
Dattila F.; Seemakurthi R. R.; Zhou Y.; López N. Modeling Operando Electrochemical CO2Reduction. Chem. Rev. 2022, 122, 11085–11130. 10.1021/acs.chemrev.1c00690. PubMed DOI
Gopalsamy K.; Babarao R. Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Ind. Eng. Chem. Res. 2020, 59 (35), 15718–15731. 10.1021/acs.iecr.0c02449. DOI
Feng D.; Wang K.; Wei Z.; Chen Y.-P.; Simon C. M.; Arvapally R. K.; Martin R. L.; Bosch M.; Liu T.-F.; Fordham S.; Yuan D.; Omary M. A.; Haranczyk M.; Smit B.; Zhou H.-C. Kinetically Tuned Dimensional Augmentation as a Versatile Synthetic Route towards Robust Metal-Organic Frameworks. Nat. Commun. 2014, 5, 5723.10.1038/ncomms6723. PubMed DOI
Yuan S.; Sun X.; Pang J.; Lollar C.; Qin J. S.; Perry Z.; Joseph E.; Wang X.; Fang Y.; Bosch M.; Sun D.; Liu D.; Zhong H.-C. PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. Joule 2017, 1 (4), 806–815. 10.1016/j.joule.2017.09.001. DOI
Kirchon A.; Li J.; Xia F.; Day G. S.; Becker B.; Chen W.; Sue H. J.; Fang Y.; Zhou H. C. Modulation versus Templating: Fine-Tuning of Hierarchally Porous PCN-250 Using Fatty Acids To Engineer Guest Adsorption. Angew. Chemie - Int. Ed. 2019, 58 (36), 12425–12430. 10.1002/anie.201905006. PubMed DOI
Honig E. S.Metal Organic Frameworks and Ligands for MOF Synthesis. Strem Chem. Inc.2018.
Yamashita T.; Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254 (8), 2441–2449. 10.1016/j.apsusc.2007.09.063. DOI
An J. R.; Wang Y.; Dong W. W.; Gao X. J.; Yang O. Y.; Liu Y. L.; Zhao J.; Li D. S. Efficient Visible-Light Photoreduction of CO2 to CH4 over an Fe-Based Metal-Organic Framework (PCN-250-Fe3) in a Solid-Gas Mode. ACS Appl. Energy Mater. 2022, 5 (2), 2384–2390. 10.1021/acsaem.1c03868. DOI
Chen Y.; Qiao Z.; Wu H.; Lv D.; Shi R.; Xia Q.; Zhou J.; Li Z. An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane over Ethylene. Chem. Eng. Sci. 2018, 175, 110–117. 10.1016/j.ces.2017.09.032. DOI
De Groot M. T.; Koper M. T. M. The Influence of Nitrate Concentration and Acidity on the Electrocatalytic Reduction of Nitrate on Platinum. J. Electroanal. Chem. 2004, 562 (1), 81–94. 10.1016/j.jelechem.2003.08.011. DOI
Mondloch J. E.; Karagiaridi O.; Farha O. K.; Hupp J. T. Activation of Metal-Organic Framework Materials. CrystEngComm 2013, 15 (45), 9258–9264. 10.1039/c3ce41232f. DOI
Howarth A. J.; Peters A. W.; Vermeulen N. A.; Wang T. C.; Hupp J. T.; Farha O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017, 29, 26–39. 10.1021/acs.chemmater.6b02626. DOI
Drake H. F.; Day G. S.; Vali S. W.; Xiao Z.; Banerjee S.; Li J.; Joseph E. A.; Kuszynski J. E.; Perry Z. T.; Kirchon A.; Ozdemir O. K.; Lindahl P. A.; Zhou H.-C. The Thermally Induced Decarboxylation Mechanism of a Mixed-Oxidation State Carboxylate-Based Iron Metal-Organic Framework. Chem. Commun. 2019, 55 (85), 12769–12772. 10.1039/C9CC04555D. PubMed DOI PMC
Day G. S.; Rowe G. T.; Ybanez C.; Ozdemir R. O.; Ornstein J. Evaluation of Iron-Based Metal–Organic Framework Activation Temperatures in Acetylene Adsorption. Inorg. Chem. 2022, 61, 9242–9250. 10.1021/acs.inorgchem.2c00890. PubMed DOI
Drake H. F.; Xiao Z.; Day G. S.; Vali S. W.; Chen W.; Wang Q.; Huang Y.; Yan T. H.; Kuszynski J. E.; Lindahl P. A.; Ryder M. R.; Zhou H. C. Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Mater. Adv. 2021, 2, 5487–5493. 10.1039/d1ma00163a. PubMed DOI PMC
Chen Y.; Qiao Z.; Huang J.; Wu H.; Xiao J.; Xia Q.; Xi H.; Hu J.; Zhou J.; Li Z. Unusual Moisture-Enhanced CO 2 Capture within Microporous PCN- 250 Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 38638–38647. 10.1021/acsami.8b14400. PubMed DOI
Kirchon A.; Day G. S.; Fang Y.; Banerjee S.; Ozdemir O. K.; Zhou H. C. Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. Iscience 2018, 5, 30–37. 10.1016/j.isci.2018.06.009. PubMed DOI PMC
Clayson I. G.; Hewitt D.; Hutereau M.; Pope T.; Slater B. High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. Adv. Mater. 2020, 32 (44), 2002780.10.1002/adma.202002780. PubMed DOI
Al Amery N.; Abid H. R.; Al-Saadi S.; Wang S.; Liu S. Facile Directions for Synthesis, Modification and Activation of MOFs. Mater. Today Chem. 2020, 17, 100343.10.1016/j.mtchem.2020.100343. DOI
Li F.; Thevenon A.; Rosas-Hernández A.; Wang Z.; Li Y.; Gabardo C. M.; Ozden A.; Dinh C. T.; Li J.; Wang Y.; Edwards J. P.; Xu Y.; McCallum C.; Tao L.; Liang Z. Q.; Luo M.; Wang X.; Li H.; O’Brien C. P.; Tan C. S.; Nam D. H.; Quintero-Bermudez R.; Zhuang T. T.; Li Y. C.; Han Z.; Britt R. D.; Sinton D.; Agapie T.; Peters J. C.; Sargent E. H. Molecular Tuning of CO2-to-Ethylene Conversion. Nature 2020, 577 (7791), 509–513. 10.1038/s41586-019-1782-2. PubMed DOI
Yang K. D.; Ko W. R.; Lee J. H.; Kim S. J.; Lee H.; Lee M. H.; Nam K. T. Morphology-Directed Selective Production of Ethylene or Ethane from CO 2 on a Cu Mesopore Electrode. Angew. Chem. 2017, 129 (3), 814–818. 10.1002/ange.201610432. PubMed DOI
Li C. W.; Ciston J.; Kanan M. W. Electroreduction of Carbon Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper. Nature 2014, 508 (7497), 504–507. 10.1038/nature13249. PubMed DOI
Hahn C.; Jaramillo T. F. Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. Joule 2020, 4 (2), 292–294. 10.1016/j.joule.2020.01.017. DOI
Single Atom Engineering for Electrocatalysis: Fundamentals and Applications
Single Atom Catalyst for Nitrate-to-Ammonia Electrochemistry
Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates