Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production

. 2023 Oct 11 ; 15 (40) : 47294-47306. [epub] 20231002

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37782845

Electrochemical reduction of nitrate into ammonia has lately been identified as one among the promising solutions to address the challenges triggered by the growing global energy demand. Exploring newer electrocatalyst materials is vital to make this process effective and feasible. Recently, metal-organic framework (MOF)-based catalysts are being well investigated for electrocatalytic ammonia synthesis, accounting for their enhanced structural and compositional integrity during catalytic reduction reactions. In this study, we investigate the ability of the PCN-250-Fe3 MOF toward ammonia production in its pristine and activated forms. The activated MOF catalyst delivered a faradaic efficiency of about 90% at -1 V vs RHE and a yield rate of 2.5 × 10-4 mol cm-2 h-1, while the pristine catalyst delivered a 60% faradaic efficiency at the same potential. Theoretical studies further provide insights into the nitrate reduction reaction mechanism catalyzed by the PCN-250-Fe3 MOF catalyst. In short, simpler and cost-effective strategies such as pretreatment of electrocatalysts have an upper hand in aggravating the intrinsic material properties, for catalytic applications, when compared to conventional material modification approaches.

Zobrazit více v PubMed

Chu S.; Majumdar A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488 (7411), 294–303. 10.1038/nature11475. PubMed DOI

Dresselhaus M. S.; Thomas I. L. Alternative Energy Technologies. Nature 2001, 414, 332–337. 10.1038/35104599. PubMed DOI

Si X.; Lu R.; Zhao Z.; Yang X.; Wang F.; Jiang H.; Luo X.; Wang A.; Feng Z.; Xu J.; Lu F. Catalytic Production of Low-Carbon Footprint Sustainable Natural Gas. Nat. Commun. 2022, 13 (1), 258. PubMed PMC

Akshay Kumar K. P.; Ghosh K.; Alduhaish O.; Pumera M. Dip-Coating of MXene and Transition Metal Dichalcogenides on 3D-Printed Nanocarbon Electrodes for the Hydrogen Evolution Reaction. Electrochem. commun. 2021, 122, 106890.10.1016/j.elecom.2020.106890. DOI

Akshay Kumar K. P.; Alduhaish O.; Pumera M. Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochem. commun. 2021, 125, 106977.10.1016/j.elecom.2021.106977. DOI

Li L.; Tang C.; Xia B.; Jin H.; Zheng Y.; Qiao S. Z. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catal. 2019, 9 (4), 2902–2908. 10.1021/acscatal.9b00366. DOI

Wang S.; Ichihara F.; Pang H.; Chen H.; Ye J. Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Adv. Funct. Mater. 2018, 28 (50), 1–26. 10.1002/adfm.201803309. DOI

Schlögl R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”?. Angew. Chemie - Int. Ed. 2003, 42 (18), 2004–2008. 10.1002/anie.200301553. PubMed DOI

Christensen C. H.; Johannessen T.; Sørensen R. Z.; Nørskov J. K. Towards an Ammonia-Mediated Hydrogen Economy?. Catal. Today 2006, 111 (1–2), 140–144. 10.1016/j.cattod.2005.10.011. DOI

Humphreys J.; Lan R.; Tao S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. Res. 2021, 2 (1), 2000043.10.1002/aesr.202000043. DOI

Bernthsen H. A. The Synthesis of Ammonia from Its Elements-II. Sci. Am. 1912, 74 (1930), 410–411. 10.1038/scientificamerican12281912-410supp. DOI

Soloveichik G. Electrochemical Synthesis of Ammonia as a Potential Alternative to the Haber–Bosch Process. Nat. Catal. 2019, 2 (5), 377–380. 10.1038/s41929-019-0280-0. DOI

Wan Y.; Xu J.; Lv R. Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Mater. Today 2019, 27 (August), 69–90. 10.1016/j.mattod.2019.03.002. DOI

Guo C.; Ran J.; Vasileff A.; Qiao S.-Z. Rational Design of Electrocatalysts and Photo(Electro)Catalysts for Nitrogen Reduction to Ammonia (NH3) under Ambient Conditions. Energy Environ. Sci. 2018, 11 (1), 45–56. 10.1039/C7EE02220D. DOI

Kitano M.; Inoue Y.; Yamazaki Y.; Hayashi F.; Kanbara S.; Matsuishi S.; Yokoyama T.; Kim S. W.; Hara M.; Hosono H. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store. Nat. Chem. 2012, 4 (11), 934–940. 10.1038/nchem.1476. PubMed DOI

Van Der Ham C. J. M.; Koper M. T. M.; Hetterscheid D. G. H. Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chem. Soc. Rev. 2014, 43 (15), 5183–5191. 10.1039/C4CS00085D. PubMed DOI

Zhang L.; Ji X.; Ren X.; Ma Y.; Shi X.; Tian Z.; Asiri A. M.; Chen L.; Tang B.; Sun X. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv. Mater. 2018, 30, 1800191.10.1002/adma.201800191. PubMed DOI

Chen G. F.; Cao X.; Wu S.; Zeng X.; Ding L. X.; Zhu M.; Wang H. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. J. Am. Chem. Soc. 2017, 139 (29), 9771–9774. 10.1021/jacs.7b04393. PubMed DOI

Qiu W.; Xie X. Y.; Qiu J.; Fang W. H.; Liang R.; Ren X.; Ji X.; Cui G.; Asiri A. M.; Cui G.; Tang B.; Sun X.; et al. High-Performance Artificial Nitrogen Fixation at Ambient Conditions Using a Metal-Free electrocatalyst. Nat. Commun. 2018, 9 (1), 1–8. 10.1038/s41467-018-05758-5. PubMed DOI PMC

Yu X.; Han P.; Wei Z.; Huang L.; Gu Z.; Peng S.; Ma J.; Zheng G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2 (8), 1610–1622. 10.1016/j.joule.2018.06.007. DOI

Geng Z.; Liu Y.; Kong X.; Li P.; Li K.; Liu Z.; Du J.; Shu M.; Si R.; Zeng J. Achieving a Record-High Yield Rate of 120.9 ΜgNH3mgcat.–1h–1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts. Adv. Mater. 2018, 30 (40), 2–7. 10.1002/adma.201803498. PubMed DOI

Wang J.; Yu L.; Hu L.; Chen G.; Xin H.; Feng X. Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential. Nat. Commun. 2018, 9 (1), 1795.10.1038/s41467-018-04213-9. PubMed DOI PMC

Cui X.; Tang C.; Zhang Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv. Energy Mater. 2018, 8 (22), 1–25. 10.1002/aenm.201800369. DOI

Wang Y.; Xu A.; Wang Z.; Huang L.; Li J.; Li F.; Wicks J.; Luo M.; Nam D. H.; Tan C. S.; Ding Y.; Wu J.; Lum Y.; Dinh C. T.; Sinton D.; Zheng G.; Sargent E. H.; et al. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142 (12), 5702–5708. 10.1021/jacs.9b13347. PubMed DOI

van Langevelde P. H.; Katsounaros I.; Koper M. T. M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule 2021, 5 (2), 290–294. 10.1016/j.joule.2020.12.025. DOI

Lu X.; Song H.; Cai J.; Lu S. Recent Development of Electrochemical Nitrate Reduction to Ammonia: A Mini Review. Electrochem. commun. 2021, 129, 107094.10.1016/j.elecom.2021.107094. DOI

Duca M.; Koper M. T. M. Powering Denitrification: The Perspectives of Electrocatalytic Nitrate Reduction. Energy Environ. Sci. 2012, 5 (12), 9726–9742. 10.1039/c2ee23062c. DOI

Scheidler A.; Nixon S.; Lack T. J.; Thyssen N.. EEA. Groundwater Quality and Quantity in Europe. Office for Official Publications of the European Communities Environmental Assessment Report No 3 1999.

Padinjareveetil A. K. K.; Perales-Rondon J. V.; Pumera M. Engineering 3D Printed Structures Towards Electrochemically Driven Green Ammonia Synthesis: A Perspective. Adv. Mater. Technol. 2023, 8 (13), 2202080.10.1002/admt.202202080. DOI

Pérez-Gallent E.; Figueiredo M. C.; Katsounaros I.; Koper M. T. M. Electrocatalytic Reduction of Nitrate on Copper Single Crystals in Acidic and Alkaline Solutions. Electrochim. Acta 2017, 227, 77–84. 10.1016/j.electacta.2016.12.147. DOI

Chen G. F.; Yuan Y.; Jiang H.; Ren S. Y.; Ding L. X.; Ma L.; Wu T.; Lu J.; Wang H. Electrochemical Reduction of Nitrate to Ammonia via Direct Eight-Electron Transfer Using a Copper–Molecular Solid Catalyst. Nat. Energy 2020, 5 (8), 605–613. 10.1038/s41560-020-0654-1. DOI

Liu J. X.; Richards D.; Singh N.; Goldsmith B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 2019, 9 (8), 7052–7064. 10.1021/acscatal.9b02179. DOI

Wang C.; Ye F.; Shen J.; Xue K. H.; Zhu Y.; Li C. In Situ Loading of Cu2O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia. ACS Appl. Mater. Interfaces 2022, 14 (5), 6680–6688. 10.1021/acsami.1c21691. PubMed DOI

Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Electrochemical Ammonia Synthesis via Nitrate Reduction on Fe Single Atom Catalyst. Nat. Commun. 2021, 12 (1), 1–10. 10.1038/s41467-021-23115-x. PubMed DOI PMC

Wang J.; Cai C.; Wang Y.; Yang X.; Wu D.; Zhu Y.; Li M.; Gu M.; Shao M. Electrocatalytic Reduction of Nitrate to Ammonia on Low-Cost Ultrathin CoOx Nanosheets. ACS Catal. 2021, 11 (24), 15135–15140. 10.1021/acscatal.1c03918. DOI

Li L. X.; Sun W. J.; Zhang H. Y.; Wei J. L.; Wang S. X.; He J. H.; Li N. J.; Xu Q. F.; Chen D. Y.; Li H.; Lu J. M. Highly Efficient and Selective Nitrate Electroreduction to Ammonia Catalyzed by Molecular Copper Catalyst@Ti3C2TxMXene. J. Mater. Chem. A 2021, 9 (38), 21771–21778. 10.1039/D1TA06664A. DOI

Wang Q.; Astruc D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120 (2), 1438–1511. 10.1021/acs.chemrev.9b00223. PubMed DOI

Moosavi S. M.; Nandy A.; Jablonka K. M.; Ongari D.; Janet J. P.; Boyd P. G.; Lee Y.; Smit B.; Kulik H. J. Understanding the Diversity of the Metal-Organic Framework Ecosystem. Nat. Commun. 2020, 11 (1), 1–10. 10.1038/s41467-020-17755-8. PubMed DOI PMC

Sakamaki Y.; Tsuji M.; Heidrick Z.; Watson O.; Durchman J.; Salmon C.; Burgin S. R.; Beyzavi H. Preparation and Applications of Metal-Organic Frameworks (MOFs): A Laboratory Activity and Demonstration for High School and/or Undergraduate Students. J. Chem. Educ. 2020, 97 (4), 1109–1116. 10.1021/acs.jchemed.9b01166. PubMed DOI PMC

Zhang S.; Li M.; Li J.; Song Q.; Liu X. High-Ammonia Selective Metal – Organic Framework – Derived Co-Doped Fe/Fe 2 O 3 Catalysts for Electrochemical Nitrate Reduction. Proc. Natil. Acad. Sci. 2022, 119 (6), e2115504119.10.1073/pnas.2115504119. PubMed DOI PMC

Qin J.; Wu K.; Chen L.; Wang X.; Zhao Q.; Liu B.; Ye Z. Achieving High Selectivity for Nitrate Electrochemical Reduction to Ammonia over MOF-Supported RuxOyclusters. J. Mater. Chem. A 2022, 10 (8), 3963–3969. 10.1039/D1TA09441F. DOI

Wang Y.; Yu Y.; Jia R.; Zhang C.; Zhang B. Electrochemical Synthesis of Nitric Acid from Air and Ammonia through Waste Utilization. Natl. Sci. Rev. 2019, 6 (4), 730–738. 10.1093/nsr/nwz019. PubMed DOI PMC

Wang Y.; Zhou W.; Jia R.; Yu Y.; Zhang B. Unveiling the Activity Origin of a Copper-Based electrocatalyst for Selective Nitrate Reduction to Ammonia. Angew. Chemie - Int. Ed. 2020, 59 (13), 5350–5354. 10.1002/anie.201915992. PubMed DOI

Zhao Y.; Truhlar D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125 (19), 194101.10.1063/1.2370993. PubMed DOI

Schäfer A.; Horn H.; Ahlrichs R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571–2577. 10.1063/1.463096. DOI

Glendening E. D.; Reed A. E.; Carpenter J. E.; Weinhold F. A.03 Citation, NBO Version 3.1 https://gaussian.com/citation_a03/

Verma P.; Xu X.; Truhlar D. G. Adsorption on Fe-MOF-74 for C1-C3 Hydrocarbon Separation. J. Phys. Chem. C 2013, 117 (24), 12648–12660. 10.1021/jp402884h. DOI

Barona M.; Ahn S.; Morris W.; Hoover W.; Notestein J. M.; Farha O. K.; Snurr R. Q. Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes. ACS Catal. 2020, 10 (2), 1460–1469. 10.1021/acscatal.9b03932. DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI

Nørskov J. K.; Rossmeisl J.; Logadottir A.; Lindqvist L.; Kitchin J. R.; Bligaard T.; Jónsson H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886–17892. 10.1021/jp047349j. DOI

Dattila F.; Seemakurthi R. R.; Zhou Y.; López N. Modeling Operando Electrochemical CO2Reduction. Chem. Rev. 2022, 122, 11085–11130. 10.1021/acs.chemrev.1c00690. PubMed DOI

Gopalsamy K.; Babarao R. Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Ind. Eng. Chem. Res. 2020, 59 (35), 15718–15731. 10.1021/acs.iecr.0c02449. DOI

Feng D.; Wang K.; Wei Z.; Chen Y.-P.; Simon C. M.; Arvapally R. K.; Martin R. L.; Bosch M.; Liu T.-F.; Fordham S.; Yuan D.; Omary M. A.; Haranczyk M.; Smit B.; Zhou H.-C. Kinetically Tuned Dimensional Augmentation as a Versatile Synthetic Route towards Robust Metal-Organic Frameworks. Nat. Commun. 2014, 5, 5723.10.1038/ncomms6723. PubMed DOI

Yuan S.; Sun X.; Pang J.; Lollar C.; Qin J. S.; Perry Z.; Joseph E.; Wang X.; Fang Y.; Bosch M.; Sun D.; Liu D.; Zhong H.-C. PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. Joule 2017, 1 (4), 806–815. 10.1016/j.joule.2017.09.001. DOI

Kirchon A.; Li J.; Xia F.; Day G. S.; Becker B.; Chen W.; Sue H. J.; Fang Y.; Zhou H. C. Modulation versus Templating: Fine-Tuning of Hierarchally Porous PCN-250 Using Fatty Acids To Engineer Guest Adsorption. Angew. Chemie - Int. Ed. 2019, 58 (36), 12425–12430. 10.1002/anie.201905006. PubMed DOI

Honig E. S.Metal Organic Frameworks and Ligands for MOF Synthesis. Strem Chem. Inc.2018.

Yamashita T.; Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254 (8), 2441–2449. 10.1016/j.apsusc.2007.09.063. DOI

An J. R.; Wang Y.; Dong W. W.; Gao X. J.; Yang O. Y.; Liu Y. L.; Zhao J.; Li D. S. Efficient Visible-Light Photoreduction of CO2 to CH4 over an Fe-Based Metal-Organic Framework (PCN-250-Fe3) in a Solid-Gas Mode. ACS Appl. Energy Mater. 2022, 5 (2), 2384–2390. 10.1021/acsaem.1c03868. DOI

Chen Y.; Qiao Z.; Wu H.; Lv D.; Shi R.; Xia Q.; Zhou J.; Li Z. An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane over Ethylene. Chem. Eng. Sci. 2018, 175, 110–117. 10.1016/j.ces.2017.09.032. DOI

De Groot M. T.; Koper M. T. M. The Influence of Nitrate Concentration and Acidity on the Electrocatalytic Reduction of Nitrate on Platinum. J. Electroanal. Chem. 2004, 562 (1), 81–94. 10.1016/j.jelechem.2003.08.011. DOI

Mondloch J. E.; Karagiaridi O.; Farha O. K.; Hupp J. T. Activation of Metal-Organic Framework Materials. CrystEngComm 2013, 15 (45), 9258–9264. 10.1039/c3ce41232f. DOI

Howarth A. J.; Peters A. W.; Vermeulen N. A.; Wang T. C.; Hupp J. T.; Farha O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chem. Mater. 2017, 29, 26–39. 10.1021/acs.chemmater.6b02626. DOI

Drake H. F.; Day G. S.; Vali S. W.; Xiao Z.; Banerjee S.; Li J.; Joseph E. A.; Kuszynski J. E.; Perry Z. T.; Kirchon A.; Ozdemir O. K.; Lindahl P. A.; Zhou H.-C. The Thermally Induced Decarboxylation Mechanism of a Mixed-Oxidation State Carboxylate-Based Iron Metal-Organic Framework. Chem. Commun. 2019, 55 (85), 12769–12772. 10.1039/C9CC04555D. PubMed DOI PMC

Day G. S.; Rowe G. T.; Ybanez C.; Ozdemir R. O.; Ornstein J. Evaluation of Iron-Based Metal–Organic Framework Activation Temperatures in Acetylene Adsorption. Inorg. Chem. 2022, 61, 9242–9250. 10.1021/acs.inorgchem.2c00890. PubMed DOI

Drake H. F.; Xiao Z.; Day G. S.; Vali S. W.; Chen W.; Wang Q.; Huang Y.; Yan T. H.; Kuszynski J. E.; Lindahl P. A.; Ryder M. R.; Zhou H. C. Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Mater. Adv. 2021, 2, 5487–5493. 10.1039/d1ma00163a. PubMed DOI PMC

Chen Y.; Qiao Z.; Huang J.; Wu H.; Xiao J.; Xia Q.; Xi H.; Hu J.; Zhou J.; Li Z. Unusual Moisture-Enhanced CO 2 Capture within Microporous PCN- 250 Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 38638–38647. 10.1021/acsami.8b14400. PubMed DOI

Kirchon A.; Day G. S.; Fang Y.; Banerjee S.; Ozdemir O. K.; Zhou H. C. Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. Iscience 2018, 5, 30–37. 10.1016/j.isci.2018.06.009. PubMed DOI PMC

Clayson I. G.; Hewitt D.; Hutereau M.; Pope T.; Slater B. High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. Adv. Mater. 2020, 32 (44), 2002780.10.1002/adma.202002780. PubMed DOI

Al Amery N.; Abid H. R.; Al-Saadi S.; Wang S.; Liu S. Facile Directions for Synthesis, Modification and Activation of MOFs. Mater. Today Chem. 2020, 17, 100343.10.1016/j.mtchem.2020.100343. DOI

Li F.; Thevenon A.; Rosas-Hernández A.; Wang Z.; Li Y.; Gabardo C. M.; Ozden A.; Dinh C. T.; Li J.; Wang Y.; Edwards J. P.; Xu Y.; McCallum C.; Tao L.; Liang Z. Q.; Luo M.; Wang X.; Li H.; O’Brien C. P.; Tan C. S.; Nam D. H.; Quintero-Bermudez R.; Zhuang T. T.; Li Y. C.; Han Z.; Britt R. D.; Sinton D.; Agapie T.; Peters J. C.; Sargent E. H. Molecular Tuning of CO2-to-Ethylene Conversion. Nature 2020, 577 (7791), 509–513. 10.1038/s41586-019-1782-2. PubMed DOI

Yang K. D.; Ko W. R.; Lee J. H.; Kim S. J.; Lee H.; Lee M. H.; Nam K. T. Morphology-Directed Selective Production of Ethylene or Ethane from CO 2 on a Cu Mesopore Electrode. Angew. Chem. 2017, 129 (3), 814–818. 10.1002/ange.201610432. PubMed DOI

Li C. W.; Ciston J.; Kanan M. W. Electroreduction of Carbon Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper. Nature 2014, 508 (7497), 504–507. 10.1038/nature13249. PubMed DOI

Hahn C.; Jaramillo T. F. Using Microenvironments to Control Reactivity in CO2 Electrocatalysis. Joule 2020, 4 (2), 292–294. 10.1016/j.joule.2020.01.017. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...