Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39765881
PubMed Central
PMC11673414
DOI
10.3390/antiox13121553
PII: antiox13121553
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant responses, beneficial microbe, biocontrol, biopriming, biotic stress, disease defense, redox regulation, sustainable agriculture, symbiosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The increase in extreme climate events associated with global warming is a great menace to crop productivity nowadays. In addition to abiotic stresses, warmer conditions favor the spread of infectious diseases affecting plant performance. Within this context, beneficial microbes constitute a sustainable alternative for the mitigation of the effects of climate change on plant growth and productivity. Used as biostimulants to improve plant growth, they also increase plant resistance to abiotic and biotic stresses through the generation of a primed status in the plant, leading to a better and faster response to stress. In this review, we have focused on the importance of a balanced redox status for the adequate performance of the plant and revisited the different antioxidant mechanisms supporting the biocontrol effect of beneficial microbes through the adjustment of the levels of reactive oxygen species (ROS). In addition, the different tools for the analysis of antioxidant responses and redox regulation have been evaluated. The importance of redox regulation in the activation of the immune responses through different mechanisms, such as transcriptional regulation, retrograde signaling, and post-translational modification of proteins, emerges as an important research goal for understanding the biocontrol activity of the beneficial microbes.
Zobrazit více v PubMed
Wheeler T., Von Braun J. Climate change impacts on global food security. Science. 2013;341:508–513. doi: 10.1126/science.1239402. PubMed DOI
World Health Organization . The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable. Volume 2022 Food & Agriculture Organization; Rome, Italy: 2022.
Meena K.K., Sorty A.M., Bitla U.M., Choudhary K., Gupta P., Pareek A., Singh D.P., Prabha R., Sahu P.K., Gupta V.K. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017;8:172. doi: 10.3389/fpls.2017.00172. PubMed DOI PMC
Sato H., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. Plant J. 2024;117:1873–1892. doi: 10.1111/tpj.16612. PubMed DOI
Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Leisner C.P., Potnis N., Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. Plant Cell Environ. 2023;46:2946–2963. doi: 10.1111/pce.14532. PubMed DOI
Zandalinas S.I., Fritschi F.B., Mittler R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021;26:588–599. doi: 10.1016/j.tplants.2021.02.011. PubMed DOI
Zhu H., Jiang Z., Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021;66:2528–2537. doi: 10.1016/j.scib.2021.07.026. PubMed DOI
Wang Y., Frei M. Stressed food–The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011;141:271–286. doi: 10.1016/j.agee.2011.03.017. DOI
Singh B.K., Delgado-Baquerizo M., Egidi E., Guirado E., Leach J.E., Liu H., Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023;21:640–656. doi: 10.1038/s41579-023-00900-7. PubMed DOI PMC
Dolatabadian A. Plant–microbe interaction. Biology. 2021;10:15. doi: 10.3390/biology10010015. PubMed DOI PMC
Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013;37:634–663. doi: 10.1111/1574-6976.12028. PubMed DOI
Rivero R.M., Mittler R., Blumwald E., Zandalinas S.I. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2022;109:373–389. doi: 10.1111/tpj.15483. PubMed DOI
Koza N.A., Adedayo A.A., Babalola O.O., Kappo A.P. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms. 2022;10:1528. doi: 10.3390/microorganisms10081528. PubMed DOI PMC
Tripathi D.K., Bhat J.A., Antoniou C., Kandhol N., Singh V.P., Fernie A.R., Fotopoulos V. Redox regulation by priming agents toward a sustainable agriculture. Plant Cell Physiol. 2024;65:1087–1102. doi: 10.1093/pcp/pcae031. PubMed DOI PMC
Waszczak C., Carmody M., Kangasjärvi J. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI
You J., Chan Z. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC
Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., Asai T., Plotnikov J., Denoux C., Hayes T., Gerrish C., Davies D.R. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 2006;47:851–863. doi: 10.1111/j.1365-313X.2006.02837.x. PubMed DOI PMC
Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867. doi: 10.1111/tpj.13299. PubMed DOI
Cejudo F.J., González M.-C., Pérez-Ruiz J.M. Redox regulation of chloroplast metabolism. Plant Physiol. 2021;186:9–21. doi: 10.1093/plphys/kiaa062. PubMed DOI PMC
Pérez-Ruiz J.M., Naranjo B., Ojeda V., Guinea M., Cejudo F.J. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc. Natl. Acad. Sci. USA. 2017;114:12069–12074. doi: 10.1073/pnas.1706003114. PubMed DOI PMC
Sevilla F., Martí M.C., De Brasi-Velasco S., Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. J. Exp. Bot. 2023;74:5955–5969. doi: 10.1093/jxb/erad270. PubMed DOI PMC
Bleau J.R., Spoel S.H. Selective redox signaling shapes plant–pathogen interactions. Plant Physiol. 2021;186:53–65. doi: 10.1093/plphys/kiaa088. PubMed DOI PMC
Geigenberger P., Thormählen I., Daloso D.M., Fernie A.R. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 2017;22:249–262. doi: 10.1016/j.tplants.2016.12.008. PubMed DOI
Balsera M., Buchanan B.B. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic. Biol. Med. 2019;140:28–35. doi: 10.1016/j.freeradbiomed.2019.03.003. PubMed DOI
Naranjo Río-Miranda B., Díaz Espejo A., Lindahl A.M., Cejudo Fernández F.J. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J. Exp. Bot. 2016;67:1951–1964. doi: 10.1093/jxb/erw017. PubMed DOI PMC
Delgado-Requerey V., Cejudo F.J., González M.-C. The functional relationship between NADPH thioredoxin reductase C, 2-Cys peroxiredoxins, and m-type thioredoxins in the regulation of Calvin–Benson cycle and malate-valve enzymes in Arabidopsis. Antioxidants. 2023;12:1041. doi: 10.3390/antiox12051041. PubMed DOI PMC
Pulido P., Spínola M.C., Kirchsteiger K., Guinea M., Pascual M.B., Sahrawy M., Sandalio L.M., Dietz K.-J., Gonzalez M., Cejudo F.J. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 2010;61:4043–4054. doi: 10.1093/jxb/erq218. PubMed DOI PMC
Jurado-Flores A., Delgado-Requerey V., Gálvez-Ramírez A., Puerto-Galán L., Pérez-Ruiz J.M., Cejudo F.J. Exploring the functional relationship between y-type thioredoxins and 2-Cys peroxiredoxins in Arabidopsis chloroplasts. Antioxidants. 2020;9:1072. doi: 10.3390/antiox9111072. PubMed DOI PMC
González García M.C., Delgado Requerey V., Ferrández J., Serna A., Cejudo Fernández F.J. Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. J. Exp. Bot. 2019;70:5787–5798. doi: 10.1093/jxb/erz326. PubMed DOI PMC
Yoshida K., Hisabori T. Current insights into the redox regulation network in plant chloroplasts. Plant Cell Physiol. 2023;64:704–715. doi: 10.1093/pcp/pcad049. PubMed DOI PMC
Pandey C., Großkinsky D.K., Westergaard J.C., Jørgensen H.J., Svensgaard J., Christensen S., Schulz A., Roitsch T. Identification of a bio-signature for barley resistance against Pyrenophora teres infection based on physiological, molecular and sensor-based phenotyping. Plant Sci. 2021;313:111072. doi: 10.1016/j.plantsci.2021.111072. PubMed DOI
Pandey C., Gupta M. Selenium amelioration of arsenic toxicity in rice shows genotypic variation: A transcriptomic and biochemical analysis. J. Plant Physiol. 2018;231:168–181. doi: 10.1016/j.jplph.2018.09.013. PubMed DOI
Jammer A., Akhtar S.S., Amby D.B., Pandey C., Mekureyaw M.F., Bak F., Roth P.M., Roitsch T. Enzyme activity profiling for physiological phenotyping within functional phenomics: Plant growth and stress responses. J. Exp. Bot. 2022;73:5170–5198. doi: 10.1093/jxb/erac215. PubMed DOI
Fimognari L., Dölker R., Kaselyte G., Jensen C.N., Akhtar S.S., Großkinsky D.K., Roitsch T. Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods. 2020;16:42. doi: 10.1186/s13007-020-00583-8. PubMed DOI PMC
Allen D.K., Libourel I.G., Shachar-Hill Y. Metabolic flux analysis in plants: Coping with complexity. Plant Cell Environ. 2009;32:1241–1257. doi: 10.1111/j.1365-3040.2009.01992.x. PubMed DOI
De Schepper V., Bühler J., Thorpe M., Roeb G., Huber G., van Dusschoten D., Jahnke S., Steppe K. 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front. Plant Sci. 2013;4:200. doi: 10.3389/fpls.2013.00200. PubMed DOI PMC
Lee M.V., Topper S.E., Hubler S.L., Hose J., Wenger C.D., Coon J.J., Gasch A.P. A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Mol. Syst. Biol. 2011;7:514. doi: 10.1038/msb.2011.48. PubMed DOI PMC
Schwarzländer M., Dick T.P., Meyer A.J., Morgan B. Dissecting redox biology using fluorescent protein sensors. Antioxid. Redox Signal. 2016;24:680–712. doi: 10.1089/ars.2015.6266. PubMed DOI
Lampl N., Lev R., Nissan I., Gilad G., Hipsch M., Rosenwasser S. Systematic monitoring of 2-Cys peroxiredoxin-derived redox signals unveiled its role in attenuating carbon assimilation rate. Proc. Natl. Acad. Sci. USA. 2022;119:e2119719119. doi: 10.1073/pnas.2119719119. PubMed DOI PMC
Ma X., Zhang B., Miao R., Deng X., Duan Y., Cheng Y., Zhang W., Shi M., Huang K., Xia X.-Q. Transcriptomic and physiological responses to oxidative stress in a Chlamydomonas reinhardtii glutathione peroxidase mutant. Genes. 2020;11:463. doi: 10.3390/genes11040463. PubMed DOI PMC
Mekureyaw M.F., Pandey C., Hennessy R.C., Nicolaisen M.H., Liu F., Nybroe O., Roitsch T. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. J. Plant Physiol. 2022;270:153629. doi: 10.1016/j.jplph.2022.153629. PubMed DOI
Melicher P., Dvořák P., Šamaj J., Takáč T. Protein-protein interactions in plant antioxidant defense. Front. Plant Sci. 2022;13:1035573. doi: 10.3389/fpls.2022.1035573. PubMed DOI PMC
Zhang Y., Fernie A.R. Stable and temporary enzyme complexes and metabolons involved in energy and redox metabolism. Antioxid. Redox Signal. 2021;35:788–807. doi: 10.1089/ars.2019.7981. PubMed DOI
Ameztoy K., Baslam M., Sánchez-López Á.M., Muñoz F.J., Bahaji A., Almagro G., García-Gómez P., Baroja-Fernández E., De Diego N., Humplík J.F. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant Cell Environ. 2019;42:2627–2644. doi: 10.1111/pce.13601. PubMed DOI
Ameztoy K., Sánchez-López Á.M., Muñoz F.J., Bahaji A., Almagro G., Baroja-Fernández E., Gámez-Arcas S., De Diego N., Doležal K., Novák O. Proteostatic regulation of MEP and shikimate pathways by redox-activated photosynthesis signaling in plants exposed to small fungal volatiles. Front. Plant Sci. 2021;12:637976. doi: 10.3389/fpls.2021.637976. PubMed DOI PMC
Mekureyaw M.F., Beierholm A.E., Nybroe O., Roitsch T.G. Inoculation of tomato (Solanum lycopersicum) roots with growth promoting Pseudomonas strains induces distinct local and systemic metabolic biosignatures. Physiol. Mol. Plant Pathol. 2022;117:101757. doi: 10.1016/j.pmpp.2021.101757. DOI
Gupta S., Schillaci M., Walker R., Smith P.M., Watt M., Roessner U. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant Soil. 2021;461:219–244. doi: 10.1007/s11104-020-04618-w. DOI
Kaushal M. Insights into microbially induced salt tolerance and endurance mechanisms (STEM) in plants. Front. Microbiol. 2020;11:1518. doi: 10.3389/fmicb.2020.01518. PubMed DOI PMC
Singh A.K., Kumar S., Sinha T. Antioxidants in Plant–Microbe Interaction. Springer; Berlin/Heidelberg, Germany: 2021.
Zahir Z.A., Nadeem S.M., Khan M.Y., Binyamin R., Waqas M.R. Saline Soil-Based Agriculture by Halotolerant Microorganisms. Springer; Singapore: 2019. Role of halotolerant microbes in plant growth promotion under salt stress conditions; pp. 209–253.
Akhtar S.S., Amby D.B., Hegelund J.N., Fimognari L., Großkinsky D.K., Westergaard J.C., Müller R., Moelbak L., Liu F., Roitsch T. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 2020;11:297. doi: 10.3389/fpls.2020.00297. PubMed DOI PMC
Yang A., Akhtar S.S., Fu Q., Naveed M., Iqbal S., Roitsch T., Jacobsen S.-E. Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress. Plants. 2020;9:672. doi: 10.3390/plants9060672. PubMed DOI PMC
Garcia-Lemos A.M., Großkinsky D.K., Stokholm M.S., Lund O.S., Nicolaisen M.H., Roitsch T.G., Veierskov B., Nybroe O. Root-associated microbial communities of Abies nordmanniana: Insights into interactions of microbial communities with antioxidative enzymes and plant growth. Front. Microbiol. 2019;10:1937. doi: 10.3389/fmicb.2019.01937. PubMed DOI PMC
Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019;10:800. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC
Considine M.J., Foyer C.H. Oxygen and reactive oxygen species-dependent regulation of plant growth and development. Plant Physiol. 2021;186:79–92. doi: 10.1093/plphys/kiaa077. PubMed DOI PMC
Noctor G., Reichheld J.-P., Foyer C.H. Seminars in Cell & Developmental Biology. Academic Press; Cambridge, MA, USA: 2018. ROS-related redox regulation and signaling in plants; pp. 3–12. PubMed
Artins A., Caldana C. The metabolic homeostaTOR: The balance of holding on or letting grow. Curr. Opin. Plant Biol. 2022;66:102196. doi: 10.1016/j.pbi.2022.102196. PubMed DOI
Jamsheer K.M., Jindal S., Laxmi A. Evolution of TOR–SnRK dynamics in green plants and its integration with phytohormone signaling networks. J. Exp. Bot. 2019;70:2239–2259. doi: 10.1093/jxb/erz107. PubMed DOI
Shukla B.N., Jindal S., Gopan N., Mannully C.T., Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J. Biol. Chem. 2018;293:13134–13150. PubMed PMC
Singh A., Sharma A., Singh O., Rajput V.D., Movsesyan H.S., Minkina T., Alexiou A., Papadakis M., Singh R.K., Singh S. In-depth exploration of nanoparticles for enhanced nutrient use efficiency and abiotic stresses management: Present insights and future horizons. Plant Stress. 2024;14:100576. doi: 10.1016/j.stress.2024.100576. DOI
Amiri H., Banakar M.H., Hemmati Hassan Gavyar P. Polyamines: New Plant Growth Regulators Promoting Salt Stress Tolerance in Plants. J. Plant Growth Regul. 2024;43:4923–4940. doi: 10.1007/s00344-024-11447-z. DOI
Brokate O., Papenbrock J., Turcios A.E. Biofilm-forming microorganisms in the rhizosphere to improve plant growth: Coping with abiotic stress and environmental pollution. Appl. Soil Ecol. 2024;202:105591. doi: 10.1016/j.apsoil.2024.105591. DOI
Berková V., Berka M., Štěpánková L., Kováč J., Auer S., Menšíková S., Ďurkovič J., Kopřiva S., Ludwig-Müller J., Brzobohatý B. The fungus Acremonium alternatum enhances salt stress tolerance by regulating host redox homeostasis and phytohormone signaling. Physiol. Plant. 2024;176:e14328. doi: 10.1111/ppl.14328. PubMed DOI
Petrasch S., Silva C.J., Mesquida-Pesci S.D., Gallegos K., Van Den Abeele C., Papin V., Fernandez-Acero F.J., Knapp S.J., Blanco-Ulate B. Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Front. Plant Sci. 2019;10:223. doi: 10.3389/fpls.2019.00223. PubMed DOI PMC
Ngou B.P.M., Ding P., Jones J.D. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell. 2022;34:1447–1478. doi: 10.1093/plcell/koac041. PubMed DOI PMC
Velásquez A.C., Castroverde C.D.M., He S.Y. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 2018;28:R619–R634. doi: 10.1016/j.cub.2018.03.054. PubMed DOI PMC
Suzuki N., Miller G., Morales J., Shulaev V., Torres M.A., Mittler R. Respiratory burst oxidases: The engines of ROS signaling. Curr. Opin. Plant Biol. 2011;14:691–699. doi: 10.1016/j.pbi.2011.07.014. PubMed DOI
O’Brien J.A., Daudi A., Finch P., Butt V.S., Whitelegge J.P., Souda P., Ausubel F.M., Bolwell G.P. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 2012;158:2013–2027. doi: 10.1104/pp.111.190140. PubMed DOI PMC
Camejo D., Guzmán-Cedeño Á., Moreno A. Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiol. Biochem. 2016;103:10–23. doi: 10.1016/j.plaphy.2016.02.035. PubMed DOI
Shetty N.P., Mehrabi R., Lütken H., Haldrup A., Kema G.H., Collinge D.B., Jørgensen H.J.L. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol. 2007;174:637–647. doi: 10.1111/j.1469-8137.2007.02026.x. PubMed DOI
Ugalde J., Fuchs P., Nietzel T., Cutolo E., Vothknecht U., Holuigue L., Schwarzländer M., Müller-Schüssele S., Meyer A. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments. Plant Physiol. 2020;186:125–141. doi: 10.1093/plphys/kiaa095. PubMed DOI PMC
Liu C., Liu Q., Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. J. Exp. Bot. 2024;75:4535–4548. doi: 10.1093/jxb/erae193. PubMed DOI
Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science. 2008;321:952–956. doi: 10.1126/science.1156970. PubMed DOI PMC
Yun B.-W., Spoel S.H., Loake G.J. Synthesis of and signalling by small, redox active molecules in the plant immune response. Biochim. Biophys. Acta (BBA) Gen. Subj. 2012;1820:770–776. doi: 10.1016/j.bbagen.2011.06.015. PubMed DOI
Mittler R., Zandalinas S.I., Fichman Y., Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022;23:663–679. doi: 10.1038/s41580-022-00499-2. PubMed DOI
Wu F., Chi Y., Jiang Z., Xu Y., Xie L., Huang F., Wan D., Ni J., Yuan F., Wu X. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature. 2020;578:577–581. doi: 10.1038/s41586-020-2032-3. PubMed DOI
Camejo D., Guzmán-Cedeño A., Vera-Macias L., Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol. Biochem. 2019;144:110–117. doi: 10.1016/j.plaphy.2019.09.020. PubMed DOI
Noctor G., Cohen M., Trémulot L., Châtel-Innocenti G., Van Breusegem F., Mhamdi A. Glutathione: A key modulator of plant defence and metabolism through multiple mechanisms. J. Exp. Bot. 2024;75:4549–4572. doi: 10.1093/jxb/erae194. PubMed DOI
Singh K., Gupta R., Shokat S., Iqbal N., Kocsy G., Pérez-Pérez J.M., Riyazuddin R. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. Physiol. Plant. 2024;176:e14388. doi: 10.1111/ppl.14388. PubMed DOI
Kerchev P., MÜHlenbock P., Denecker J., Morreel K., Hoeberichts F.A., Van Der Kelen K., Vandorpe M., Nguyen L., Audenaert D., Van Breusegem F. Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant Cell Environ. 2015;38:253–265. doi: 10.1111/pce.12250. PubMed DOI
Boro M., Sannyasi S., Chettri D., Verma A.K. Microorganisms in biological control strategies to manage microbial plant pathogens: A review. Arch. Microbiol. 2022;204:666. doi: 10.1007/s00203-022-03279-w. PubMed DOI
Pandit M.A., Kumar J., Gulati S., Bhandari N., Mehta P., Katyal R., Rawat C.D., Mishra V., Kaur J. Major biological control strategies for plant pathogens. Pathogens. 2022;11:273. doi: 10.3390/pathogens11020273. PubMed DOI PMC
Uarrota V.G., de Fátima Moreira de Bairros A., Stefen D.L.V., Garcia J., Ribeiro G.M., Gindri D.M., Nerling D. Antioxidants in Plant-Microbe Interaction. Springer; Singapore: 2021. Plant-Rhizobacteria Communications with the Antioxidant System; pp. 41–58.
Boulahouat S., Cherif-Silini H., Silini A., Bouket A.C., Luptakova L., Alenezi F.N., Belbahri L. Biocontrol efficiency of rhizospheric Bacillus against the plant pathogen Fusarium oxysporum: A promising approach for sustainable agriculture. Microbiol. Res. 2023;14:892–908. doi: 10.3390/microbiolres14030062. DOI
Suresh P., Shanmugaiah V., Rajagopal R., Muthusamy K., Ramamoorthy V. Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 2022;119:101836. doi: 10.1016/j.pmpp.2022.101836. DOI
Kashyap A.S., Manzar N., Nebapure S.M., Rajawat M.V.S., Deo M.M., Singh J.P., Kesharwani A.K., Singh R.P., Dubey S., Singh D. Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chili against bacterial wilt disease. Antioxidants. 2022;11:404. doi: 10.3390/antiox11020404. PubMed DOI PMC
Akila A.H., Ali M.A., Khairy A.M., Elnahal A.S., Alfassam H.E., Rudayni H.A., Jaber F.A., Tohamy M.R. Biological Control of Tomato Bacterial Leaf Spots and Its Impact on Some Antioxidant Enzymes, Phenolic Compounds, and Pigment Content. Biology. 2024;13:369. doi: 10.3390/biology13060369. PubMed DOI PMC
Shukla V., Kumar S., Tripathi Y.N., Upadhyay R.S. Bacillus subtilis-and Pseudomonas fluorescens-mediated systemic resistance in tomato against sclerotium rolfsii and study of physio-chemical alterations. Front. Fungal Biol. 2022;3:851002. doi: 10.3389/ffunb.2022.851002. PubMed DOI PMC
Pandey N., Vaishnav R., Rajavat A.S., Singh A.N., Kumar S., Tripathi R.M., Kumar M., Shrivastava N. Exploring the potential of Bacillus for crop productivity and sustainable solution for combating rice false smut disease. Front. Microbiol. 2024;15:1405090. doi: 10.3389/fmicb.2024.1405090. PubMed DOI PMC
Akram W., Waqar S., Hanif S., Anjum T., Aftab Z.-e.-H., Li G., Ali B., Rizwana H., Hassan A., Rehman A. Comparative Effect of Seed Coating and Biopriming of Bacillus aryabhattai Z-48 on Seedling Growth, Growth Promotion, and Suppression of Fusarium Wilt Disease of Tomato Plants. Microorganisms. 2024;12:792. doi: 10.3390/microorganisms12040792. PubMed DOI PMC
Zeyad M.T., Tiwari P., Ansari W.A., Kumar S.C., Kumar M., Chakdar H., Srivastava A.K., Singh U.B., Saxena A.K. Bio-priming with a consortium of Streptomyces araujoniae strains modulates defense response in chickpea against Fusarium wilt. Front. Microbiol. 2022;13:998546. doi: 10.3389/fmicb.2022.998546. PubMed DOI PMC
Ankati S., Srinivas V., Pratyusha S., Gopalakrishnan S. Streptomyces consortia-mediated plant defense against Fusarium wilt and plant growth-promotion in chickpea. Microb. Pathog. 2021;157:104961. doi: 10.1016/j.micpath.2021.104961. PubMed DOI
Zhao S., Du C.-M., Tian C.-Y. Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087. World J. Microbiol. Biotechnol. 2012;28:2919–2927. doi: 10.1007/s11274-012-1102-6. PubMed DOI
Ajijah N., Fiodor A., Dziurzynski M., Stasiuk R., Pawlowska J., Dziewit L., Pranaw K. Biocontrol potential of Pseudomonas protegens ML15 against Botrytis cinerea causing gray mold on postharvest tomato (Solanum lycopersicum var. cerasiforme) Front. Plant Sci. 2023;14:1288408. doi: 10.3389/fpls.2023.1288408. PubMed DOI PMC
Taheri P., Hosseini-Zahani F., Tarighi S. Binucleate Rhizoctonia induced tomato resistance against Rhizoctonia solani via affecting antioxidants and cell wall reinforcement. Heliyon. 2024;10:e27881. doi: 10.1016/j.heliyon.2024.e27881. PubMed DOI PMC
Das S., Kundu S., Meena K., Jha R.K., Varma A., Bahuguna R.N., Tripathi S. Seed biopriming with potential bioagents influences physiological processes and plant defense enzymes to ameliorate sheath blight induced yield loss in rice (Oryza sativa L.) World J. Microbiol. Biotechnol. 2023;39:136. doi: 10.1007/s11274-023-03576-6. PubMed DOI
Entila F., Han X., Mine A., Schulze-Lefert P., Tsuda K. Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS. Nat. Commun. 2024;15:456. doi: 10.1038/s41467-024-44724-2. PubMed DOI PMC
Rasool S., Jensen B., Roitsch T.G., Meyling N.V. Enzyme regulation patterns in fungal inoculated wheat may reflect resistance and tolerance towards an insect herbivore. J. Plant Physiol. 2024;300:154298. doi: 10.1016/j.jplph.2024.154298. PubMed DOI
Jiménez A., Correa S., Sevilla F. ROS Signaling in Plants: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2024. Identification of Superoxide Dismutase (SOD) Isozymes in Plant Tissues; pp. 205–212. PubMed
Rodríguez-Ruiz M., Houmani H., Muñoz-Vargas M.A., Palma J.M., Corpas F.J. ROS Signaling in Plants: Methods and Protocols. Springer; Berlin/Heidelberg, Germany: 2024. Detection of Ascorbate Peroxidase (APX) Activity in Plant Tissues: Using Non-denaturing PAGE and Spectrophotometric Assay; pp. 223–234. PubMed
Wahab A., Muhammad M., Munir A., Abdi G., Zaman W., Ayaz A., Khizar C., Reddy S.P.P. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants. 2023;12:3102. doi: 10.3390/plants12173102. PubMed DOI PMC
Chang C., Damiani I., Puppo A., Frendo P. Redox changes during the legume–Rhizobium symbiosis. Mol. Plant. 2009;2:370–377. doi: 10.1093/mp/ssn090. PubMed DOI
Kumar M., Prasad R., Kumar V., Tuteja N., Varma A. Mycorrhiza—Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer; Cham, Switzerland: 2017. Mycorrhizal fungi under biotic and abiotic stress; pp. 57–69.
Nath M., Bhatt D., Prasad R., Tuteja N. Mycorrhiza—Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer; Cham, Switzerland: 2017. Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions; pp. 223–232.
Nath M., Bhatt D., Prasad R., Gill S.S., Anjum N.A., Tuteja N. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front. Plant Sci. 2016;7:1574. doi: 10.3389/fpls.2016.01574. PubMed DOI PMC
Dupont L., Hérouart D., Alloing G., Hopkins J., Pierre O., Frendo P., El Msehli S. The Legume Root Nodule: From Symbiotic Nitrogen Fixation to Senescence. INTECH Open Access Publisher; London, UK: 2012.
Tsyganova A.V., Brewin N.J., Tsyganov V.E. Structure and development of the legume-rhizobial symbiotic interface in infection threads. Cells. 2021;10:1050. doi: 10.3390/cells10051050. PubMed DOI PMC
Capoen W., Oldroyd G., Goormachtig S., Holsters M. Sesbania rostrata: A case study of natural variation in legume nodulation. New Phytol. 2010;186:340–345. doi: 10.1111/j.1469-8137.2009.03124.x. PubMed DOI
Zou Y.N., Wu Q.S., Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021;23:50–57. doi: 10.1111/plb.13161. PubMed DOI
Chandrasekaran M. Arbuscular mycorrhizal fungi mediated alleviation of drought stress via non-enzymatic antioxidants: A meta-analysis. Plants. 2022;11:2448. doi: 10.3390/plants11192448. PubMed DOI PMC
Hashem A., Abd_Allah E.F., Alqarawi A.A., Egamberdieva D. Plant Microbiome: Stress Response. Springer; Singapore: 2018. Arbuscular mycorrhizal fungi and plant stress tolerance; pp. 81–103.
Verma S.K., Sahu P.K., Kumar K., Pal G., Gond S.K., Kharwar R.N., White J.F. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J. Appl. Microbiol. 2021;131:2161–2177. doi: 10.1111/jam.15111. PubMed DOI
Huang S., Gill S., Ramzan M., Ahmad M.Z., Danish S., Huang P., Al Obaid S., Alharbi S.A. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Sci. Rep. 2023;13:8249. doi: 10.1038/s41598-023-35148-x. PubMed DOI PMC
Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed N., Zhang L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019;10:1068. doi: 10.3389/fpls.2019.01068. PubMed DOI PMC
Wu Q.-S., Zou Y.-N., Abd-Allah E.F. Oxidative Damage to Plants. Elsevier; Amsterdam, The Netherlands: 2014. Mycorrhizal association and ROS in plants; pp. 453–475.
Kapoor R., Singh N. Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer; Berlin/Heidelberg, Germany: 2017. Arbuscular mycorrhiza and reactive oxygen species; pp. 225–243.
Ruiz-Sánchez M., Aroca R., Muñoz Y., Polón R., Ruiz-Lozano J.M. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 2010;167:862–869. doi: 10.1016/j.jplph.2010.01.018. PubMed DOI
Frendo P., Matamoros M.A., Alloing G., Becana M. Thiol-based redox signaling in the nitrogen-fixing symbiosis. Front. Plant Sci. 2013;4:376. doi: 10.3389/fpls.2013.00376. PubMed DOI PMC
Minguillón S., Matamoros M.A., Duanmu D., Becana M. Signaling by reactive molecules and antioxidants in legume nodules. New Phytol. 2022;236:815–832. doi: 10.1111/nph.18434. PubMed DOI PMC
Kunert K.J., Foyer C.H. Advances in Botanical Research. Volume 102. Elsevier; Amsterdam, The Netherlands: 2022. Redox metabolism in soybean and its significance in nitrogen-fixing nodules; pp. 177–209.
Puppo A., Pauly N., Boscari A., Mandon K., Brouquisse R. Hydrogen peroxide and nitric oxide: Key regulators of the legume—Rhizobium and mycorrhizal symbioses. Antioxid. Redox Signal. 2013;18:2202–2219. doi: 10.1089/ars.2012.5136. PubMed DOI
Yuan Z.C., Zaheer R., Finan T.M. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 2005;58:877–894. doi: 10.1111/j.1365-2958.2005.04874.x. PubMed DOI
Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., Hückelhoven R., Neumann C., von Wettstein D. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA. 2005;102:13386–13391. doi: 10.1073/pnas.0504423102. PubMed DOI PMC
Gonzalez-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic. Biol. Med. 2018;122:171–180. doi: 10.1016/j.freeradbiomed.2017.12.028. PubMed DOI
Marti M.C., Olmos E., Calvete J.J., Diaz I., Barranco-Medina S., Whelan J., Lázaro J.J., Sevilla F., Jiménez A. Mitochondrial and nuclear localization of a novel pea thioredoxin: Identification of its mitochondrial target proteins. Plant Physiol. 2009;150:646–657. doi: 10.1104/pp.109.138073. PubMed DOI PMC
Wang F., Qi Y., Malnoë A., Choquet Y., Wollman F.-A., de Vitry C. The high light response and redox control of thylakoid FtsH protease in Chlamydomonas reinhardtii. Mol. Plant. 2017;10:99–114. doi: 10.1016/j.molp.2016.09.012. PubMed DOI
Díaz M.G., Hernández-Verdeja T., Kremnev D., Crawford T., Dubreuil C., Strand Å. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat. Commun. 2018;9:50. doi: 10.1038/s41467-017-02468-2. PubMed DOI PMC
Richter A.S., Peter E., Rothbart M., Schlicke H., Toivola J., Rintamäki E., Grimm B. Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol. 2013;162:63–73. doi: 10.1104/pp.113.217141. PubMed DOI PMC
Richter A.S., Pérez-Ruiz J.M., Cejudo F.J., Grimm B. Redox-control of chlorophyll biosynthesis mainly depends on thioredoxins. FEBS Lett. 2018;592:3111–3115. doi: 10.1002/1873-3468.13216. PubMed DOI
Chan K.X., Mabbitt P.D., Phua S.Y., Mueller J.W., Nisar N., Gigolashvili T., Stroeher E., Grassl J., Arlt W., Estavillo G.M. Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. Proc. Natl. Acad. Sci. USA. 2016;113:E4567–E4576. doi: 10.1073/pnas.1604936113. PubMed DOI PMC
Arora H., Singh R.K., Sharma S., Sharma N., Panchal A., Das T., Prasad A., Prasad M. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Rep. 2022;41:1931–1944. doi: 10.1007/s00299-022-02901-x. PubMed DOI
Gravot A., Liégard B., Quadrana L., Veillet F., Aigu Y., Bargain T., Bénéjam J., Lariagon C., Lemoine J., Colot V. Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. Plant Commun. 2024;5:100824. doi: 10.1016/j.xplc.2024.100824. PubMed DOI PMC
Liégard B., Baillet V., Etcheverry M., Joseph E., Lariagon C., Lemoine J., Evrard A., Colot V., Gravot A., Manzanares-Dauleux M.J. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. New Phytol. 2019;222:468–479. doi: 10.1111/nph.15579. PubMed DOI PMC
Song N., Lin J., Liu X., Liu Z., Liu D., Chu W., Li J., Chen Y., Chang S., Yang Q. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat. New Phytol. 2022;236:590–607. doi: 10.1111/nph.18372. PubMed DOI PMC
Miao Y., Laun T.M., Smykowski A., Zentgraf U. Arabidopsis MEKK1 can take a short cut: It can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol. Biol. 2007;65:63–76. doi: 10.1007/s11103-007-9198-z. PubMed DOI
Gkizi D., González Gil A., Pardal A.J., Piquerez S.J., Sergaki C., Ntoukakis V., Tjamos S.E. The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. J. Exp. Bot. 2021;72:4565–4576. doi: 10.1093/jxb/erab154. PubMed DOI PMC
Mawarda P.C., Le Roux X., Van Elsas J.D., Salles J.F. Deliberate introduction of invisible invaders: A critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol. Biochem. 2020;148:107874. doi: 10.1016/j.soilbio.2020.107874. DOI
Ramakrishna W., Yadav R., Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019;138:10–18. doi: 10.1016/j.apsoil.2019.02.019. DOI