Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
51809041
National Natural Science Foundation of China
2018M641794
China Postdoctoral Science Foundation Project
LBH-Z17008
Heilongjiang Provincial Postdoctoral Funding Project
18QC30
Northeast Agricultural University "Youth Talent" Fund Project
PubMed
32466435
PubMed Central
PMC7355930
DOI
10.3390/plants9060672
PII: plants9060672
Knihovny.cz E-zdroje
- Klíčová slova
- Endophytic bacteria, Plant growth promoting bacteria (PGPB),
- Publikační typ
- časopisecké články MeSH
One of the major challenges in agriculture is to ensure sufficient and healthy food availability for the increasing world population in near future. This requires maintaining sustainable cultivation of crop plants under varying environmental stresses. Among these stresses, salinity is the second most abundant threat worldwide after drought. One of the promising strategies to mitigate salinity stress is to cultivate halotolerant crops such as quinoa. Under high salinity, performance can be improved by plant growth promoting bacteria (PGPB). Among PGPB, endophytic bacteria are considered better in stimulating plant growth compared to rhizosphere bacteria because of their ability to colonize both in plant rhizosphere and plant interior. Therefore, in the current study, a pot experiment was conducted in a controlled greenhouse to investigate the effects of endophytic bacteria i.e., Burkholderia phytofirmans PsJN on improving growth, physiology and yield of quinoa under salinity stress. At six leaves stage, plants were irrigated with saline water having either 0 (control) or 400 mM NaCl. The results indicated that plants inoculated with PsJN mitigated the negative effects of salinity on quinoa resulting in increased shoot biomass, grain weight and grain yield by 12%, 18% and 41% respectively, over un-inoculated control. Moreover, inoculation with PsJN improved osmotic adjustment and ion homeostasis ability. In addition, leaves were also characterized for five key reactive oxygen species (ROS) scavenging enzyme in response to PsJN treatment. This showed higher activity of catalase (CAT) and dehydroascobate reductase (DHAR) in PsJN-treated plants. These findings suggest that inoculation of quinoa seeds with Burkholderia phytofirmans PsJN could be used for stimulating growth and yield of quinoa in highly salt-affected soils.
Dansk Agro Aps Snubbekorsvej 20 C DK 2630 Tåstrup Denmark
Department of Agronomy Muhammad Nawaz Shareef University of Agriculture 66000 Multan Pakistan
Institute of Soil and Environmental Sciences University of Agriculture Faisalabad 38040 Pakistan
Zobrazit více v PubMed
FAO . The Future of Food and Agriculture: Trends and Challenges. Food and Agriculture Organization of the United Nations; Rome, Italy: 2017.
Panta S., Flowers T.J., Lane P., Doyle R., Haros G., Shabala S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014;107:71–83. doi: 10.1016/j.envexpbot.2014.05.006. DOI
Yang A., Akhtar S.S., Amjad M., Iqbal S., Jacobsen S.-E. Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. J. Agron. Crop Sci. 2016;202:445–453. doi: 10.1111/jac.12167. DOI
Bruning B., Van Logtestijn R., Broekman R., De Vos A., González A.P., Rozema J. Growth and nitrogen fixation of legumes at increased salinity under field conditions: Implications for the use of green manures in saline environments. AoB PLANTS. 2015;7:7. doi: 10.1093/aobpla/plv010. PubMed DOI PMC
Akhtar S.S., Li G., Andersen M.N., Liu F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2014;138:37–44. doi: 10.1016/j.agwat.2014.02.016. DOI
Akhtar S.S., Andersen M.N., Liu F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 2015;158:61–68. doi: 10.1016/j.agwat.2015.04.010. DOI
Panuccio M.R.S., Jacobsen S.-E., Akhtar S.S., Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB PLANTS. 2014;6:plu047. doi: 10.1093/aobpla/plu047. PubMed DOI PMC
Akhtar S.S., Andersen M.N., Liu F. Biochar Mitigates Salinity Stress in Potato. J. Agron. Crop Sci. 2015;201:368–378. doi: 10.1111/jac.12132. DOI
Brown J.J., Glenn E.P., Smith S.E. Sabkha Ecosystems. Volume 47. Springer; Dordrecht, The Netherlands: 2014. Feasibility of Halophyte Domestication for High-Salinity Agriculture; pp. 73–80.
Jacobsen S.-E., Monteros C., Christiansen J., A Bravo L., Corcuera L., Mujica A. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur. J. Agron. 2005;22:131–139. doi: 10.1016/j.eja.2004.01.003. DOI
Adolf V.I., Jacobsen S.-E., Shabala S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) Environ. Exp. Bot. 2013;92:43–54. doi: 10.1016/j.envexpbot.2012.07.004. DOI
Razzaghi F., Ahmadi S.H., Adolf V.I., Jensen C.R., Jacobsen S.-E., Andersen M.N. Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying. J. Agron. Crop Sci. 2011;197:348–360. doi: 10.1111/j.1439-037X.2011.00473.x. DOI
Razzaghi F., Ahmadi S.H., Jacobsen S.-E., Jensen C.R., Andersen M.N. Effects of Salinity and Soil-Drying on Radiation Use Efficiency, Water Productivity and Yield of Quinoa (Chenopodium quinoa Willd.) J. Agron. Crop Sci. 2011;198:173–184. doi: 10.1111/j.1439-037X.2011.00496.x. DOI
Razzaghi F., Jacobsen S.-E., Jensen C.R., Andersen M.N. Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought—Mechanisms of tolerance. Funct. Plant Biol. 2015;42:136–148. doi: 10.1071/FP14132. PubMed DOI
Iqbal S., Basra S.M.A., Afzal I., Wahid A., Saddiq M.S., Hafeez M.B., Jacobsen S.-E. Yield potential and salt tolerance of quinoa on salt-degraded soils of Pakistan. J. Agron. Crop Sci. 2018;205:13–21. doi: 10.1111/jac.12290. DOI
Shabala L., Mackay A., Tian Y., Jacobsen S.-E., Zhou D., Shabala S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa Willd) Physiol. Plant. 2012;146:26–38. doi: 10.1111/j.1399-3054.2012.01599.x. PubMed DOI
Riccardi M., Pulvento C., Lavini A., D’Andria R., Jacobsen S.-E. Growth and Ionic Content of Quinoa Under Saline Irrigation. J. Agron. Crop Sci. 2014;200:246–260. doi: 10.1111/jac.12061. DOI
Glick B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Science. 2012;2012:963401. doi: 10.6064/2012/963401. PubMed DOI PMC
Oliveira V., Gomes N.C.M., Almeida A., Silva A.M.S., Silva H., Cunha A. Microbe-Assisted Phytoremediation of Hydrocarbons in Estuarine Environments. Microb. Ecol. 2014;69:1–12. doi: 10.1007/s00248-014-0455-9. PubMed DOI
Yang A., Akhtar S.S., Iqbal S., Amjad M., Naveed M., Zahir Z.A., Jacobsen S.-E. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct. Plant Biol. 2016;43:632. doi: 10.1071/FP15265. PubMed DOI
Werner T., Motyka V., Strnad M., Schmülling T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA. 2001;98:10487–10492. doi: 10.1073/pnas.171304098. PubMed DOI PMC
Fahad S., Hussain S., Bano A., Saud S., Hassan S., Shan D., Khan F.A., Khan F., Chen Y., Wu C., et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environ. Sci. Pollut. Res. 2014;22:4907–4921. doi: 10.1007/s11356-014-3754-2. PubMed DOI
Qin Y., Druzhinina I.S., Pan X., Yuan Z. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnol. Adv. 2016;34:1245–1259. doi: 10.1016/j.biotechadv.2016.08.005. PubMed DOI
Subramanian S., Smith D. Bacteriocins from the rhizosphere microbiome—From an agriculture perspective. Front. Plant Sci. 2015;6:201. doi: 10.3389/fpls.2015.00909. PubMed DOI PMC
Shabala S., Bose J., Hedrich R. Salt bladders: Do they matter? Trends Plant Sci. 2014;19:687–691. doi: 10.1016/j.tplants.2014.09.001. PubMed DOI
Hong Y., Liao D., Hu A., Wang H., Chen J., Khan S., Su J., Li H. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can. J. Microbiol. 2015;61:723–733. doi: 10.1139/cjm-2015-0079. PubMed DOI
Rathore A.P., Chaudhary D., Jha B., Jha A.B. Biomass production, nutrient cycling, and carbon fixation bySalicornia brachiataRoxb.: A promising halophyte for coastal saline soil rehabilitation. Int. J. Phytoremediation. 2016;18:801–811. doi: 10.1080/15226514.2016.1146228. PubMed DOI
Yordanov I., Velikova V., Tsonev T. Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica. 2000;38:171–186. doi: 10.1023/A:1007201411474. DOI
Noctor G., Foyer C.H. ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu. Rev. Plant Biol. 1998;49:249–279. doi: 10.1146/annurev.arplant.49.1.249. PubMed DOI
Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2013;65:1241–1257. doi: 10.1093/jxb/ert430. PubMed DOI
Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701. PubMed DOI
Gill S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Ahmed I.M., Cao F., Zhang M., Chen X., Zhang G., Wu F. Difference in Yield and Physiological Features in Response to Drought and Salinity Combined Stress during Anthesis in Tibetan Wild and Cultivated Barleys. PLoS ONE. 2013;8:e77869. doi: 10.1371/journal.pone.0077869. PubMed DOI PMC
Munns R., Tester M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008;59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911. PubMed DOI
Zhang J., Flowers T.J., Wang S.-M. Mechanisms of sodium uptake by roots of higher plants. Plant Soil. 2009;326:45–60. doi: 10.1007/s11104-009-0076-0. DOI
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Front. Plant Sci. 2015;6:5. doi: 10.3389/fpls.2015.00873. PubMed DOI PMC
Flowers T.J., Colmer T.D. Salinity tolerance in halophytes. New Phytol. 2008;179:945–963. doi: 10.1111/j.1469-8137.2008.02531.x. PubMed DOI
Shabala S., Pottosin I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014;151:257–279. doi: 10.1111/ppl.12165. PubMed DOI
Pinedo I., Ledger T., Greve M., Poupin M.J. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci. 2015;6:17. doi: 10.3389/fpls.2015.00466. PubMed DOI PMC
Shabala S., Mackay A. Ion Transport in Halophytes. In: Turkan I., editor. Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era. Volume 57. Elsevier Ltd.; Kidlington, UK: 2011. pp. 151–199.
Sneha S., Rishi A., Dadhich A., Chandra S. Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br. Pak. J. Biol. Sci. 2013;16:877–881. doi: 10.3923/pjbs.2013.877.881. PubMed DOI
Wilkinson S., Davies W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant Cell Environ. 2010;33:510–525. doi: 10.1111/j.1365-3040.2009.02052.x. PubMed DOI
Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15:395–401. doi: 10.1016/j.tplants.2010.04.006. PubMed DOI
Llanes A., Masciarelli O., Ordoñez R., Isla M.I., Luna M.V. Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera. Biol. Plant. 2013;58:80–88. doi: 10.1007/s10535-013-0365-6. DOI
Hetherington A.M. Guard Cell Signaling. Cell. 2001;107:711–714. doi: 10.1016/S0092-8674(01)00606-7. PubMed DOI
Aroca R., Vernieri P., Ruiz-Lozano J.M. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J. Exp. Bot. 2008;59:2029–2041. doi: 10.1093/jxb/ern057. PubMed DOI PMC
Srivastava A., Srivastava S., Lokhande V.H., D’Souza S.F., Suprasanna P. Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.) Front. Environ. Sci. 2015;3 doi: 10.3389/fenvs.2015.00019. DOI
Kumari A., Das P., Parida A.K., Agarwal P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015;6:20. doi: 10.3389/fpls.2015.00537. PubMed DOI PMC
Fimognari L., Dölker R., Kaselyte G., Jensen C.N.G., Akhtar S.S., Großkinsky D.K., Roitsch T. Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods. 2020;16 doi: 10.1186/s13007-020-00583-8. PubMed DOI PMC
Jithesh M.N., Prashanth S.R., Sivaprakash K.R., Parida A. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006;85:237–254. doi: 10.1007/BF02935340. PubMed DOI
Naveed M., Mustafa A., Azhar S.Q.-T.-A., Kamran M., Zahir Z.A., Núñez-Delgado A. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth, physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.) J. Environ. Manag. 2020;257:109974. doi: 10.1016/j.jenvman.2019.109974. PubMed DOI
Miotto-Vilanova L., Courteaux B., Padilla R., Rabenoelina F., Jacquard C., Clément C., Comte G., Lavire C., Barka E.A., Kerzaon I., et al. Impact of Paraburkholderia phytofirmans PsJN on Grapevine Phenolic Metabolism. Int. J. Mol. Sci. 2019;20:5775. doi: 10.3390/ijms20225775. PubMed DOI PMC
Akhtar S.S., Amby D.B., Hegelund J.N., Fimognari L., Großkinsky D.K., Westergaard J.C., Müller R., Moelbak L., Liu F., Roitsch T. Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Front. Plant Sci. 2020;11:297. doi: 10.3389/fpls.2020.00297. PubMed DOI PMC
Großkinsky D.K., Svensgaard J., Christensen S., Roitsch T. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J. Exp. Bot. 2015;66:5429–5440. doi: 10.1093/jxb/erv345. PubMed DOI
Großkinsky D.K., Syaifullah S.J., Roitsch T., Lim P. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J. Exp. Bot. 2017;69:825–844. doi: 10.1093/jxb/erx333. PubMed DOI
Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 2013;73:121–131. doi: 10.1007/s10725-013-9874-8. DOI
Akhtar S.S., Andersen M.N., Naveed M., Zahir Z.A., Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 2015;42:770. doi: 10.1071/FP15054. PubMed DOI
Philosoph-Hadas S., Hadas E., Aharoni N. Characterization and use in ELISA of a new monoclonal antibody for quantitation of abscisic acid in senescing rice leaves. Plant Growth Regul. 1993;12:71–78. doi: 10.1007/BF00144585. DOI
Jammer A., Gasperl A., Luschin-Ebengreuth N., Heyneke E., Chu H., Cantero-Navarro E., Großkinsky D., Albacete A., Stabentheiner E., Franzaring J., et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J. Exp. Bot. 2015;66:5531–5542. doi: 10.1093/jxb/erv228. PubMed DOI
Gorham J., McDonnell E., Jones R.G.W. Salt Tolerance in the Triticeae:Leymus sabulosus. J. Exp. Bot. 1984;35:1200–1209. doi: 10.1093/jxb/35.8.1200. DOI
Naveed M., Mitter B., Reichenauer T.G., Wieczorek K., Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 2014;97:30–39. doi: 10.1016/j.envexpbot.2013.09.014. DOI
Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction