Protein-protein interactions in plant antioxidant defense

. 2022 ; 13 () : 1035573. [epub] 20221214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36589041

The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.

Zobrazit více v PubMed

Abdel-Ghany S. E., Burkhead J. L., Gogolin K. A., Andrés-Colás N., Bodecker J. R., Puig S., et al. . (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett. 579, 2307–2312. doi: 10.1016/j.febslet.2005.03.025 PubMed DOI

Adamiec M., Ciesielska M., Zalaś P., Luciński R. (2017). Arabidopsis thaliana intramembrane proteases. Acta Physiol. Plant 39, 146. doi: 10.1007/s11738-017-2445-2 DOI

Adamiec M., Dobrogojski J., Wojtyla Ł., Luciński R. (2022). Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts’ proteome composition. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.965143 PubMed DOI PMC

Adamiec M., Misztal L., Kasprowicz-Maluśki A., Luciński R. (2020). EGY3: homologue of S2P protease located in chloroplasts. Plant Biol. (Stuttg) 22, 735–743. doi: 10.1111/plb.13087 PubMed DOI

Adams D. R., Ron D., Kiely P. A. (2011). RACK1, a multifaceted scaffolding protein: Structure and function. Cell Commun. Signal 9, 22. doi: 10.1186/1478-811X-9-22 PubMed DOI PMC

Al-Hajaya Y., Karpinska B., Foyer C. H., Baker A. (2022). Nuclear and peroxisomal targeting of catalase. Plant Cell Environ. 45, 1096–1108. doi: 10.1111/pce.14262 PubMed DOI PMC

Altmann M., Altmann S., Rodriguez P. A., Weller B., Elorduy Vergara L., Palme J., et al. . (2020). Extensive signal integration by the phytohormone protein network. Nature 583, 271–276. doi: 10.1038/s41586-020-2460-0 PubMed DOI

Arabidopsis Interactome Mapping Consortium (2011). Evidence for network evolution in an arabidopsis interactome map. Science 333, 601–607. doi: 10.1126/science.1203877 PubMed DOI PMC

Aroca A., Benito J. M., Gotor C., Romero L. C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in arabidopsis. J. Exp. Bot. 68, 4915–4927. doi: 10.1093/jxb/erx294 PubMed DOI PMC

Baba K., Nakano T., Yamagishi K., Yoshida S. (2001). Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter of psbD. Plant Physiol. 125, 595–603. doi: 10.1104/pp.125.2.595 PubMed DOI PMC

Bae W., Lee Y. J., Kim D. H., Lee J., Kim S., Sohn E. J., et al. . (2008). AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nat. Cell. Biol. 10, 220–227. doi: 10.1038/ncb1683 PubMed DOI

Bah A., Vernon R. M., Siddiqui Z., Krzeminski M., Muhandiram R., Zhao C., et al. . (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519, 106–109. doi: 10.1038/nature13999 PubMed DOI

Banks C. J., Andersen J. L. (2019). Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol. 26, 101270. doi: 10.1016/j.redox.2019.101270 PubMed DOI PMC

Barthelme D., Sauer R. T. (2013). Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc. Natl. Acad. Sci. U. S. A. 110, 3327–3332. doi: 10.1073/pnas.1300408110 PubMed DOI PMC

Bartoli C. G., Buet A., Gergoff Grozeff G., Galatro A., Simontacchi M. (2017). ““Ascorbate-glutathione cycle and abiotic stress tolerance in plants,”,” in Ascorbic acid in plant growth, development and stress tolerance. Eds. Hossain M. A., Munné-Bosch S., Burritt D. J., Diaz-Vivancos P., Fujita M., Lorence A. (Cham: Springer International Publishing; ), 177–200. doi: 10.1007/978-3-319-74057-7_7 DOI

Begara-Morales J. C., Sánchez-Calvo B., Chaki M., Mata-Pérez C., Valderrama R., Padilla M. N., et al. . (2015). Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S -nitrosylation. J. Exp. Bot. 66, 5983–5996. doi: 10.1093/jxb/erv306 PubMed DOI PMC

Bègue H., Besson-Bard A., Blanchard C., Winckler P., Bourque S., Nicolas V., et al. . (2019). The chaperone-like protein CDC48 regulates ascorbate peroxidase in tobacco. J. Exp. Bot. 70, 2665–2681. doi: 10.1093/jxb/erz097 PubMed DOI PMC

Bègue H., Jeandroz S., Blanchard C., Wendehenne D., Rosnoblet C. (2017). Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim. Biophys. Acta Gen. Subj. 1861, 3053–3060. doi: 10.1016/j.bbagen.2016.10.001 PubMed DOI

Bellati J., Champeyroux C., Hem S., Rofidal V., Krouk G., Maurel C., et al. . (2016). Novel aquaporin regulatory mechanisms revealed by interactomics. Mol. Cell Prot. 15, 3473–3487. doi: 10.1074/mcp.M116.060087 PubMed DOI PMC

Berendzen K. W., Böhmer M., Wallmeroth N., Peter S., Vesić M., Zhou Y., et al. . (2012). Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods 8, 25. doi: 10.1186/1746-4811-8-25 PubMed DOI PMC

Bienert S., Waterhouse A., de Beer T. A. P., Tauriello G., Studer G., Bordoli L., et al. (2017). The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Res. 45, D313–D319. doi: 10.1093/nar/gkw1132 PubMed DOI PMC

Blikstad C., Ivarsson Y. (2015). High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun. Signal 13, 38. doi: 10.1186/s12964-015-0116-8 PubMed DOI PMC

Boratkó A., Gergely P., Csortos C. (2013). RACK1 is involved in endothelial barrier regulation via its two novel interacting partners. Cell Commun. Signal 11, 2. doi: 10.1186/1478-811X-11-2 PubMed DOI PMC

Boudolf V., Lammens T., Boruc J., Van Leene J., Van Den Daele H., Maes S., et al. . (2009). CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol. 150, 1482–1493. doi: 10.1104/pp.109.140269 PubMed DOI PMC

Bykova N. V., Hoehn B., Rampitsch C., Banks T., Stebbing J.-A., Fan T., et al. . (2011). Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11, 865–882. doi: 10.1002/pmic.200900810 PubMed DOI

Cabreira C., Cagliari A., Bücker-Neto L., Margis-Pinheiro M., de Freitas L. B., Bodanese-Zanettini M. H. (2015). The phylogeny and evolutionary history of the lesion simulating disease (LSD) gene family in viridiplantae. Mol. Genet. Genomics 290, 2107–2119. doi: 10.1007/s00438-015-1060-4 PubMed DOI

Carroll M. C., Girouard J. B., Ulloa J. L., Subramaniam J. R., Wong P. C., Valentine J. S., et al. . (2004). Mechanisms for activating Cu- and zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. U. S. A. 101, 5964–5969. doi: 10.1073/pnas.0308298101 PubMed DOI PMC

Castro B., Citterico M., Kimura S., Stevens D. M., Wrzaczek M., Coaker G. (2021). Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 7, 403–412. doi: 10.1038/s41477-021-00887-0 PubMed DOI PMC

Chang I.-F., Curran A., Woolsey R., Quilici D., Cushman J., Mittler R., et al. . (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in arabidopsis thaliana. Proteomics 9, 2967–2985. doi: 10.1002/pmic.200800445 PubMed DOI PMC

Chen C.-Y., Chen J., He L., Stiles B. L. (2018). PTEN: Tumor suppressor and metabolic regulator. Front. Endocrinol. 9. doi: 10.3389/fendo.2018.00338 PubMed DOI PMC

Chen Z., Gallie D. R. (2006). Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol. 142, 775–787. doi: 10.1104/pp.106.085506 PubMed DOI PMC

Cheng Z., Li J.-F., Niu Y., Zhang X.-C., Woody O. Z., Xiong Y., et al. . (2015). Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521, 213–216. doi: 10.1038/nature14243 PubMed DOI PMC

Chen Y., Ji F., Xie H., Liang J., Zhang J. (2006. b). The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in arabidopsis seed germination. Plant Physiol. 140, 302–310. doi: 10.1104/pp.105.069872 PubMed DOI PMC

Chen H., Lee J., Lee J.-M., Han M., Emonet A., Lee J., et al. . (2022). MSD2, an apoplastic Mn-SOD, contributes to root skotomorphogenic growth by modulating ROS distribution in arabidopsis. Plant Sci. 317, 111192. doi: 10.1016/j.plantsci.2022.111192 PubMed DOI

Chen J.-G., Ullah H., Temple B., Liang J., Guo J., Alonso J. M., et al. . (2006. a). RACK1 mediates multiple hormone responsiveness and developmental processes in arabidopsis. J. Exp. Bot. 57, 2697–2708. doi: 10.1093/jxb/erl035 PubMed DOI

Chen J.-G., Willard F. S., Huang J., Liang J., Chasse S. A., Jones A. M., et al. . (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301, 1728–1731. doi: 10.1126/science.1087790 PubMed DOI

Chepelev N., Chepelev L., Alamgir M. D., Golshani A. (2008). Large-Scale protein-protein interaction detection approaches: Past, present and future. Biotechnol. Equip. 22, 513–529. doi: 10.1080/13102818.2008.10817505 DOI

Chu C.-C., Lee W.-C., Guo W.-Y., Pan S.-M., Chen L.-J., Li H.-M., et al. . (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in arabidopsis. Plant Physiol. 139, 425–436. doi: 10.1104/pp.105.065284 PubMed DOI PMC

Chu X., Wang J.-G., Li M., Zhang S., Gao Y., Fan M., et al. . (2021). HBI transcription factor-mediated ROS homeostasis regulates nitrate signal transduction. Plant Cell 33, 3004–3021. doi: 10.1093/plcell/koab165 PubMed DOI PMC

Cohu C. M., Abdel-Ghany S. E., Gogolin Reynolds K. A., Onofrio A. M., Bodecker J. R., Kimbrel J. A., et al. . (2009). Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an arabidopsis mutant. Mol. Plant 2, 1336–1350. doi: 10.1093/mp/ssp084 PubMed DOI

Cowan G. H., Roberts A. G., Jones S., Kumar P., Kalyandurg P. B., Gil J. F., et al. . (2018). Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement. Plant Physiol. 176, 2052–2070. doi: 10.1104/pp.17.01698 PubMed DOI PMC

Cui Y., Zhang X., Yu M., Zhu Y., Xing J., Lin J. (2019). Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Sci. China Life Sci. 62, 619–632. doi: 10.1007/s11427-018-9500-7 PubMed DOI

Czarnocka W., van der Kelen K., Willems P., Szechyńska-Hebda M., Shahnejat-Bushehri S., Balazadeh S., et al. . (2017). The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator: Insight into the LSD1 molecular function. Plant Cell Environ. 40, 2644–2662. doi: 10.1111/pce.12994 PubMed DOI

de Abreu-Neto J. B., Turchetto-Zolet A. C., de Oliveira L. F. V., Zanettini M. H. B., Margis-Pinheiro M. (2013). Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J. 280, 1604–1616. doi: 10.1111/febs.12159 PubMed DOI

Després C., Chubak C., Rochon A., Clark R., Bethune T., Desveaux D., et al. . (2003). The arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181–2191. doi: 10.1105/tpc.012849 PubMed DOI PMC

Dixon D. P., Skipsey M., Grundy N. M., Edwards R. (2005). Stress-induced protein s-glutathionylation in arabidopsis. Plant Physiol. 138, 2233–2244. doi: 10.1104/pp.104.058917 PubMed DOI PMC

Dorion S., Rivoal J. (2018). Plant nucleoside diphosphate kinase 1: A housekeeping enzyme with moonlighting activity. Plant Signal. Behav. 13, e1475804. doi: 10.1080/15592324.2018.1475804 PubMed DOI PMC

Dreyer B. H., Schippers J. H. M. (2019). “Copper-zinc superoxide dismutases in plants: Evolution, enzymatic properties, and beyond,” in Annual plant reviews online, ed. Roberts J. A. (Atlanta, GA: American Cancer Society; ), 933–968. doi: 10.1002/9781119312994.apr0705 DOI

Duan G., Walther D. (2015). The roles of post-translational modifications in the context of protein interaction networks. PloS Comput. Biol. 11, e1004049. doi: 10.1371/journal.pcbi.1004049 PubMed DOI PMC

Dutta S., Teresinski H. J., Smith M. D. (2014). A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two arabidopsis chloroplast preprotein import receptors. PloS One 9, e95026. doi: 10.1371/journal.pone.0095026 PubMed DOI PMC

Dvořák P., Krasylenko Y., Ovečka M., Basheer J., Zapletalová V., Šamaj J., et al. . (2021. a). In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. Plant Cell Environ. 44, 68–87. doi: 10.1111/pce.13894 PubMed DOI

Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., Takáč T. (2021. b). Signaling toward reactive oxygen species-scavenging enzymes in plants. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.618835 PubMed DOI PMC

Erwig J., Ghareeb H., Kopischke M., Hacke R., Matei A., Petutschnig E., et al. . (2017). Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). New Phytol. 215, 382–396. doi: 10.1111/nph.14592 PubMed DOI

Espinoza C., Liang Y., Stacey G. (2017). Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in arabidopsis. Plant J. 89, 984–995. doi: 10.1111/tpj.13437 PubMed DOI

Fan T., Lv T., Xie C., Zhou Y., Tian C. (2021). Genome-wide analysis of the IQM gene family in rice (Oryza sativa l.). Plants (Basel) 10, 1949. doi: 10.3390/plants10091949 PubMed DOI PMC

Fan F., Zhang Q., Zhang Y., Huang G., Liang X., Wang C., et al. . (2022). Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding. Plant Physiol. 188, 241–254. doi: 10.1093/plphys/kiab457 PubMed DOI PMC

Feng H., Wang X., Zhang Q., Fu Y., Feng C., Wang B., et al. . (2014). Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochim. Biophys. Acta Gene Regul. Mech. 1839, 1–12. doi: 10.1016/j.bbagrm.2013.11.001 PubMed DOI

Fennell H. W. W., Ullah H., van Wijnen A. J., Lewallen E. A. (2021). Arabidopsis thaliana and oryza sativa receptor for activated c kinase 1 (RACK1) mediated signaling pathway shows hypersensitivity to oxidative stress. Plant Gene 27, 100299. doi: 10.1016/j.plgene.2021.100299 DOI

Förster T. H. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 55–75. doi: 10.1002/andp.19484370105 DOI

Freitas M. O., Francisco T., Rodrigues T. A., Alencastre I. S., Pinto M. P., Grou C. P., et al. . (2011). PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the n-terminal domain of PEX14. J. Biol. Chem. 286, 40509–40519. doi: 10.1074/jbc.M111.287201 PubMed DOI PMC

Friedman E. J., Wang H. X., Jiang K., Perovic I., Deshpande A., Pochapsky T. C., et al. . (2011). Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in arabidopsis. J. Biol. Chem. 286, 30107–30118. doi: 10.1074/jbc.M111.227256 PubMed DOI PMC

Fujikawa Y., Suekawa M., Endo S., Fukami Y., Mano S., Nishimura M., et al. . (2019). Effect of mutation of c-terminal and heme binding region of arabidopsis catalase on the import to peroxisomes. Biosci. Biotechnol. Biochem. 83, 322–325. doi: 10.1080/09168451.2018.1530094 PubMed DOI

Fukamatsu Y., Yabe N., Hasunuma K. (2003). Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol. 44, 982–989. doi: 10.1093/pcp/pcg140 PubMed DOI

Garcia-Molina A., Altmann M., Alkofer A., Epple P. M., Dangl J. L., Falter-Braun P. (2017). LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. J. Exp. Bot. 68, 1185–1197. doi: 10.1093/jxb/erw498 PubMed DOI PMC

Gavin A.-C., Maeda K., Kühner S. (2011). Recent advances in charting protein–protein interaction: mass spectrometry-based approaches. Curr. Opin. Biotechnol. 22, 42–49. doi: 10.1016/j.copbio.2010.09.007 PubMed DOI

Gelhaye E., Navrot N., Macdonald I. K., Rouhier N., Raven E. L., Jacquot J.-P. (2006). Ascorbate peroxidase-thioredoxin interaction. Photosynth. Res. 89, 193–200. doi: 10.1007/s11120-006-9100-x PubMed DOI

Gill S. S., Anjum N. A., Hasanuzzaman M., Gill R., Trivedi D. K., Ahmad I., et al. . (2013). Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204–212. doi: 10.1016/j.plaphy.2013.05.032 PubMed DOI

Gingras A.-C., Gstaiger M., Raught B., Aebersold R. (2007). Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645–654. doi: 10.1038/nrm2208 PubMed DOI

Girotto S., Cendron L., Bisaglia M., Tessari I., Mammi S., Zanotti G., et al. . (2014). DJ-1 is a copper chaperone acting on SOD1 activation. J. Biol. Chem. 289, 10887–10899. doi: 10.1074/jbc.M113.535112 PubMed DOI PMC

Guo J., Hu Y., Zhou Y., Zhu Z., Sun Y., Li J., et al. . (2019). Profiling of the receptor for activated c kinase 1a (RACK1a) interaction network in arabidopsis thaliana. Biochem. Biophys. Res. Commun. 520, 366–372. doi: 10.1016/j.bbrc.2019.09.142 PubMed DOI

Guo P., Jiang S., Bai C., Zhang W., Zhao Q., Liu C. (2015). Asymmetric functional interaction between chaperonin and its plastidic cofactors. FEBS J. 282, 3959–3970. doi: 10.1111/febs.13390 PubMed DOI

Guo J., Wang S., Valerius O., Hall H., Zeng Q., Li J.-F., et al. . (2011). Involvement of arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol. 155, 370–383. doi: 10.1104/pp.110.160663 PubMed DOI PMC

Guo J., Wang J., Xi L., Huang W.-D., Liang J., Chen J.-G. (2009). RACK1 is a negative regulator of ABA responses in arabidopsis. J. Exp. Bot. 60, 3819–3833. doi: 10.1093/jxb/erp221 PubMed DOI PMC

Guo T., Weber H., Niemann M. C. E., Theisl L., Leonte G., Novák O., et al. . (2021). Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. Mol. Plant 14, 1918–1934. doi: 10.1016/j.molp.2021.07.015 PubMed DOI

Hackenberg T., Juul T., Auzina A., Gwizdz S., Malolepszy A., van der Kelen K., et al. . (2013). Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in arabidopsis. Plant Cell 25, 4616–4626. doi: 10.1105/tpc.113.117192 PubMed DOI PMC

Hägglund P., Bunkenborg J., Maeda K., Svensson B. (2008). Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J. Proteome Res. 7, 5270–5276. doi: 10.1021/pr800633y PubMed DOI

Haque M. E., Yoshida Y., Hasunuma K. (2010). ROS resistance in pisum sativum cv. Alaska: the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants. Planta 232, 367–382. doi: 10.1007/s00425-010-1173-2 PubMed DOI

Harmon A. C., Gribskov M., Harper J. F. (2000). CDPKs, a kinase for every Ca2+ signal? Trends Plant Sci. 5, 154–159. doi: 10.1016/S1360-1385(00)01577-6 PubMed DOI

Haslbeck M., Vierling E. (2015). A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427, 1537–1548. doi: 10.1016/j.jmb.2015.02.002 PubMed DOI PMC

Huang C.-H., Kuo W.-Y., Weiss C., Jinn T.-L. (2012). Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in arabidopsis. Plant Physiol. 158, 737–746. doi: 10.1104/pp.111.190223 PubMed DOI PMC

Huang J., Willems P., Wei B., Tian C., Ferreira R. B., Bodra N., et al. . (2019). Mining for protein s-sulfenylation in arabidopsis uncovers redox-sensitive sites. Proc. Natl. Acad. Sci. U. S. A. 116, 21256–21261. doi: 10.1073/pnas.1906768116 PubMed DOI PMC

Hubbard S. R., Till J. H. (2000). Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398. doi: 10.1146/annurev.biochem.69.1.373 PubMed DOI

Hu W., Chen L., Qiu X., Wei J., Lu H., Sun G., et al. . (2020). AKR2A participates in the regulation of cotton fibre development by modulating biosynthesis of very-long-chain fatty acids. Plant Biotechnol. J. 18, 526–539. doi: 10.1111/pbi.13221 PubMed DOI PMC

Hu C.-D., Chinenov Y., Kerppola T. K. (2002). Visualization of interactions among bZIP and rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798. doi: 10.1016/S1097-2765(02)00496-3 PubMed DOI

Hu J., Huang X., Chen L., Sun X., Lu C., Zhang L., et al. . (2015). Site-specific nitrosoproteomic identification of endogenously s-nitrosylated proteins in arabidopsis. Plant Physiol. 167, 1731–1746. doi: 10.1104/pp.15.00026 PubMed DOI PMC

Hu S.-H., Jinn T.-L. (2022). Impacts of Mn, fe, and oxidative stressors on MnSOD activation by AtMTM1 and AtMTM2 in arabidopsis. Plants (Basel) 11, 619. doi: 10.3390/plants11050619 PubMed DOI PMC

Hu S.-H., Lin S.-F., Huang Y.-C., Huang C.-H., Kuo W.-Y., Jinn T.-L. (2021). Significance of AtMTM1 and AtMTM2 for mitochondrial MnSOD activation in arabidopsis. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.690064 PubMed DOI PMC

Igawa T., Fujiwara M., Takahashi H., Sawasaki T., Endo Y., Seki M., et al. . (2009). Isolation and identification of ubiquitin-related proteins from arabidopsis seedlings. J. Exp. Bot. 60, 3067–3073. doi: 10.1093/jxb/erp134 PubMed DOI PMC

Iglesias M. J., Terrile M. C., Correa-Aragunde N., Colman S. L., Izquierdo-Álvarez A., Fiol D. F., et al. . (2018). Regulation of SCFTIR1/AFBs E3 ligase assembly by s-nitrosylation of arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol. 18, 200–210. doi: 10.1016/j.redox.2018.07.003 PubMed DOI PMC

Islas-Flores T., Rahman A., Ullah H., Villanueva M. A. (2015). The receptor for activated c kinase in plant signaling: Tale of a promiscuous little molecule. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.01090 PubMed DOI PMC

Iwasaki Y., Komano M., Ishikawa A., Sasaki T., Asahi T. (1995). Molecular cloning and characterization of cDNA for a rice protein that contains seven repetitive segments of the trp-asp forty-amino-acid repeat (WD-40 repeat). Plant Cell Physiol. 36, 505–510. doi: 10.1093/oxfordjournals.pcp.a078786 PubMed DOI

Jagadeeswaran G., Saini A., Sunkar R. (2009). Biotic and abiotic stress down-regulate miR398 expression in arabidopsis. Planta 229, 1009–1014. doi: 10.1007/s00425-009-0889-3 PubMed DOI

Jayashree S., Murugavel P., Sowdhamini R., Srinivasan N. (2019). Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Biol. Direct 14, 1. doi: 10.1186/s13062-019-0232-2 PubMed DOI PMC

Jensen L. T., Culotta V. C. (2005). Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J. Biol. Chem. 280, 41373–41379. doi: 10.1074/jbc.M509142200 PubMed DOI

Jiao Z., Tian Y., Cao Y., Wang J., Zhan B., Zhao Z., et al. . (2021). A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. New Phytol. 230, 1126–1141. doi: 10.1111/nph.17206 PubMed DOI

Jones A. M., Xuan Y., Xu M., Wang R.-S., Ho C.-H., Lalonde S., et al. . (2014). Border control–a membrane-linked interactome of arabidopsis. Science 344, 711–716. doi: 10.1126/science.1251358 PubMed DOI

Kanno T., Bucher E., Daxinger L., Huettel B., Böhmdorfer G., Gregor W., et al. . (2008). A structural-maintenance-of-chromosomes hinge domain–containing protein is required for RNA-directed DNA methylation. Nat. Genet. 40, 670–675. doi: 10.1038/ng.119 PubMed DOI

Karpinski S., Escobar C., Karpinska B., Creissen G., Mullineaux P. M. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in arabidopsis during excess light stress. Plant Cell 9, 627–640. doi: 10.1105/tpc.9.4.627 PubMed DOI PMC

Kerppola T. K. (2006). Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286. doi: 10.1038/nprot.2006.201 PubMed DOI PMC

Kim D. H., Lee J.-E., Xu Z.-Y., Geem K. R., Kwon Y., Park J. W., et al. . (2015). Cytosolic targeting factor AKR2A captures chloroplast outer membrane-localized client proteins at the ribosome during translation. Nat. Commun. 6, 6843. doi: 10.1038/ncomms7843 PubMed DOI

Kim D. H., Park M.-J., Gwon G. H., Silkov A., Xu Z.-Y., Yang E. C., et al. . (2014). An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev. Cell 30, 598–609. doi: 10.1016/j.devcel.2014.07.026 PubMed DOI PMC

Kim D.-Y., Scalf M., Smith L. M., Vierstra R. D. (2013). Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in arabidopsis. Plant Cell 25, 1523–1540. doi: 10.1105/tpc.112.108613 PubMed DOI PMC

Kliebenstein D. J., Monde R. A., Last R. L. (1998). Superoxide dismutase in arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 118, 637–650. doi: 10.1104/pp.118.2.637 PubMed DOI PMC

Klopffleisch K., Phan N., Augustin K., Bayne R. S., Booker K. S., Botella J. R., et al. . (2011). Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol. Syst. Biol. 7, 532. doi: 10.1038/msb.2011.66 PubMed DOI PMC

Kneeshaw S., Keyani R., Delorme-Hinoux V., Imrie L., Loake G. J., Le Bihan T., et al. . (2017). Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 114, 8414–8419. doi: 10.1073/pnas.1703344114 PubMed DOI PMC

König J., Galliardt H., Jütte P., Schäper S., Dittmann L., Dietz K.-J. (2013). The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64, 3483–3497. doi: 10.1093/jxb/ert184 PubMed DOI PMC

Kundu N., Dozier U., Deslandes L., Somssich I. E., Ullah H. (2013). Arabidopsis scaffold protein RACK1A interacts with diverse environmental stress and photosynthesis related proteins. Plant Signal Behav. 8, e24012. doi: 10.4161/psb.24012 PubMed DOI PMC

Kuo W.-Y., Huang C.-H., Jinn T.-L. (2013. a). Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). Plant Signal. Behav. 8, e23074. doi: 10.4161/psb.23074 PubMed DOI PMC

Kuo W. Y., Huang C. H., Liu A. C., Cheng C. P., Li S. H., Chang W. C., et al. . (2013. b). CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in arabidopsis chloroplasts. New Phytol. 197, 99–110. doi: 10.1111/j.1469-8137.2012.04369.x PubMed DOI

Lamb A. L., Torres A. S., O’Halloran T. V., Rosenzweig A. C. (2001). Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Biol. 8, 751–755. doi: 10.1038/nsb0901-751 PubMed DOI

Latz A., Becker D., Hekman M., Müller T., Beyhl D., Marten I., et al. . (2007). TPK1, a Ca(2+)-regulated arabidopsis vacuole two-pore k(+) channel is activated by 14-3-3 proteins. Plant J. 52, 449–459. doi: 10.1111/j.1365-313X.2007.03255.x PubMed DOI

Latz A., Mehlmer N., Zapf S., Mueller T. D., Wurzinger B., Pfister B., et al. . (2013). Salt stress triggers phosphorylation of the arabidopsis vacuolar k+ channel TPK1 by calcium-dependent protein kinases (CDPKs). Mol. Plant 6, 1274–1289. doi: 10.1093/mp/sss158 PubMed DOI PMC

Lazzarotto F., Teixeira F. K., Rosa S. B., Dunand C., Fernandes C. L., de Vasconcelos Fontenele A., et al. . (2011). Ascorbate peroxidase-related (APx-r) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol. 191, 234–250. doi: 10.1111/j.1469-8137.2011.03659.x PubMed DOI

Lazzarotto F., Wahni K., Piovesana M., Maraschin F., Messens J., Margis-Pinheiro M. (2021). Arabidopsis APx-r is a plastidial ascorbate-independent peroxidase regulated by photomorphogenesis. Antioxidants 10, 65. doi: 10.3390/antiox10010065 PubMed DOI PMC

Le M. H., Cao Y., Zhang X.-C., Stacey G. (2014). LIK1, a CERK1-interacting kinase, regulates plant immune responses in arabidopsis. PloS One 9, e102245. doi: 10.1371/journal.pone.0102245 PubMed DOI PMC

Lee S., Joung Y. H., Kim J.-K., Do Choi Y., Jang G. (2019). An isoform of the plastid RNA polymerase-associated protein FSD3 negatively regulates chloroplast development. BMC Plant Biol. 19, 524. doi: 10.1186/s12870-019-2128-9 PubMed DOI PMC

Leene J. V., Witters E., Inzé D., Jaeger G. D. (2008). Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci. 13, 517–520. doi: 10.1016/j.tplants.2008.08.002 PubMed DOI

Lee B., Yoshida Y., Hasunuma K. (2009). Nucleoside diphosphate kinase-1 regulates hyphal development via the transcriptional regulation of catalase in neurospora crassa. FEBS Lett. 583, 3291–3295. doi: 10.1016/j.febslet.2009.09.026 PubMed DOI

Levy E. D. (2010). A simple definition of structural regions in proteins and its use in analyzing interface evolution. J. Mol. Biol. 403, 660–670. doi: 10.1016/j.jmb.2010.09.028 PubMed DOI

Lewandowska A., Vo T. N., Nguyen T.-D. H., Wahni K., Vertommen D., Van Breusegem F., et al. . (2019). Bifunctional chloroplastic DJ-1B from arabidopsis thaliana is an oxidation-robust holdase and a glyoxalase sensitive to H2O2. Antioxidants 8, 8. doi: 10.3390/antiox8010008 PubMed DOI PMC

Liang L., Wang Q., Song Z., Wu Y., Liang Q., Wang Q., et al. . (2021). O-Fucosylation of CPN20 by SPINDLY derepresses abscisic acid signaling during seed germination and seedling development. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.724144 PubMed DOI PMC

Li D.-H., Chen F.-J., Li H.-Y., Li W., Guo J.-J. (2018). The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ. J. Plant Physiol. 65, 541–552. doi: 10.1134/S1021443718040155 DOI

Li Y., Chen L., Mu J., Zuo J. (2013). LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in arabidopsis. Plant Physiol. 163, 1059–1070. doi: 10.1104/pp.113.225805 PubMed DOI PMC

Liebthal M., Schuetze J., Dreyer A., Mock H.-P., Dietz K.-J. (2020). Redox conformation-specific protein-protein interactions of the 2-cysteine peroxiredoxin in arabidopsis. Antioxidants 9, E515. doi: 10.3390/antiox9060515 PubMed DOI PMC

Li X., Gu Y. (2020). Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling. Curr. Opin. Plant Biol. 58, 60–68. doi: 10.1016/j.pbi.2020.10.006 PubMed DOI

Li G., Li J., Hao R., Guo Y. (2017. b). Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J. Genet. Genomics 44, 395–404. doi: 10.1016/j.jgg.2017.03.009 PubMed DOI

Li J., Liu J., Wang G., Cha J.-Y., Li G., Chen S., et al. . (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in arabidopsis. Plant Cell 27, 908–925. doi: 10.1105/tpc.114.135095 PubMed DOI PMC

Li D., Liu H., Yang Y., Zhen P., Liang J. (2009). Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 16, 14–20. doi: 10.1016/S1672-6308(08)60051-7 DOI

Lindermayr C., Sell S., Müller B., Leister D., Durner J. (2010). Redox regulation of the NPR1-TGA1 system of arabidopsis thaliana by nitric oxide. Plant Cell 22, 2894–2907. doi: 10.1105/tpc.109.066464 PubMed DOI PMC

Lin J., Nazarenus T. J., Frey J. L., Liang X., Wilson M. A., Stone J. M. (2011). A plant DJ-1 homolog is essential for arabidopsis thaliana chloroplast development. PloS One 6, e23731. doi: 10.1371/journal.pone.0023731 PubMed DOI PMC

Li D.-H., Shen F.-J., Li H.-Y., Li W. (2017. a). Kale BoRACK1 is involved in the plant response to salt stress and peronospora brassicae gaumann. J. Plant Physiol. 213, 188–198. doi: 10.1016/j.jplph.2017.03.014 PubMed DOI

Lister R., Carrie C., Duncan O., Ho L. H. M., Howell K. A., Murcha M. W., et al. . (2007). Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19, 3739–3759. doi: 10.1105/tpc.107.050534 PubMed DOI PMC

Liu J., Cui L., Xie Z., Zhang Z., Liu E., Peng X. (2019). Two NCA1 isoforms interact with catalase in a mutually exclusive manner to redundantly regulate its activity in rice. BMC Plant Biol. 19, 105. doi: 10.1186/s12870-019-1707-0 PubMed DOI PMC

Liu X., Wang X., Yan X., Li S., Peng H. (2020). The glycine- and proline-rich protein AtGPRP3 negatively regulates plant growth in arabidopsis. Int. J. Mol. Sci. 21, 6168. doi: 10.3390/ijms21176168 PubMed DOI PMC

Li F., Wu Q.-Y., Sun Y.-L., Wang L.-Y., Yang X.-H., Meng Q.-W. (2010). Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol. Plant 139, 421–434. doi: 10.1111/j.1399-3054.2010.01369.x PubMed DOI

Li J., Yuan J., Li Y., Sun H., Ma T., Huai J., et al. . (2022). The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep. 39, 110664. doi: 10.1016/j.celrep.2022.110664 PubMed DOI

Luanpitpong S., Chanvorachote P., Stehlik C., Tse W., Callery P. S., Wang L., et al. . (2013). Regulation of apoptosis by bcl-2 cysteine oxidation in human lung epithelial cells. Mol. Biol. Cell 24, 858–869. doi: 10.1091/mbc.e12-10-0747 PubMed DOI PMC

Luk E., Carroll M., Baker M., Culotta V. C. (2003). Manganese activation of superoxide dismutase 2 in saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl. Acad. Sci. U. S. A. 100, 10353–10357. doi: 10.1073/pnas.1632471100 PubMed DOI PMC

Lv T., Li X., Fan T., Luo H., Xie C., Zhou Y., et al. . (2019). The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense. Plant Physiol. 181, 1314–1327. doi: 10.1104/pp.19.01060 PubMed DOI PMC

Martín-Trillo M., Cubas P. (2010). TCP Genes: a family snapshot ten years later. Trends Plant Sci. 15, 31–39. doi: 10.1016/j.tplants.2009.11.003 PubMed DOI

Marubashi S., Ohbayashi N., Fukuda M. (2016). A varp-binding protein, RACK1, regulates dendrite outgrowth through stabilization of varp protein in mouse melanocytes. J. Invest. Dermatol. 136, 1672–1680. doi: 10.1016/j.jid.2016.03.034 PubMed DOI

Maruta T., Sawa Y., Shigeoka S., Ishikawa T. (2016). Diversity and evolution of ascorbate peroxidase functions in chloroplasts: More than just a classical antioxidant enzyme? Plant Cell Physiol 57, 1377–1386. doi: 10.1093/pcp/pcv203 PubMed DOI

McCutcheon D. C., Lee G., Carlos A., Montgomery J. E., Moellering R. E. (2020). Photoproximity profiling of protein–protein interactions in cells. J. Am. Chem. Soc 142, 146–153. doi: 10.1021/jacs.9b06528 PubMed DOI PMC

McKhann H. I., Frugier F., Petrovics G., Coba de la Peña T., Jurkevitch E., Brown S., et al. . (1997). Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division? Plant Mol. Biol. 34, 771–780. doi: 10.1023/A:1005899410389 PubMed DOI

McWhite C. D., Papoulas O., Drew K., Cox R. M., June V., Dong O. X., et al. . (2020). A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181, 460–474.e14. doi: 10.1016/j.cell.2020.02.049 PubMed DOI PMC

Meier I., Brkljacic J. (2009). Adding pieces to the puzzling plant nuclear envelope. Curr. Opin. Plant Biol. 12, 752–759. doi: 10.1016/j.pbi.2009.09.016 PubMed DOI

Melicher P., Dvořák P., Krasylenko Y., Shapiguzov A., Kangasjärvi J., Šamaj J., et al. . (2022). Arabidopsis iron superoxide dismutase FSD1 protects against methyl viologen-induced oxidative stress in a copper-dependent manner. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.823561 PubMed DOI PMC

Miller K. E., Kim Y., Huh W.-K., Park H.-O. (2015). Bimolecular fluorescence complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. J. Mol. Biol. 427, 2039–2055. doi: 10.1016/j.jmb.2015.03.005 PubMed DOI PMC

Mintseris J., Weng Z. (2005). Structure, function, and evolution of transient and obligate protein–protein interactions. Proc. Natl. Acad. Sci. U.S.A. 102, 10930–10935. doi: 10.1073/pnas.0502667102 PubMed DOI PMC

Miteva Y. V., Budayeva H. G., Cristea I. M. (2013). Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal. Chem. 85, 749–768. doi: 10.1021/ac3033257 PubMed DOI PMC

Mittler R., Zandalinas S. I., Fichman Y., Van Breusegem F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 23, 663–679. doi: 10.1038/s41580-022-00499-2 PubMed DOI

Miyauchi H., Moriyama S., Kusakizako T., Kumazaki K., Nakane T., Yamashita K., et al. . (2017). Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 8, 1633. doi: 10.1038/s41467-017-01541-0 PubMed DOI PMC

Moon H., Lee B., Choi G., Shin D., Prasad D. T., Lee O., et al. . (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. U.S.A. 100, 358–363. doi: 10.1073/pnas.252641899 PubMed DOI PMC

Moreira I. S., Fernandes P. A., Ramos M. J. (2007). Hot spots–a review of the protein-protein interface determinant amino-acid residues. Proteins 68, 803–812. doi: 10.1002/prot.21396 PubMed DOI

Morgan M. J., Lehmann M., Schwarzländer M., Baxter C. J., Sienkiewicz-Porzucek A., Williams T. C. R., et al. . (2008). Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 147, 101–114. doi: 10.1104/pp.107.113613 PubMed DOI PMC

Mou Z., Fan W., Dong X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944. doi: 10.1016/S0092-8674(03)00429-X PubMed DOI

Mullen R. T., Lee M. S., Trelease R. N. (1997). Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J. 12, 313–322. doi: 10.1046/j.1365-313x.1997.12020313.x PubMed DOI

Müller-Schüssele S. J., Wang R., Gütle D. D., Romer J., Rodriguez-Franco M., Scholz M., et al. . (2020). Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. Plant J. 103, 1140–1154. doi: 10.1111/tpj.14791 PubMed DOI

Murota K., Shimura H., Takeshita M., Masuta C. (2017). Interaction between cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. Plant Cell Rep. 36, 37–47. doi: 10.1007/s00299-016-2055-2 PubMed DOI PMC

Myouga F., Hosoda C., Umezawa T., Iizumi H., Kuromori T., Motohashi R., et al. . (2008). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in arabidopsis. Plant Cell 20, 3148–3162. doi: 10.1105/tpc.108.061341 PubMed DOI PMC

Nakashima A., Chen L., Thao N. P., Fujiwara M., Wong H. L., Kuwano M., et al. . (2008). RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell 20, 2265–2279. doi: 10.1105/tpc.107.054395 PubMed DOI PMC

Ngounou Wetie A. G., Sokolowska I., Channaveerappa D., Dupree E. J., Jayathirtha M., Woods A. G., et al. . (2019). Proteomics and non-proteomics approaches to study stable and transient protein-protein interactions. Adv. Exp. Med. Biol. 1140, 121–142. doi: 10.1007/978-3-030-15950-4_7 PubMed DOI

Ngounou Wetie A. G., Sokolowska I., Woods A. G., Roy U., Loo J. A., Darie C. C. (2013). Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics 13, 538–557. doi: 10.1002/pmic.201200328 PubMed DOI PMC

Niemiro A., Cysewski D., Brzywczy J., Wawrzyńska A., Sieńko M., Poznański J., et al. . (2020). Similar but not identical–binding properties of LSU (Response to low sulfur) proteins from arabidopsis thaliana. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.01246 PubMed DOI PMC

Nooren I. M. A., Thornton J. M. (2003). Diversity of protein-protein interactions. EMBO J. 22, 3486–3492. doi: 10.1093/emboj/cdg359 PubMed DOI PMC

Noshi M., Yamada H., Hatanaka R., Tanabe N., Tamoi M., Shigeoka S. (2017). Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci. Biotechnol. Biochem. 81, 523–533. doi: 10.1080/09168451.2016.1256759 PubMed DOI

Nussinov R., Ma B., Tsai C.-J. (2013). A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Biochim. Biophys. Acta - Proteins Proteom. 1834, 820–829. doi: 10.1016/j.bbapap.2012.12.014 PubMed DOI

Olejnik K., Bucholc M., Anielska-Mazur A., Lipko A., Kujawa M., Modzelan M., et al. . (2011). Arabidopsis thaliana nudix hydrolase AtNUDT7 forms complexes with the regulatory RACK1A protein and gamma subunits of the signal transducing heterotrimeric G protein. Acta Biochim. Pol. 58, 609–616. doi: 10.18388/abp.2011_2231 PubMed DOI

Oshima Y., Kamigaki A., Nakamori C., Mano S., Hayashi M., Nishimura M., et al. . (2008). Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import. Plant Cell Physiol. 49, 671–677. doi: 10.1093/pcp/pcn038 PubMed DOI

Oughtred R., Rust J., Chang C., Breitkreutz B.-J., Stark C., Willems A., et al. . (2021). The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200. doi: 10.1002/pro.3978 PubMed DOI PMC

Palma J. M., Mateos R. M., López-Jaramillo J., Rodríguez-Ruiz M., González-Gordo S., Lechuga-Sancho A. M., et al. . (2020). Plant catalases as NO and H2S targets. Redox Biol. 34, 101525. doi: 10.1016/j.redox.2020.101525 PubMed DOI PMC

Pan L., Luo Y., Wang J., Li X., Tang B., Yang H., et al. . (2022). Evolution and functional diversification of catalase genes in the green lineage. BMC Genomics 23, 411. doi: 10.1186/s12864-022-08621-6 PubMed DOI PMC

Park S., Rancour D. M., Bednarek S. Y. (2008). In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol. 148, 246–258. doi: 10.1104/pp.108.121897 PubMed DOI PMC

Peer W. A., Hosein F. N., Bandyopadhyay A., Makam S. N., Otegui M. S., Lee G.-J., et al. . (2009). Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in arabidopsis. Plant Cell 21, 1693–1721. doi: 10.1105/tpc.108.059634 PubMed DOI PMC

Pérez-Pérez M. E., Mauriès A., Maes A., Tourasse N. J., Hamon M., Lemaire S. D., et al. . (2017). The deep thioredoxome in chlamydomonas reinhardtii: New insights into redox regulation. Mol. Plant 10, 1107–1125. doi: 10.1016/j.molp.2017.07.009 PubMed DOI

Perkins J. R., Diboun I., Dessailly B. H., Lees J. G., Orengo C. (2010). Transient protein-protein interactions: structural, functional, and network properties. Structure 18, 1233–1243. doi: 10.1016/j.str.2010.08.007 PubMed DOI

Pfannschmidt T., Blanvillain R., Merendino L., Courtois F., Chevalier F., Liebers M., et al. . (2015). Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J. Exp. Bot. 66, 6957–6973. doi: 10.1093/jxb/erv415 PubMed DOI

Pilon M., Ravet K., Tapken W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim. Biophys. Acta 1807, 989–998. doi: 10.1016/j.bbabio.2010.11.002 PubMed DOI

Pnueli L., Liang H., Rozenberg M., Mittler R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient arabidopsis plants. Plant J. 34, 187–203. doi: 10.1046/j.1365-313X.2003.01715.x PubMed DOI

Qin W., Cho K. F., Cavanagh P. E., Ting A. Y. (2021). Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143. doi: 10.1038/s41592-020-01010-5 PubMed DOI PMC

Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O’Halloran T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808. doi: 10.1126/science.284.5415.805 PubMed DOI

Remy E., Duque P. (2014). Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front. Physiol. 5. doi: 10.3389/fphys.2014.00201 PubMed DOI PMC

Rexin D., Meyer C., Robaglia C., Veit B. (2015). TOR signalling in plants. Biochem. 470, 1–14. doi: 10.1042/BJ20150505 PubMed DOI

Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032. doi: 10.1038/13732 PubMed DOI

Roberts M. R., Salinas J., Collinge D. B. (2002). 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol. Biol. 50, 1031–1039. doi: 10.1023/A:1021261614491 PubMed DOI

Rocha A. G., Mehlmer N., Stael S., Mair A., Parvin N., Chigri F., et al. . (2014). Phosphorylation of Arabidopsis transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochem. 458, 313–322. doi: 10.1042/BJ20130631 PubMed DOI PMC

Roche J. V., Törnroth-Horsefield S. (2017). Aquaporin protein-protein interactions. Int. J. Mol. Sci. 18, E2255. doi: 10.3390/ijms18112255 PubMed DOI PMC

Rosnoblet C., Bègue H., Blanchard C., Pichereaux C., Besson-Bard A., Aimé S., et al. . (2017). Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. Plant Cell Environ. 40, 491–508. doi: 10.1111/pce.12686 PubMed DOI

Rosnoblet C., Chatelain P., Klinguer A., Bègue H., Winckler P., Pichereaux C., et al. . (2021). The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants. Plant Cell Environ. 44, 2636–2655. doi: 10.1111/pce.14073 PubMed DOI

Sabila M., Kundu N., Smalls D., Ullah H. (2016). Tyrosine phosphorylation based homo-dimerization of arabidopsis RACK1A proteins regulates oxidative stress signaling pathways in yeast. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00176 PubMed DOI PMC

Sagi M., Fluhr R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141, 336–340. doi: 10.1104/pp.106.078089 PubMed DOI PMC

Samakovli D., Tichá T., Vavrdová T., Ovečka M., Luptovčiak I., Zapletalová V., et al. . (2020). YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in arabidopsis. Mol. Plant 13, 612–633. doi: 10.1016/j.molp.2020.01.001 PubMed DOI

Saxena S. C., Salvi P., Kamble N. U., Joshi P. K., Majee M., Arora S. (2020). Ectopic overexpression of cytosolic ascorbate peroxidase gene (Apx1) improves salinity stress tolerance in brassica juncea by strengthening antioxidative defense mechanism. Acta Physiol. Plant 42, 45. doi: 10.1007/s11738-020-3032-5 DOI

Schmidt P. J., Kunst C., Culotta V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. role for protein-protein interactions with the copper chaperone for SOD1. J. Biol. Chem. 275, 33771–33776. doi: 10.1074/jbc.M006254200 PubMed DOI

Schmidt P. J., Rae T. D., Pufahl R. A., Hamma T., Strain J., O’Halloran T. V., et al. . (1999). Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J. Biol. Chem. 274, 23719–23725. doi: 10.1074/jbc.274.34.23719 PubMed DOI

Scranton M. A., Yee A., Park S.-Y., Walling L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J. Biol. Chem. 287, 18408–18417. doi: 10.1074/jbc.M111.309500 PubMed DOI PMC

Seychell B. C., Beck T. (2021). Molecular basis for protein–protein interactions. Beilstein J. Org. Chem. 17, 1–10. doi: 10.3762/bjoc.17.1 PubMed DOI PMC

Shen G., Kuppu S., Venkataramani S., Wang J., Yan J., Qiu X., et al. . (2010). ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in arabidopsis. Plant Cell 22, 811–831. doi: 10.1105/tpc.109.065979 PubMed DOI PMC

Shin R., Jez J. M., Basra A., Zhang B., Schachtman D. P. (2011). 14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett. 585, 143–147. doi: 10.1016/j.febslet.2010.11.025 PubMed DOI

Shi T., Polderman P. E., Pagès-Gallego M., van Es R. M., Vos H. R., Burgering B. M. T., et al. . (2021). p53 forms redox-dependent protein-protein interactions through cysteine 277. Antioxidants 10, 1578. doi: 10.3390/antiox10101578 PubMed DOI PMC

Song R.-F., Li T.-T., Liu W.-C. (2021). Jasmonic acid impairs arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.730228 PubMed DOI PMC

Speth C., Willing E.-M., Rausch S., Schneeberger K., Laubinger S. (2013). RACK1 scaffold proteins influence miRNA abundance in arabidopsis. Plant J. 76, 433–445. doi: 10.1111/tpj.12308 PubMed DOI

Sprinzak E., Sattath S., Margalit H. (2003). How reliable are experimental protein–protein interaction data? J. Mol. Biol. 327, 919–923. doi: 10.1016/S0022-2836(03)00239-0 PubMed DOI

Stein A., Pache R. A., Bernadó P., Pons M., Aloy P. (2009). Dynamic interactions of proteins in complex networks: a more structured view. FEBS J. 276, 5390–5405. doi: 10.1111/j.1742-4658.2009.07251.x PubMed DOI

Stolz A., Hilt W., Buchberger A., Wolf D. H. (2011). Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523. doi: 10.1016/j.tibs.2011.06.001 PubMed DOI

Strotmann V. I., Stahl Y. (2022). Visualization of in vivo protein–protein interactions in plants. J. Exp. Bot. 73, 3866–3880. doi: 10.1093/jxb/erac139 PubMed DOI PMC

Struk S., Jacobs A., Sánchez Martín-Fontecha E., Gevaert K., Cubas P., Goormachtig S. (2019). Exploring the protein-protein interaction landscape in plants. Plant Cell Environ. 42, 387–409. doi: 10.1111/pce.13433 PubMed DOI

Sudha G., Nussinov R., Srinivasan N. (2014). An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles. Prog. Biophys. Mol. Biol. 116, 141–150. doi: 10.1016/j.pbiomolbio.2014.07.004 PubMed DOI

Sun X., Han G., Meng Z., Lin L., Sui N. (2019). Roles of malic enzymes in plant development and stress responses. Plant Signal. Behav. 14, e1644596. doi: 10.1080/15592324.2019.1644596 PubMed DOI PMC

Sun Y., Li P., Deng M., Shen D., Dai G., Yao N., et al. . (2017). The ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases. Cell Microbiol. 19, e12736. doi: 10.1111/cmi.12736 PubMed DOI

Su T., Wang P., Li H., Zhao Y., Lu Y., Dai P., et al. . (2018). The arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J. Integr. Plant Biol. 60, 591–607. doi: 10.1111/jipb.12649 PubMed DOI

Suzuki M., Sato Y., Wu S., Kang B.-H., McCarty D. R. (2015). Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate. Plant Cell 27, 2288–2300. doi: 10.1105/tpc.15.00290 PubMed DOI PMC

Tada Y., Spoel S. H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., et al. . (2008). Plant immunity requires conformational charges of NPR1 via s-nitrosylation and thioredoxins. Science 321, 952–956. doi: 10.1126/science.1156970 PubMed DOI PMC

Tamura K., Fukao Y., Iwamoto M., Haraguchi T., Hara-Nishimura I. (2010). Identification and characterization of nuclear pore complex components in arabidopsis thaliana. Plant Cell 22, 4084–4097. doi: 10.1105/tpc.110.079947 PubMed DOI PMC

Tanaka M., Takahashi R., Hamada A., Terai Y., Ogawa T., Sawa Y., et al. . (2021). Distribution and functions of monodehydroascorbate reductases in plants: comprehensive reverse genetic analysis of arabidopsis thaliana enzymes. Antioxidants 10, 1726. doi: 10.3390/antiox10111726 PubMed DOI PMC

Tang L., Kim M. D., Yang K.-S., Kwon S.-Y., Kim S.-H., Kim J.-S., et al. . (2008). Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Res. 17, 705–715. doi: 10.1007/s11248-007-9155-2 PubMed DOI

Terrile M. C., Tebez N. M., Colman S. L., Mateos J. L., Morato-López E., Sánchez-López N., et al. . (2022). S-nitrosation of E3 ubiquitin ligase complex components regulates hormonal signalings in arabidopsis. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.794582 PubMed DOI PMC

Urano K., Maruyama K., Koyama T., Gonzalez N., Inzé D., Yamaguchi-Shinozaki K., et al. . (2022). CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Mol. Biol. 108, 257–275. doi: 10.1007/s11103-021-01238-5 PubMed DOI PMC

Uribe F., Henríquez-Valencia C., Arenas-M A., Medina J., Vidal E. A., Canales J. (2022). Evolutionary and gene expression analyses reveal new insights into the role of LSU gene-family in plant responses to sulfate-deficiency. Plants (Basel) 11, 1526. doi: 10.3390/plants11121526 PubMed DOI PMC

Vadovič P., Šamajová O., Takáč T., Novák D., Zapletalová V., Colcombet J., et al. . (2019). Biochemical and genetic interactions of phospholipase d alpha 1 and mitogen-activated protein kinase 3 affect arabidopsis stress response. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00275 PubMed DOI PMC

Vanacker H., Guichard M., Bohrer A.-S., Issakidis-Bourguet E. (2018). Redox regulation of monodehydroascorbate reductase by thioredoxin y in plastids revealed in the context of water stress. Antioxidants 7, 183. doi: 10.3390/antiox7120183 PubMed DOI PMC

van Dam L., Pagès-Gallego M., Polderman P. E., van Es R. M., Burgering B. M. T., Vos H. R., et al. . (2021). The human 2-cys peroxiredoxins form widespread, cysteine-dependent- and isoform-specific protein-protein interactions. Antioxidants 10, 627. doi: 10.3390/antiox10040627 PubMed DOI PMC

Van Leene J., Han C., Gadeyne A., Eeckhout D., Matthijs C., Cannoot B., et al. . (2019). Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327. doi: 10.1038/s41477-019-0378-z PubMed DOI

Verrastro I., Tveen-Jensen K., Woscholski R., Spickett C. M., Pitt A. R. (2016). Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic. Biol. Med. 90, 24–34. doi: 10.1016/j.freeradbiomed.2015.11.004 PubMed DOI

Verslues P. E., Batelli G., Grillo S., Agius F., Kim Y.-S., Zhu J., et al. . (2007). Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana . Mol. Cell. Biol. 27, 7771–7780. doi: 10.1128/MCB.00429-07 PubMed DOI PMC

Vinayagam A., Stelzl U., Wanker E. E. (2010). Repeated two-hybrid screening detects transient protein–protein interactions. Theor. Chem. Acc. 125, 613–619. doi: 10.1007/s00214-009-0651-8 DOI

von Mering C., Krause R., Snel B., Cornell M., Oliver S. G., Fields S., et al. . (2002). Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403. doi: 10.1038/nature750 PubMed DOI

Wagner R., Pfannschmidt T. (2006). Eukaryotic transcription factors in plastids–bioinformatic assessment and implications for the evolution of gene expression machineries in plants. Gene 381, 62–70. doi: 10.1016/j.gene.2006.06.022 PubMed DOI

Walter M., Chaban C., Schütze K., Batistic O., Weckermann K., Näke C., et al. . (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438. doi: 10.1111/j.1365-313X.2004.02219.x PubMed DOI

Wan C., Borgeson B., Phanse S., Tu F., Drew K., Clark G., et al. . (2015). Panorama of ancient metazoan macromolecular complexes. Nature 525, 339–344. doi: 10.1038/nature14877 PubMed DOI PMC

Wang Y., Chu C. (2020). S-nitrosylation control of ROS and RNS homeostasis in plants: The switching function of catalase. Mol. Plant 13, 946–948. doi: 10.1016/j.molp.2020.05.013 PubMed DOI

Wang Y., Ji D., Lei C., Chen Y., Qiu Y., Li X., et al. . (2021). Mechanistic insights into the effect of phosphorylation on ras conformational dynamics and its interactions with cell signaling proteins. Comput. Struct. Biotechnol. J. 19, 1184–1199. doi: 10.1016/j.csbj.2021.01.044 PubMed DOI PMC

Wang P., Xue L., Batelli G., Lee S., Hou Y.-J., Van Oosten M. J., et al. . (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U. S. A. 110, 11205–11210. doi: 10.1073/pnas.1308974110 PubMed DOI PMC

Wang N., Yoshida Y., Hasunuma K. (2007). Catalase-1 (CAT-1) and nucleoside diphosphate kinase-1 (NDK-1) play an important role in protecting conidial viability under light stress in neurospora crassa. Mol. Genet. Genom. 278, 235–242. doi: 10.1007/s00438-007-0244-y PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296–W303. doi: 10.1093/nar/gky427 PubMed DOI PMC

Waters E. R. (2013). The evolution, function, structure, and expression of the plant sHSPs. J. Exp. Bot. 64, 391–403. doi: 10.1093/jxb/ers355 PubMed DOI

Wei Y., Liu W., Hu W., Yan Y., Shi H. (2020). The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytol. 226, 476–491. doi: 10.1111/nph.16346 PubMed DOI

Wei Y., Ringe D., Wilson M. A., Ondrechen M. J. (2007). Identification of functional subclasses in the DJ-1 superfamily proteins. PloS Comput. Biol. 3, e10. doi: 10.1371/journal.pcbi.0030010 PubMed DOI

Wong P. C., Waggoner D., Subramaniam J. R., Tessarollo L., Bartnikas T. B., Culotta V. C., et al. . (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. U. S. A. 97, 2886–2891. doi: 10.1073/pnas.040461197 PubMed DOI PMC

Xing S., Wallmeroth N., Berendzen K. W., Grefen C. (2016). Techniques for the analysis of protein-protein interactions in vivo . Plant Physiol. 171, 727–758. doi: 10.1104/pp.16.00470 PubMed DOI PMC

Xu X. M., Lin H., Maple J., Bjorkblom B., Alves G., Larsen J. P., et al. . (2010). The arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation. J. Cell Sci. 123, 1644–1651. doi: 10.1242/jcs.063222 PubMed DOI

Yamakura F., Kawasaki H. (2010). Post-translational modifications of superoxide dismutase. Biochim. Biophys. Acta 1804, 318–325. doi: 10.1016/j.bbapap.2009.10.010 PubMed DOI

Yamasaki H., Hayashi M., Fukazawa M., Kobayashi Y., Shikanai T. (2009). SQUAMOSA promoter binding protein-like 7 is a central regulator for copper homeostasis in arabidopsis. Plant Cell 21, 347–361. doi: 10.1105/tpc.108.060137 PubMed DOI PMC

Yan J., Chia J.-C., Sheng H., Jung H., Zavodna T.-O., Zhang L., et al. . (2017). Arabidopsis pollen fertility requires the transcription factors CITF1 and SPL7 that regulate copper delivery to anthers and jasmonic acid synthesis. Plant Cell 29, 3012–3029. doi: 10.1105/tpc.17.00363 PubMed DOI PMC

Yang X.-J. (2005). Multisite protein modification and intramolecular signaling. Oncogene 24, 1653–1662. doi: 10.1038/sj.onc.1208173 PubMed DOI

Yang Z., Mhamdi A., Noctor G. (2019. a). Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling: Plant catalases. Plant Cell Environ. 42, 688–700. doi: 10.1111/pce.13453 PubMed DOI

Yang K. A., Moon H., Kim G., Lim C. J., Hong J. C., Lim C. O., et al. . (2003). NDP kinase 2 regulates expression of antioxidant genes in arabidopsis. Proc. Jpn. Acad. Ser. B Phys. Biol. 79B, 86–91. doi: 10.2183/pjab.79B.86 DOI

Yang Z., Wang C., Xue Y., Liu X., Chen S., Song C., et al. . (2019. b). Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10, 1199. doi: 10.1038/s41467-019-09181-2 PubMed DOI PMC

Yang X., Wen Z., Zhang D., Li Z., Li D., Nagalakshmi U., et al. . (2021). Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Commun. 2, 100137. doi: 10.1016/j.xplc.2020.100137 PubMed DOI PMC

Yan J., Wang J., Zhang H. (2002). An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 29, 193–202. doi: 10.1046/j.0960-7412.2001.01205.x PubMed DOI

Yeh H.-L., Lin T.-H., Chen C.-C., Cheng T.-X., Chang H.-Y., Lee T.-M. (2019). Monodehydroascorbate reductase plays a role in the tolerance of chlamydomonas reinhardtii to photooxidative stress. Plant Cell Physiol. 60, 2167–2179. doi: 10.1093/pcp/pcz110 PubMed DOI

Yoshida Y., Ogura Y., Hasunuma K. (2006). Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in Neurospora crassa . FEBS Lett. 580, 3282–3286. doi: 10.1016/j.febslet.2006.01.096 PubMed DOI

Yua Q.-B., Ma Q., Kong M.-M., Zhao T.-T., Zhang X.-L., Zhou Q., et al. . (2014). AtECB1/MRL7, a thioredoxin-like fold protein with disulfide reductase activity, regulates chloroplast gene expression and chloroplast biogenesis in arabidopsis thaliana. Mol. Plant 7, 206–217. doi: 10.1093/mp/sst092 PubMed DOI

Yuan H., Jin C., Pei H., Zhao L., Li X., Li J., et al. . (2021). The powdery mildew effector CSEP0027 interacts with barley catalase to regulate host immunity. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.733237 PubMed DOI PMC

Yuan H.-M., Liu W.-C., Lu Y.-T. (2017). CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 21, 143–155. doi: 10.1016/j.chom.2017.01.007 PubMed DOI

Zamocky M., Furtmüller P. G., Obinger C. (2008). Evolution of catalases from bacteria to humans. Antioxid. Redox Signal. 10, 1527–1548. doi: 10.1089/ars.2008.2046 PubMed DOI PMC

Zandalinas S. I., Balfagón D., Arbona V., Gómez-Cadenas A., Inupakutika M. A., Mittler R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J. Exp. Bot. 67, 5381–5390. doi: 10.1093/jxb/erw299 PubMed DOI PMC

Zeng H., Xu H., Wang H., Chen H., Wang G., Bai Y., et al. . (2022). LSD3 mediates the oxidative stress response through fine-tuning APX2 activity and the NF-YC15-GSTs module in cassava. Plant J. 110, 1447–1461. doi: 10.1111/tpj.15749 PubMed DOI

Zhang D., Chen L., Li D., Lv B., Chen Y., Chen J., et al. . (2014). OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, l.). PloS One 9, e97120. doi: 10.1371/journal.pone.0097120 PubMed DOI PMC

Zhang D., Chen L., Lv B., Liang J. (2013. a). The scaffolding protein RACK1: A platform for diverse functions in the plant kingdom. J. Plant Biol. Soil. Health 1, 7–13. doi: 10.13188/2331-8996.1000003 DOI

Zhang X.-F., Jiang T., Wu Z., Du S.-Y., Yu Y.-T., Jiang S.-C., et al. . (2013. b). Cochaperonin CPN20 negatively regulates abscisic acid signaling in arabidopsis. Plant Mol. Biol. 83, 205–218. doi: 10.1007/s11103-013-0082-8 PubMed DOI PMC

Zhang S., Li C., Ren H., Zhao T., Li Q., Wang S., et al. . (2020). BAK1 mediates light intensity to phosphorylate and activate catalases to regulate plant growth and development. Int. J. Mol. Sci. 21, 1437. doi: 10.3390/ijms21041437 PubMed DOI PMC

Zhang J., Movahedi A., Sang M., Wei Z., Xu J., Wang X., et al. . (2017). Functional analyses of NDPK2 in Populus trichocarpa and overexpression of PtNDPK2 enhances growth and tolerance to abiotic stresses in transgenic poplar. Plant Physiol. Biochem. 117, 61–74. doi: 10.1016/j.plaphy.2017.05.019 PubMed DOI

Zhang Y., Wang L.-F., Li T.-T., Liu W.-C. (2021). Mutual promotion of LAP2 and CAT2 synergistically regulates plant salt and osmotic stress tolerance. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.672672 PubMed DOI PMC

Zhang H., Wang J., Nickel U., Allen R. D., Goodman H. M. (1997). Cloning and expression of an arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34, 967–971. doi: 10.1023/a:1005814109732 PubMed DOI

Zhang D., Wang Y., Shen J., Yin J., Li D., Gao Y., et al. . (2018). OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice (N Y) 11, 45. doi: 10.1186/s12284-018-0232-3 PubMed DOI PMC

Zhou Y.-P., Duan J., Fujibe T., Yamamoto K. T., Tian C.-E. (2012). AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in arabidopsis. Plant Mol. Biol. 79, 333–346. doi: 10.1007/s11103-012-9915-0 PubMed DOI

Zhuang Y., Wei M., Ling C., Liu Y., Amin A. K., Li P., et al. . (2021). EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in arabidopsis. Cell Rep. 36, 109384. doi: 10.1016/j.celrep.2021.109384 PubMed DOI

Zou J.-J., Li X.-D., Ratnasekera D., Wang C., Liu W.-X., Song L.-F., et al. . (2015). Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27, 1445–1460. doi: 10.1105/tpc.15.00144 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace