In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32974958
DOI
10.1111/pce.13894
Knihovny.cz E-zdroje
- Klíčová slova
- FSD1, development, osmoprotection, oxidative stress, plasmolysis, root, salt stress, seed germination, superoxide dismutase,
- MeSH
- Arabidopsis * genetika růst a vývoj fyziologie MeSH
- fluorescenční protilátková technika MeSH
- geneticky modifikované rostliny MeSH
- klíčení MeSH
- konfokální mikroskopie MeSH
- kořeny rostlin * genetika růst a vývoj fyziologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mikroskopie MeSH
- osmoregulace * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- semena rostlinná enzymologie metabolismus MeSH
- superoxiddismutasa genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AT4G25100 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- superoxiddismutasa MeSH
Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue- and organ-specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light-sheet and Airyscan confocal microscopy. FSD1-GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1-GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1-GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1-GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants.
Zobrazit více v PubMed
Alves, M. B. R., de Andrade, A. F. C., de Arruda, R. P., Batissaco, L., Rodriguez, S. A. F., Lançoni, R., … Celeghini, E. C. C. (2015). An efficient technique to detect sperm reactive oxygen species: The CellRox deep red® fluorescent probe. Biochemistry & Physiology: Open Access, 4(2), 1-5.
Banda, J., Bellande, K., von Wangenheim, D., Goh, T., Guyomarc'h, S., Laplaze, L., & Bennett, M. J. (2019). Lateral root formation in Arabidopsis: A well-ordered LRexit. Trends in Plant Science, 24(9), 826-839.
Barlow, P. W. (2016). Origin of the concept of the quiescent centre of plant roots. Protoplasma, 253(5), 1283-1297.
Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 83-100.
Carlsbecker, A., Lee, J. Y., Roberts, C. J., Dettmer, J., Lehesranta, S., Zhou, J., … Benfey, P. N. (2010). Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature, 465(7296), 316-321.
Dunand, C., Crèvecoeur, M., & Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases. New Phytologist, 174(2), 332-341.
El-Maarouf-Bouteau, H., & Bailly, C. (2008). Oxidative signaling in seed germination and dormancy. Plant Signaling & Behavior, 3(3), 175-182.
Fehér, A., Ötvös, K., Pasternak, T. P., & Szandtner, A. P. (2008). The involvement of reactive oxygen species (ROS) in the cell cycle activation (G0-to-G1 transition) of plant cells. Plant Signaling & Behavior, 3(10), 823-826.
Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., … Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446.
Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875.
Gallie, D. R., & Chen, Z. (2019). Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One, 14(7), e0220078.
Geng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M. Y., … Dinneny, J. R. (2013). A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant Cell, 25(6), 2132-2154.
Hao, H., Fan, L., Chen, T., Li, R., Li, X., He, Q., … Lin, J. (2014). Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. The Plant Cell, 26(4), 1729-1745.
Hayashi, K., Nakamura, S., Fukunaga, S., Nishimura, T., Jenness, M. K., Murphy, A. S., … Aoyama, T. (2014). Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proceedings of the National Academy of Sciences, 111(31), 11557-11562.
Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., … Benfey, P. N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101(5), 555-567.
Horváth, E., Bela, K., Holinka, B., Riyazuddin, R., Gallé, Á., Hajnal, Á., … Csiszár, J. (2019). The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. Plant Science, 283, 366-374.
Jiang, K. (2003). Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development, 130(7), 1429-1438.
Joo, J. H., Bae, Y. S., & Lee, J. S. (2001). Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiology, 126(3), 1055-1060.
Joo, J. H., Yoo, H. J., Hwang, I., Lee, J. S., Nam, K. H., & Bae, Y. S. (2005). Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS Letters, 579(5), 1243-1248.
Kliebenstein, D. J., Monde, R. A., & Last, R. L. (1998). Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 118(2), 637-650.
Köhler, R. H., & Hanson, M. R. (2000). Plastid tubules of higher plants are tissue-specific and developmentally regulated. Journal of Cell Science, 113(1), 81-89.
Kuo, W. Y., Huang, C. H., Liu, A. C., Cheng, C. P., Li, S. H., Chang, W. C., … Jinn, T. L. (2013). CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist, 197(1), 99-110.
Leshem, Y., Seri, L., & Levine, A. (2007). Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. The Plant Journal, 51(2), 185-197.
Linkies, A., Müller, K., Morris, K., Turečková, V., Wenk, M., Cadman, C. S. C., … Leubner-Metzger, G. (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell, 21(12), 3803-3822.
Liszkay, A., Kenk, B., & Schopfer, P. (2003). Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 217(4), 658-667.
Mano, S., Hayashi, M., & Nishimura, M. (1999). Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. The Plant Journal, 17(3), 309-320.
Matsuoka, K., & Nakamura, K. (1991). Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proceedings of the National Academy of Sciences of the United States of America, 88(3), 834-838.
Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376.
Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., … Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2(84), ra45.
Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11-19.
Müller, K., Linkies, A., Vreeburg, R. A. M., Fry, S. C., Krieger-Liszkay, A., & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology, 150(4), 1855-1865.
Myouga, F., Hosoda, C., Umezawa, T., Iizumi, H., Kuromori, T., Motohashi, R., … Shinozaki, K. (2008). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. The Plant Cell, 20(11), 3148-3162.
Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80, 3-12.
Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., … Kuchitsu, K. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. Journal of Biological Chemistry, 283(14), 8885-8892.
Ogawa, K., Kanematsu, S., Takabe, K., & Asada, K. (1995). Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PS I) in spinach chloroplasts: Detection of immuno-gold labeling after rapid freezing and substitution method. Plant and Cell Physiology, 36(4), 565-573.
Oracz, K., El-Maarouf-Bouteau, H., Kranner, I., Bogatek, R., Corbineau, F., & Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology, 150(1), 494-505.
Orman-Ligeza, B., Parizot, B., de Rycke, R., Fernandez, A., Himschoot, E., Van Breusegem, F., … Draye, X. (2016). RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development, 143(18), 3328-3339.
Ovečka, M., Vaškebová, L., Komis, G., Luptovčiak, I., Smertenko, A., & Šamaj, J. (2015). Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nature Protocols, 10(8), 1234-1247.
Pasternak, T., Potters, G., Caubergs, R., & Jansen, M. A. (2005). Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany, 56(418), 1991-2001.
Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peńarrubia, L. (2016). Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403.
Petersson, S. V., Johansson, A. I., Kowalczyk, M., Makoveychuk, A., Wang, J. Y., Moritz, T., … Ljung, K. (2009). An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. The Plant Cell, 21(6), 1659-1668.
Pilon, M., Ravet, K., & Tapken, W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(8), 989-998.
Rodríguez-Serrano, M., Bárány, I., Prem, D., Coronado, M. J., Risueño, M. C., & Testillano, P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. Journal of Experimental Botany, 63(5), 2007-2024.
Šamajová, O., Komis, G., & Šamaj, J. (2014). Immunofluorescent localization of MAPKs and colocalization with microtubules in Arabidopsis seedling whole-mount probes. In G. Komis & J. Šamaj (Eds.), Plant MAP kinases (pp. 107-115). New York, NY: Humana Press.
Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., & Wagner, A. (2002). Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta, 214(6), 821-828.
Schopfer, P., Plachy, C., & Frahry, G. (2001). Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology, 125(4), 1591-1602.
Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A.-F., Teixeira, M., & Valentine, J. S. (2014). Superoxide dismutases and superoxide reductases. Chemical Reviews, 114(7), 3854-3918.
Smékalová, V., Luptovčiak, I., Komis, G., Šamajová, O., Ovečka, M., Doskočilová, A., … Šamaj, J. (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytologist, 203(4), 1175-1193.
Takáč, T., Šamajová, O., Pechan, T., Luptovčiak, I., & Šamaj, J. (2017). Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Molecular & Cellular Proteomics, 16, 1591-1609.
Takáč, T., Šamajová, O., Vadovič, P., Pechan, T., Košútová, P., Ovečka, M., … Šamaj, J. (2014). Proteomic and biochemical analyses show functional network of proteins involved in antioxidant defense of Arabidopsis anp2anp3 double mutant. Journal of Proteome Research, 13(12), 5347-5361.
Tsang, C. K., Li, Y., Thomas, J., Zhang, Y., & Zheng, X. F. S. (2014). Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nature Communications, 5, 3446.
Van Breusegem, F., Slooten, L., Stassart, J. M., Moens, T., Botterman, J., Van Montagu, M., & Inzé, D. (1999). Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant & Cell Physiology, 40(5), 515-523.
Van Camp, W., Capiau, K., Van Montagu, M., Inzé, D., & Slooten, L. (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology, 112(4), 1703-1714.
Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., & Strong, M. J. (2009). Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Research, 1305, 168-182.
Waszczak, C., Carmody, M., & Kangasjärvi, J. (2018). Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209-236.
Waters, B. M., McInturf, S. A., & Stein, R. J. (2012). Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. Journal of Experimental Botany, 63(16), 5903-5918.
Wrzaczek, M., Brosché, M., & Kangasjärvi, J. (2013). ROS signaling loops-Production, perception, regulation. Current Opinion in Plant Biology, 16(5), 575-582.
Xing, Y., Chen, W., Jia, W., & Zhang, J. (2015). Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. Journal of Experimental Botany, 66(19), 5971-5981.
Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanai, T. (2009). SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell, 21(1), 347-361.
Zhang, Y., Zhu, H., Zhang, Q., Li, M., Yan, M., Wang, R., … Wang, X. (2009). Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. The Plant Cell, 21(8), 2357-2377.
Protein-protein interactions in plant antioxidant defense
Imaging plant cells and organs with light-sheet and super-resolution microscopy
Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants