Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response

. 2019 ; 10 () : 275. [epub] 20190318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30936884

Phospholipase D alpha 1 (PLDα1, AT3G15730) and mitogen-activated protein kinases (MAPKs) participate on signaling-dependent events in plants. MAPKs are able to phosphorylate a wide range of substrates putatively including PLDs. Here we have focused on functional regulations of PLDα1 by interactions with MAPKs, their co-localization and impact on salt stress and abscisic acid (ABA) tolerance in Arabidopsis. Yeast two-hybrid and bimolecular fluorescent assays showed that PLDα1 interacts with MPK3. Immunoblotting analyses likewise confirmed connection between both these enzymes. Subcellularly we co-localized PLDα1 with MPK3 in the cortical cytoplasm close to the plasma membrane and in cytoplasmic strands. Moreover, genetic interaction studies revealed that pldα1mpk3 double mutant was resistant to a higher salinity and showed a higher tolerance to ABA during germination in comparison to single mutants and wild type. Thus, this study revealed importance of new biochemical and genetic interactions between PLDα1 and MPK3 for Arabidopsis stress (salt and ABA) response.

Zobrazit více v PubMed

Azimzadeh J., Nacry P., Christodoulidou A., Drevensek S., Camilleri C., Amiour N., et al. (2008). Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20 2146–2159. 10.1105/tpc.107.056812 PubMed DOI PMC

Bargmann B. O., Munnik T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9 515–522. 10.1016/j.pbi.2006.07.011 PubMed DOI

Bargmann B. O., Laxalt A. M., ter Riet B., Testerink C., Merquiol E., Mosblech A., et al. (2009a). Reassesing the role of phospholipase D in the Arabidopsis wounding response. Plant Cell Environ. 32 837–850. 10.1111/j.1365-3040.2009.01962.x PubMed DOI

Bargmann B. O., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. (2009b). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50 78–89. 10.1093/pcp/pcn173 PubMed DOI PMC

Beck M., Komis G., Ziemann A., Menzel D., Šamaj J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189 1069–1083. 10.1111/j.1469-8137.2010.03565.x PubMed DOI

Berriri S., Garcia A. V., Frei dit Frey N., Rozhon W., Pateyron S., Leonhardt N., et al. (2012). Constitutively active mitogen-activated ptotein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24 4281–4293. 10.1105/tpc.112.101253 PubMed DOI PMC

Brady S. M., Orlando D. A., Lee J. Y., Wang J. Y., Koch J., Dinneny J. R., et al. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318 801–806. 10.1126/science.1146265 PubMed DOI

Choudhury S. R., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86 50–61. 10.1111/tpj.13151 PubMed DOI

Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Colcombet J., Hirt H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413 217–226. 10.1042/BJ20080625 PubMed DOI

Danquah A., de Zelicourt A., Colcombet J., Hirt H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32 40–52. 10.1016/j.biotechadv.2013.09.006 PubMed DOI

Dóczi R., Okrész L., Romero A. E., Paccanaro A., Bogre L. (2012). Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci. 17 518–525. 10.1016/j.tplants.2012.05.009 PubMed DOI

Fan L., Zheng S., Cui D., Wang X. (1999). Subcellular distribution and tissue expression of phospholipase Dα, Dβ, and Dγ in Arabidopsis. Plant Phys. 119 1371–1378. 10.1104/pp.119.4.1371 PubMed DOI PMC

Fan L., Zheng S., Wang X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9 2183–2196. 10.1105/tpc.9.12.2183 PubMed DOI PMC

Franklin-Tong V. E., Gourlay C. W. (2008). A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem. J. 413 389–404. 10.1042/BJ20080320 PubMed DOI

Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC

Fujii H., Verslues P., Zhu J. K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19 485–494. 10.1105/tpc.106.048538 PubMed DOI PMC

Hong Y., Zhang W., Wang X. (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ. 33 627–635. 10.1111/j.1365-3040.2009.02087.x PubMed DOI

Hong Y., Zhao J., Guo L., Kim S. C. H., Deng X., Wang G., et al. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62 55–74. 10.1016/j.plipres.2016.01.002 PubMed DOI

Hu T., Exton J. H. (2003). Mechanisms of regulation of phospholipase D1 by protein kinase Cα. J. Biol. Chem. 278 2348–2355. 10.1074/jbc.M210093200 PubMed DOI

Ismail A., Takeda S., Nick P. (2014). Life and death under salt stress: same players, different timing? J. Exp. Bot. 65 2963–2979. 10.1093/jxb/eru159 PubMed DOI

Jiang C., Belfield E. J., Cao Y., Smith J. A. C., Harberd N. P. (2013). An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 30 1–18. 10.1105/tpc.113.115659 PubMed DOI PMC

Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. (2014). Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239 565–575. 10.1007/s00425-013-1999-5 PubMed DOI

Jonak C., Okrész L., Bogre L., Hirt H. (2002). Complexity, cross-talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5 415–424. 10.1016/S1369-5266(02)00285-6 PubMed DOI

Kalachova T., Puga-Feitas R., Kravets V., Soubigou-Taconnat L., Repellin A., Balzergue S., et al. (2016). The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signaling hub accounting for an important overlap in transcriptome remodeling induced by these hormones. Environ. Exp. Bot. 123 37–49. 10.1016/j.envexpbot.2015.11.003 DOI

Katagiri T., Ishiyama K., Kato T., Tabata S., Kobayashi M., Shinozaki K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 43 107–117. 10.1111/j.1365-313X.2005.02431.x PubMed DOI

Komis G., Illés P., Beck M., Šamaj J. (2011). Microtubules and mitogen-activated protein kinase signalling. Curr. Opin. Plant Biol. 14 650–657. 10.1016/j.pbi.2011.07.008 PubMed DOI

Komis G., Šamajová O., Ovečka M., Šamaj J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69 237–265. 10.1146/annurev-arplant-042817-040314 PubMed DOI

Krinke O., Flemr M., Vergnolle C., Collin S., Renou J. P., Taconnat L., et al. (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol. 150 424–436. 10.1104/pp.108.133595 PubMed DOI PMC

Latrasse D., Jégu T., Li H., de Zelicourt A., Raynaud C., Legras S., et al. (2017). MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol. 18:131. 10.1186/s13059-017-1261-8 PubMed DOI PMC

Lee J., Eschen-Lippold L., Lassowskat I., Bottcher C., Scheel D. (2015). Cellular reprogramming through mitogen-activated protein kinases. Front. Plant Sci. 6:940. 10.3389/fpls.2015.00940 PubMed DOI PMC

Lee S., Hirt H., Lee Y. (2001). Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26 479–486. 10.1046/j.1365-313x.2001.01037.x PubMed DOI

Li M., Hong Y., Wang X. (2009). Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791 927–935. 10.1016/j.bbalip.2009.02.017 PubMed DOI

Liu Y. (2012). Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 31 1–12. 10.1007/s00299-011-1130-y PubMed DOI

Luan S. (2003). Protein phosphatases in plants. Annu. Rev. Plant Biol. 54 63–92. 10.1146/annurev.arplant.54.031902.134743 PubMed DOI

MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7 301–308. 10.1016/S1360-1385(02)02302-6 PubMed DOI

Meskiene I., Baudouin E., Schweighofer A., Liwosz A., Jonak C., Rodriguez P. L., et al. (2003). Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J. Biol. Chem. 278 18945–18952. 10.1074/jbc.M300878200 PubMed DOI

Meskiene I., Bogre L., Glaser W., Balog J., Brandstotter M., Zwerger K., et al. (1998). MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. U.S.A. 95 1938–1943. 10.1073/pnas.95.4.1938 PubMed DOI PMC

Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312 264–266. 10.1126/science.1123769 PubMed DOI

Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localize to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI

Munnik T., Testerink C. (2009). Plant phospholipid signaling:”in a nutshell”. J. Lipid Res. 50 S260–S265. 10.1194/jlr.R800098-JLR200 PubMed DOI PMC

Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI

Nakashima K., Yamaguchi-Shinozaki K. (2013). ABA signaling in stress-response and seed development. Plant Cell Rep. 32 959–970. 10.1007/s00299-013-1418-1 PubMed DOI

Naoi K., Hashimoto T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase- like gene compromises cortical microtubule organization. Plant Cell 16 1841–1853. 10.1105/tpc.021865 PubMed DOI PMC

Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. 10.3389/fpls.2018.00371 PubMed DOI PMC

Persak H., Pitzschke A. (2013). Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 8:e57547. 10.1371/journal.pone.0057547 PubMed DOI PMC

Pitzschke A., Datta S., Persak H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol. Plant. 7 722–738. 10.1093/mp/sst157 PubMed DOI PMC

Pokotylo I., Kravets V., Martinec J., Ruelland E. (2018). The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71 43–53. 10.1016/j.plipres.2018.05.003 PubMed DOI

Qin C., Wang X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol. 128 1057–1068. 10.1104/pp.010928 PubMed DOI PMC

Rodriguez M. C., Petersen M., Mundy J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61 621–649. 10.1146/annurev-arplant-042809-112252 PubMed DOI

Roychoudhury A., Paul S., Basu S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 32 985–1006. 10.1007/s00299-013-1414-5 PubMed DOI

Šamajová O., Komis G., Šamaj J. (2013a). Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci. 18 140–148. 10.1016/j.tplants.2012.11.004 PubMed DOI

Šamajová O., Komis G., Šamaj J. (2014). Immunofluorescent localization of MAPKs and colocalization with microtubules in Arabidopsis seedling whole-mount probes. Methods Mol. Biol. 1171 107–115. 10.1007/978-1-4939-0922-3_9 PubMed DOI

Šamajová O., Plíhal O., Al-Yousif M., Hirt H., Šamaj J. (2013b). Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol. Adv. 31 118–128. 10.1016/j.biotechadv.2011.12.002 PubMed DOI

Schiestl R. H., Gietz R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16 339–346. 10.1007/BF00340712 PubMed DOI

Selvakumar G., Kim K., Hu S., Sa T. (2014). “Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress,” in Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment Vol. 1 eds Ahmad P., Wani M. (New York, NY: Springer; ), 115–144. 10.1007/978-1-4614-8591-9_6 DOI

Sinha A. K., Jaggi M., Raghuram B., Tuteja N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6 196–203. 10.4161/psb.6.2.14701 PubMed DOI PMC

Smékalová V., Doskočilová A., Komis G., Šamaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32 2–11. 10.1016/j.biotechadv.2013.07.009 PubMed DOI

Sparkes I. A., Runions J., Kearns A., Hawes C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1 2019–2025. 10.1038/nprot.2006.286 PubMed DOI

Su S. H., Suarez-Rodriguez M. C., Krysan P. (2007). Genetic interaction and phenotypic analysis of the Arabidopsis MAP kinase pathway mutations mekk1 and mpk4 suggests signaling pathway complexity. FEBS Lett. 581 3171–3177. 10.1016/j.febslet.2007.05.083 PubMed DOI

Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O., Šamaj J. (2016). Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci. Rep. 6:28306. 10.1038/srep28306 PubMed DOI PMC

Takahashi Y., Soyano T., Sasabe M., Machida Y. (2004). A MAP kinase cascade that controls plant cytokinesis. J. Biochem. 136 127–132. 10.1093/jb/mvh118 PubMed DOI

Teige M., Scheikl E., Eulgem T., Doczi R., Ichimura K., Shinozaki K., et al. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15 141–152. 10.1016/j.molcel.2004.06.023 PubMed DOI

Testerink C., Larsen P. B., van der Does D., van Himbergen J. A., Munnik T. (2007). Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 58 3905–3914. PubMed

Ulm R., Ichimura K., Mizoguchi T., Peck S. C., Zhu T., Wang X., et al. (2002). Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 21 6483–6493. 10.1093/emboj/cdf646 PubMed DOI PMC

Umezawa T., Sugiyama N., Takahashi F., Anderson J. C., Ishihama Y., Peck S. C., et al. (2013). Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6:rs8. 10.1126/scisignal.2003509 PubMed DOI

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159 450–460. 10.1104/pp.112.195578 PubMed DOI PMC

Vidal M., Brachmann R. K., Fattaey A., Harlow E., Boeke J. D. (1996). Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93 10315–10320. 10.1073/pnas.93.19.10315 PubMed DOI PMC

Wang H., Ngwenyama N., Liu Y., Walker J. C., Zhang S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19 63–73. 10.1105/tpc.106.048298 PubMed DOI PMC

Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., et al. (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216. 10.1186/1471-2164-12-216 PubMed DOI PMC

Wang X. (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139 566–573. 10.1104/pp.105.068809 PubMed DOI PMC

Xu J., Li Y., Wang Y., Liu H., Lei L., Yang H., et al. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283 26996–27006. 10.1074/jbc.M801392200 PubMed DOI

Yang Y., Guo Y. (2018). Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 60 796–804. 10.1111/jipb.12689 PubMed DOI

Yao X., Li J., Liu J., Liu K. (2015). An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4. J. Exp. Bot. 66 6431–6445. 10.1093/jxb/erv356 PubMed DOI PMC

Yoo S. D., Cho Y. H., Tena G., Xiong Y., Sheen J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H2 signalling. Nature 451 789–795. 10.1038/nature06543 PubMed DOI PMC

Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188 762–773. 10.1111/j.1469-8137.2010.03422.x PubMed DOI

Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24 4555–4576. 10.1105/tpc.112.104182 PubMed DOI PMC

Zhang W., Qin C., Zhao J., Wang X. (2004). Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 101 9508–9513. 10.1073/pnas.0402112101 PubMed DOI PMC

Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interactions to hormone signaling. J. Exp. Bot. 66 1–16. 10.1093/jxb/eru540 PubMed DOI PMC

Zhao J., Wang X. (2004). Arabidopsis phospholipase D alpha 1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279 1794–1800. PubMed

Zhou S., Chen Q., Li X., Li Y. (2017). MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. Plant Sci. 264 112–121. 10.1016/j.plantsci.2017.09.004 PubMed DOI

Zhu S. Y., Yu X. C. H., Wang X. J., Zhao R., Li Y., Fan R. C. H. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19 3019–3036. 10.1105/tpc.107.050666 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Protein-protein interactions in plant antioxidant defense

. 2022 ; 13 () : 1035573. [epub] 20221214

Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants

. 2019 ; 10 () : 362. [epub] 20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...