Biochemical and Genetic Interactions of Phospholipase D Alpha 1 and Mitogen-Activated Protein Kinase 3 Affect Arabidopsis Stress Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30936884
PubMed Central
PMC6431673
DOI
10.3389/fpls.2019.00275
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, abscisic acid, genetic interaction, localization, mitogen-activated protein kinase 3, phospholipase D alpha 1, protein interaction, salt stress,
- Publikační typ
- časopisecké články MeSH
Phospholipase D alpha 1 (PLDα1, AT3G15730) and mitogen-activated protein kinases (MAPKs) participate on signaling-dependent events in plants. MAPKs are able to phosphorylate a wide range of substrates putatively including PLDs. Here we have focused on functional regulations of PLDα1 by interactions with MAPKs, their co-localization and impact on salt stress and abscisic acid (ABA) tolerance in Arabidopsis. Yeast two-hybrid and bimolecular fluorescent assays showed that PLDα1 interacts with MPK3. Immunoblotting analyses likewise confirmed connection between both these enzymes. Subcellularly we co-localized PLDα1 with MPK3 in the cortical cytoplasm close to the plasma membrane and in cytoplasmic strands. Moreover, genetic interaction studies revealed that pldα1mpk3 double mutant was resistant to a higher salinity and showed a higher tolerance to ABA during germination in comparison to single mutants and wild type. Thus, this study revealed importance of new biochemical and genetic interactions between PLDα1 and MPK3 for Arabidopsis stress (salt and ABA) response.
Zobrazit více v PubMed
Azimzadeh J., Nacry P., Christodoulidou A., Drevensek S., Camilleri C., Amiour N., et al. (2008). Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20 2146–2159. 10.1105/tpc.107.056812 PubMed DOI PMC
Bargmann B. O., Munnik T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9 515–522. 10.1016/j.pbi.2006.07.011 PubMed DOI
Bargmann B. O., Laxalt A. M., ter Riet B., Testerink C., Merquiol E., Mosblech A., et al. (2009a). Reassesing the role of phospholipase D in the Arabidopsis wounding response. Plant Cell Environ. 32 837–850. 10.1111/j.1365-3040.2009.01962.x PubMed DOI
Bargmann B. O., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. (2009b). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50 78–89. 10.1093/pcp/pcn173 PubMed DOI PMC
Beck M., Komis G., Ziemann A., Menzel D., Šamaj J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189 1069–1083. 10.1111/j.1469-8137.2010.03565.x PubMed DOI
Berriri S., Garcia A. V., Frei dit Frey N., Rozhon W., Pateyron S., Leonhardt N., et al. (2012). Constitutively active mitogen-activated ptotein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24 4281–4293. 10.1105/tpc.112.101253 PubMed DOI PMC
Brady S. M., Orlando D. A., Lee J. Y., Wang J. Y., Koch J., Dinneny J. R., et al. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318 801–806. 10.1126/science.1146265 PubMed DOI
Choudhury S. R., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86 50–61. 10.1111/tpj.13151 PubMed DOI
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI
Colcombet J., Hirt H. (2008). Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413 217–226. 10.1042/BJ20080625 PubMed DOI
Danquah A., de Zelicourt A., Colcombet J., Hirt H. (2014). The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32 40–52. 10.1016/j.biotechadv.2013.09.006 PubMed DOI
Dóczi R., Okrész L., Romero A. E., Paccanaro A., Bogre L. (2012). Exploring the evolutionary path of plant MAPK networks. Trends Plant Sci. 17 518–525. 10.1016/j.tplants.2012.05.009 PubMed DOI
Fan L., Zheng S., Cui D., Wang X. (1999). Subcellular distribution and tissue expression of phospholipase Dα, Dβ, and Dγ in Arabidopsis. Plant Phys. 119 1371–1378. 10.1104/pp.119.4.1371 PubMed DOI PMC
Fan L., Zheng S., Wang X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9 2183–2196. 10.1105/tpc.9.12.2183 PubMed DOI PMC
Franklin-Tong V. E., Gourlay C. W. (2008). A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem. J. 413 389–404. 10.1042/BJ20080320 PubMed DOI
Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC
Fujii H., Verslues P., Zhu J. K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19 485–494. 10.1105/tpc.106.048538 PubMed DOI PMC
Hong Y., Zhang W., Wang X. (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ. 33 627–635. 10.1111/j.1365-3040.2009.02087.x PubMed DOI
Hong Y., Zhao J., Guo L., Kim S. C. H., Deng X., Wang G., et al. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62 55–74. 10.1016/j.plipres.2016.01.002 PubMed DOI
Hu T., Exton J. H. (2003). Mechanisms of regulation of phospholipase D1 by protein kinase Cα. J. Biol. Chem. 278 2348–2355. 10.1074/jbc.M210093200 PubMed DOI
Ismail A., Takeda S., Nick P. (2014). Life and death under salt stress: same players, different timing? J. Exp. Bot. 65 2963–2979. 10.1093/jxb/eru159 PubMed DOI
Jiang C., Belfield E. J., Cao Y., Smith J. A. C., Harberd N. P. (2013). An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 30 1–18. 10.1105/tpc.113.115659 PubMed DOI PMC
Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. (2014). Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239 565–575. 10.1007/s00425-013-1999-5 PubMed DOI
Jonak C., Okrész L., Bogre L., Hirt H. (2002). Complexity, cross-talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5 415–424. 10.1016/S1369-5266(02)00285-6 PubMed DOI
Kalachova T., Puga-Feitas R., Kravets V., Soubigou-Taconnat L., Repellin A., Balzergue S., et al. (2016). The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signaling hub accounting for an important overlap in transcriptome remodeling induced by these hormones. Environ. Exp. Bot. 123 37–49. 10.1016/j.envexpbot.2015.11.003 DOI
Katagiri T., Ishiyama K., Kato T., Tabata S., Kobayashi M., Shinozaki K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 43 107–117. 10.1111/j.1365-313X.2005.02431.x PubMed DOI
Komis G., Illés P., Beck M., Šamaj J. (2011). Microtubules and mitogen-activated protein kinase signalling. Curr. Opin. Plant Biol. 14 650–657. 10.1016/j.pbi.2011.07.008 PubMed DOI
Komis G., Šamajová O., Ovečka M., Šamaj J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69 237–265. 10.1146/annurev-arplant-042817-040314 PubMed DOI
Krinke O., Flemr M., Vergnolle C., Collin S., Renou J. P., Taconnat L., et al. (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol. 150 424–436. 10.1104/pp.108.133595 PubMed DOI PMC
Latrasse D., Jégu T., Li H., de Zelicourt A., Raynaud C., Legras S., et al. (2017). MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biol. 18:131. 10.1186/s13059-017-1261-8 PubMed DOI PMC
Lee J., Eschen-Lippold L., Lassowskat I., Bottcher C., Scheel D. (2015). Cellular reprogramming through mitogen-activated protein kinases. Front. Plant Sci. 6:940. 10.3389/fpls.2015.00940 PubMed DOI PMC
Lee S., Hirt H., Lee Y. (2001). Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26 479–486. 10.1046/j.1365-313x.2001.01037.x PubMed DOI
Li M., Hong Y., Wang X. (2009). Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim. Biophys. Acta 1791 927–935. 10.1016/j.bbalip.2009.02.017 PubMed DOI
Liu Y. (2012). Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 31 1–12. 10.1007/s00299-011-1130-y PubMed DOI
Luan S. (2003). Protein phosphatases in plants. Annu. Rev. Plant Biol. 54 63–92. 10.1146/annurev.arplant.54.031902.134743 PubMed DOI
MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7 301–308. 10.1016/S1360-1385(02)02302-6 PubMed DOI
Meskiene I., Baudouin E., Schweighofer A., Liwosz A., Jonak C., Rodriguez P. L., et al. (2003). Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J. Biol. Chem. 278 18945–18952. 10.1074/jbc.M300878200 PubMed DOI
Meskiene I., Bogre L., Glaser W., Balog J., Brandstotter M., Zwerger K., et al. (1998). MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. U.S.A. 95 1938–1943. 10.1073/pnas.95.4.1938 PubMed DOI PMC
Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312 264–266. 10.1126/science.1123769 PubMed DOI
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localize to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI
Munnik T., Testerink C. (2009). Plant phospholipid signaling:”in a nutshell”. J. Lipid Res. 50 S260–S265. 10.1194/jlr.R800098-JLR200 PubMed DOI PMC
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI
Nakashima K., Yamaguchi-Shinozaki K. (2013). ABA signaling in stress-response and seed development. Plant Cell Rep. 32 959–970. 10.1007/s00299-013-1418-1 PubMed DOI
Naoi K., Hashimoto T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase- like gene compromises cortical microtubule organization. Plant Cell 16 1841–1853. 10.1105/tpc.021865 PubMed DOI PMC
Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. 10.3389/fpls.2018.00371 PubMed DOI PMC
Persak H., Pitzschke A. (2013). Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 8:e57547. 10.1371/journal.pone.0057547 PubMed DOI PMC
Pitzschke A., Datta S., Persak H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol. Plant. 7 722–738. 10.1093/mp/sst157 PubMed DOI PMC
Pokotylo I., Kravets V., Martinec J., Ruelland E. (2018). The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71 43–53. 10.1016/j.plipres.2018.05.003 PubMed DOI
Qin C., Wang X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol. 128 1057–1068. 10.1104/pp.010928 PubMed DOI PMC
Rodriguez M. C., Petersen M., Mundy J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61 621–649. 10.1146/annurev-arplant-042809-112252 PubMed DOI
Roychoudhury A., Paul S., Basu S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 32 985–1006. 10.1007/s00299-013-1414-5 PubMed DOI
Šamajová O., Komis G., Šamaj J. (2013a). Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci. 18 140–148. 10.1016/j.tplants.2012.11.004 PubMed DOI
Šamajová O., Komis G., Šamaj J. (2014). Immunofluorescent localization of MAPKs and colocalization with microtubules in Arabidopsis seedling whole-mount probes. Methods Mol. Biol. 1171 107–115. 10.1007/978-1-4939-0922-3_9 PubMed DOI
Šamajová O., Plíhal O., Al-Yousif M., Hirt H., Šamaj J. (2013b). Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol. Adv. 31 118–128. 10.1016/j.biotechadv.2011.12.002 PubMed DOI
Schiestl R. H., Gietz R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16 339–346. 10.1007/BF00340712 PubMed DOI
Selvakumar G., Kim K., Hu S., Sa T. (2014). “Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress,” in Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment Vol. 1 eds Ahmad P., Wani M. (New York, NY: Springer; ), 115–144. 10.1007/978-1-4614-8591-9_6 DOI
Sinha A. K., Jaggi M., Raghuram B., Tuteja N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6 196–203. 10.4161/psb.6.2.14701 PubMed DOI PMC
Smékalová V., Doskočilová A., Komis G., Šamaj J. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32 2–11. 10.1016/j.biotechadv.2013.07.009 PubMed DOI
Sparkes I. A., Runions J., Kearns A., Hawes C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1 2019–2025. 10.1038/nprot.2006.286 PubMed DOI
Su S. H., Suarez-Rodriguez M. C., Krysan P. (2007). Genetic interaction and phenotypic analysis of the Arabidopsis MAP kinase pathway mutations mekk1 and mpk4 suggests signaling pathway complexity. FEBS Lett. 581 3171–3177. 10.1016/j.febslet.2007.05.083 PubMed DOI
Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O., Šamaj J. (2016). Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci. Rep. 6:28306. 10.1038/srep28306 PubMed DOI PMC
Takahashi Y., Soyano T., Sasabe M., Machida Y. (2004). A MAP kinase cascade that controls plant cytokinesis. J. Biochem. 136 127–132. 10.1093/jb/mvh118 PubMed DOI
Teige M., Scheikl E., Eulgem T., Doczi R., Ichimura K., Shinozaki K., et al. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell 15 141–152. 10.1016/j.molcel.2004.06.023 PubMed DOI
Testerink C., Larsen P. B., van der Does D., van Himbergen J. A., Munnik T. (2007). Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 58 3905–3914. PubMed
Ulm R., Ichimura K., Mizoguchi T., Peck S. C., Zhu T., Wang X., et al. (2002). Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 21 6483–6493. 10.1093/emboj/cdf646 PubMed DOI PMC
Umezawa T., Sugiyama N., Takahashi F., Anderson J. C., Ishihama Y., Peck S. C., et al. (2013). Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6:rs8. 10.1126/scisignal.2003509 PubMed DOI
Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159 450–460. 10.1104/pp.112.195578 PubMed DOI PMC
Vidal M., Brachmann R. K., Fattaey A., Harlow E., Boeke J. D. (1996). Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Sci. U.S.A. 93 10315–10320. 10.1073/pnas.93.19.10315 PubMed DOI PMC
Wang H., Ngwenyama N., Liu Y., Walker J. C., Zhang S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19 63–73. 10.1105/tpc.106.048298 PubMed DOI PMC
Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., et al. (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216. 10.1186/1471-2164-12-216 PubMed DOI PMC
Wang X. (2005). Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol. 139 566–573. 10.1104/pp.105.068809 PubMed DOI PMC
Xu J., Li Y., Wang Y., Liu H., Lei L., Yang H., et al. (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283 26996–27006. 10.1074/jbc.M801392200 PubMed DOI
Yang Y., Guo Y. (2018). Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 60 796–804. 10.1111/jipb.12689 PubMed DOI
Yao X., Li J., Liu J., Liu K. (2015). An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4. J. Exp. Bot. 66 6431–6445. 10.1093/jxb/erv356 PubMed DOI PMC
Yoo S. D., Cho Y. H., Tena G., Xiong Y., Sheen J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H2 signalling. Nature 451 789–795. 10.1038/nature06543 PubMed DOI PMC
Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188 762–773. 10.1111/j.1469-8137.2010.03422.x PubMed DOI
Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24 4555–4576. 10.1105/tpc.112.104182 PubMed DOI PMC
Zhang W., Qin C., Zhao J., Wang X. (2004). Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 101 9508–9513. 10.1073/pnas.0402112101 PubMed DOI PMC
Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interactions to hormone signaling. J. Exp. Bot. 66 1–16. 10.1093/jxb/eru540 PubMed DOI PMC
Zhao J., Wang X. (2004). Arabidopsis phospholipase D alpha 1 interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279 1794–1800. PubMed
Zhou S., Chen Q., Li X., Li Y. (2017). MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. Plant Sci. 264 112–121. 10.1016/j.plantsci.2017.09.004 PubMed DOI
Zhu S. Y., Yu X. C. H., Wang X. J., Zhao R., Li Y., Fan R. C. H. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19 3019–3036. 10.1105/tpc.107.050666 PubMed DOI PMC
Protein-protein interactions in plant antioxidant defense
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants