Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P20 GM103476
NIGMS NIH HHS - United States
PubMed
27324189
PubMed Central
PMC4915016
DOI
10.1038/srep28306
PII: srep28306
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis enzymologie genetika MeSH
- fosforylace MeSH
- fyziologický stres MeSH
- genová ontologie MeSH
- genový knockout MeSH
- katalasa metabolismus MeSH
- kořeny rostlin enzymologie genetika MeSH
- missense mutace MeSH
- mitogenem aktivované proteinkinasy genetika MeSH
- peroxidasa metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- receptory pro aktivovanou kinasu C metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Názvy látek
- AtMPK4 protein, Arabidopsis MeSH Prohlížeč
- katalasa MeSH
- mitogenem aktivované proteinkinasy MeSH
- MPK6 protein, Arabidopsis MeSH Prohlížeč
- peroxidasa MeSH
- proteiny huseníčku MeSH
- proteom MeSH
- RACK1 protein, Arabidopsis MeSH Prohlížeč
- receptory pro aktivovanou kinasu C MeSH
- REM1 protein, Arabidopsis MeSH Prohlížeč
Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.
Zobrazit více v PubMed
Smékalová V., Doskočilová A., Komis G. & Šamaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32, 2–11 (2014). PubMed
Colcombet J. & Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413, 217–226 (2008). PubMed
Teige M. PubMed
Gao M. PubMed
Asai T. PubMed
Liu Y. & Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386–3399 (2004). PubMed PMC
Kovtun Y., Chiu W. L., Tena G. & Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97, 2940–2945 (2000). PubMed PMC
Pitzschke A., Djamei A., Bitton F. & Hirt H. A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol. Plant 2, 120–137 (2009). PubMed PMC
Bush S. M. & Krysan P. J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191 (2007). PubMed
Bergmann D. C., Lukowitz W. & Somerville C. R. Stomatal Development and Pattern Controlled by a MAPKK Kinase. Science 304, 1494–1497 (2004). PubMed
Müller J. PubMed
Beck M., Komis G., Muller J., Menzel D. & Šamaj J. Arabidopsis Homologs of Nucleus- and Phragmoplast-Localized Kinase 2 and 3 and Mitogen-Activated Protein Kinase 4 Are Essential for Microtubule Organization. Plant Cell 22, 755–771 (2010). PubMed PMC
Beck M., Komis G., Ziemann A., Menzel D. & Šamaj J. Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in PubMed
Takáč T. & Šamaj J. Advantages and limitations of shot-gun proteomic analyses on Arabidopsis plants with altered MAPK signaling. Plant Proteomics 6, 107 (2015). PubMed PMC
Conesa A. & Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008). PubMed PMC
Hord C. L. H. PubMed
Meng X. & Zhang S. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013). PubMed
Doxey A. C., Yaish M. W. F., Moffatt B. A., Griffith M. & McConkey B. J. Functional Divergence in the Arabidopsis β-1,3-Glucanase Gene Family Inferred by Phylogenetic Reconstruction of Expression States. Mol. Biol. Evol. 24, 1045–1055 (2007). PubMed
Yamada K., Hara-Nishimura I. & Nishimura M. Unique Defense Strategy by the Endoplasmic Reticulum Body in Plants. Plant Cell Physiol. 52, 2039–2049 (2011). PubMed
Petersen M. PubMed
Lee S. M. PubMed
Hwang S.-G. PubMed
Li J., Brader G. & Palva E. T. Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol. Plant 1, 482–495 (2008). PubMed
Perl-Treves R., Foley R. C., Chen W. & Singh K. B. Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen PubMed
Park S.-C. PubMed
Fujisaki K. & Ishikawa M. Identification of an PubMed
Dufresne P. J. PubMed
Sun Q.-P., Guo Y., Sun Y., Sun D.-Y. & Wang X.-J. Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in PubMed
He Y., Fukushige H., Hildebrand D. F. & Gan S. Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol. 128, 876–884 (2002). PubMed PMC
Voll L. M. PubMed
Chen J.-G. PubMed
Jarsch I. K. & Ott T. Perspectives on Remorin Proteins, Membrane Rafts, and Their Role During Plant–Microbe Interactions. Mol. Plant. Microbe Interact. 24, 7–12 (2010). PubMed
McKinney E. C., Kandasamy M. K. & Meagher R. B. Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13, 1179–1191 (2001). PubMed PMC
Abu-Abied M. PubMed
Konopka-Postupolska D., Clark G. & Hofmann A. Structure, function and membrane interactions of plant annexins: An update. Plant Sci. 181, 230–241 (2011). PubMed
Yu L. PubMed
Rancour D. M., Dickey C. E., Park S. & Bednarek S. Y. Characterization of AtCDC48. Evidence for Multiple Membrane Fusion Mechanisms at the Plane of Cell Division in Plants. Plant Physiol. 130, 1241–1253 (2002). PubMed PMC
Park S., Rancour D. M. & Bednarek S. Y. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol. 148, 246–258 (2008). PubMed PMC
Chang R., Jang C. J. H., Branco-Price C., Nghiem P. & Bailey-Serres J. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol. Biol. 78, 109–122 (2012). PubMed
Yoo S.-D., Cho Y.-H., Tena G., Xiong Y. & Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789–795 (2008). PubMed PMC
Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D. & Lee J. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in PubMed PMC
Yamada K., Nagano A. J., Nishina M., Hara-Nishimura I. & Nishimura M. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins. Plant Physiol. 161, 108–120 (2013). PubMed PMC
Matsushima R., Kondo M., Nishimura M. & Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J. Cell Mol. Biol. 33, 493–502 (2003). PubMed
Xing Y. PubMed
Xing Y., Chen W., Jia W. & Zhang J. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J. Exp. Bot. 66, 5971–5981 (2015). PubMed PMC
Xing Y., Jia W. & Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H PubMed
Baluska F. PubMed
Li J., Blanchoin L. & Staiger C. J. Signaling to actin stochastic dynamics. Annu. Rev. Plant Biol. 66, 415–440 (2015). PubMed
Murashige T. & Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 15, 473–497 (1962).
Takáč T., Pechan T., Šamajová O. & Šamaj J. Integrative chemical proteomics and cell biology methods to study endocytosis and vesicular trafficking in Arabidopsis. Methods Mol. Biol. Clifton NJ 1209, 265–283 (2014). PubMed
Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). PubMed
Aebi H. Catalase PubMed
Liu C. & Mehdy M. C. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol. 145, 863–874 (2007). PubMed PMC
Hooks M. A. PubMed
Taylor N. L., Heazlewood J. L., Day D. A. & Millar A. H. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol. 134, 838–848 (2004). PubMed PMC
Xu J., Yang J.-Y., Niu Q.-W. & Chua N.-H. Arabidopsis DCP2, DCP1, and VARICOSE Form a Decapping Complex Required for Postembryonic Development. Plant Cell 18, 3386–3398 (2006). PubMed PMC
Winter G., Todd C. D., Trovato M., Forlani G. & Funck D. Physiological implications of arginine metabolism in plants. Front Plant Sci 6, 534 (2015). PubMed PMC
Sung D. Y., Vierling E. & Guy C. L. Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiol. 126, 789–800 (2001). PubMed PMC
Guo Y., Xiong L., Ishitani M. & Zhu J.-K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. USA 99, 7786–7791 (2002). PubMed PMC
Gookin T. E. & Assmann S. M. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J. 80, 553–567 (2014). PubMed PMC
Park S., Rancour D. M. & Bednarek S. Y. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol. 148, 246–258 (2008). PubMed PMC
Mayfield J. D., Paul A.-L. & Ferl R. J. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. J. Exp. Bot. 63, 3061–3070 (2012). PubMed PMC
Deyholos M. K. PubMed
Jin H., Song Z. & Nikolau B. J. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J. 70, 1015–1032 (2012). PubMed
Suarez M. F. PubMed
Guo D. PubMed
Chen M. & Thelen J. J. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22, 77–90 (2010). PubMed PMC
Ma X., Song L., Yang Y. & Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. New Phytol. 197, 751–762 (2013). PubMed
Strompen G. PubMed
Uváčková Ľ., Takáč T., Boehm N., Obert B. & Šamaj J. Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J. Proteomics 75, 1886–1894 (2012). PubMed
Kim S. Y. & Nam K. H. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 29, 203–209 (2010). PubMed
Pereira L. A. R. PubMed
Yang M., Hu Y., Lodhi M., McCombie W. R. & Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96, 11416–11421 (1999). PubMed PMC
Yang X., Timofejeva L., Ma H. & Makaroff C. A. The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus. J. Cell Sci. 119, 3754–3763 (2006). PubMed
Porat R., Lu P. & O’Neill S. D. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204, 345–351 (1998). PubMed
Kim J. Y. PubMed
Fusaro A. F. PubMed
Péret B. PubMed
Shen L., Kang Y. G. G., Liu L. & Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. Plant Cell 23, 499–514 (2011). PubMed PMC
Renault H. PubMed
Kandasamy M. K., McKinney E. C. & Meagher R. B. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21, 701–718 (2009). PubMed PMC
Thitamadee S., Tuchihara K. & Hashimoto T. Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417, 193–196 (2002). PubMed
Kandasamy M. K., Gilliland L. U., McKinney E. C. & Meagher R. B. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13, 1541–1554 (2001). PubMed PMC
Gilliland L. U., Pawloski L. C., Kandasamy M. K. & Meagher R. B. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. Cell Mol. Biol. 33, 319–328 (2003). PubMed
Guo J. & Chen J.-G. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biol. 8, 108 (2008). PubMed PMC
Ueda M. PubMed
Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants