Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6

. 2016 Jun 21 ; 6 () : 28306. [epub] 20160621

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27324189

Grantová podpora
P20 GM103476 NIGMS NIH HHS - United States

Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.

Zobrazit více v PubMed

Smékalová V., Doskočilová A., Komis G. & Šamaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32, 2–11 (2014). PubMed

Colcombet J. & Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413, 217–226 (2008). PubMed

Teige M. PubMed

Gao M. PubMed

Asai T. PubMed

Liu Y. & Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386–3399 (2004). PubMed PMC

Takahashi F. PubMed PMC

Kovtun Y., Chiu W. L., Tena G. & Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97, 2940–2945 (2000). PubMed PMC

Pitzschke A., Djamei A., Bitton F. & Hirt H. A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol. Plant 2, 120–137 (2009). PubMed PMC

Bush S. M. & Krysan P. J. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191 (2007). PubMed

Bergmann D. C., Lukowitz W. & Somerville C. R. Stomatal Development and Pattern Controlled by a MAPKK Kinase. Science 304, 1494–1497 (2004). PubMed

Müller J. PubMed

Beck M., Komis G., Muller J., Menzel D. & Šamaj J. Arabidopsis Homologs of Nucleus- and Phragmoplast-Localized Kinase 2 and 3 and Mitogen-Activated Protein Kinase 4 Are Essential for Microtubule Organization. Plant Cell 22, 755–771 (2010). PubMed PMC

Beck M., Komis G., Ziemann A., Menzel D. & Šamaj J. Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in PubMed

Takáč T. & Šamaj J. Advantages and limitations of shot-gun proteomic analyses on Arabidopsis plants with altered MAPK signaling. Plant Proteomics 6, 107 (2015). PubMed PMC

Jensen L. J. PubMed PMC

Conesa A. & Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008). PubMed PMC

Hord C. L. H. PubMed

Kosetsu K. PubMed PMC

Meng X. & Zhang S. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013). PubMed

Doxey A. C., Yaish M. W. F., Moffatt B. A., Griffith M. & McConkey B. J. Functional Divergence in the Arabidopsis β-1,3-Glucanase Gene Family Inferred by Phylogenetic Reconstruction of Expression States. Mol. Biol. Evol. 24, 1045–1055 (2007). PubMed

Yamada K., Hara-Nishimura I. & Nishimura M. Unique Defense Strategy by the Endoplasmic Reticulum Body in Plants. Plant Cell Physiol. 52, 2039–2049 (2011). PubMed

Petersen M. PubMed

Lee S. M. PubMed

Hwang S.-G. PubMed

Li J., Brader G. & Palva E. T. Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol. Plant 1, 482–495 (2008). PubMed

Perl-Treves R., Foley R. C., Chen W. & Singh K. B. Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen PubMed

Park S.-C. PubMed

Fujisaki K. & Ishikawa M. Identification of an PubMed

Dufresne P. J. PubMed

Noël L. D. PubMed PMC

Sun Q.-P., Guo Y., Sun Y., Sun D.-Y. & Wang X.-J. Influx of extracellular Ca2+ involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in PubMed

He Y., Fukushige H., Hildebrand D. F. & Gan S. Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiol. 128, 876–884 (2002). PubMed PMC

Voll L. M. PubMed

Niehl A. PubMed PMC

Cheng Z. PubMed PMC

Chen J.-G. PubMed

Jarsch I. K. & Ott T. Perspectives on Remorin Proteins, Membrane Rafts, and Their Role During Plant–Microbe Interactions. Mol. Plant. Microbe Interact. 24, 7–12 (2010). PubMed

McKinney E. C., Kandasamy M. K. & Meagher R. B. Small changes in the regulation of one Arabidopsis profilin isovariant, PRF1, alter seedling development. Plant Cell 13, 1179–1191 (2001). PubMed PMC

Abu-Abied M. PubMed

Konopka-Postupolska D., Clark G. & Hofmann A. Structure, function and membrane interactions of plant annexins: An update. Plant Sci. 181, 230–241 (2011). PubMed

Zhang Q. PubMed PMC

Yu L. PubMed

Rancour D. M., Dickey C. E., Park S. & Bednarek S. Y. Characterization of AtCDC48. Evidence for Multiple Membrane Fusion Mechanisms at the Plane of Cell Division in Plants. Plant Physiol. 130, 1241–1253 (2002). PubMed PMC

Ishiguro S. PubMed PMC

Goeres D. C. PubMed PMC

Frei dit Frey N. PubMed PMC

Park S., Rancour D. M. & Bednarek S. Y. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol. 148, 246–258 (2008). PubMed PMC

Smékalová V. PubMed PMC

Hoehenwarter W. PubMed PMC

Popescu S. C. PubMed PMC

Chang R., Jang C. J. H., Branco-Price C., Nghiem P. & Bailey-Serres J. Transient MPK6 activation in response to oxygen deprivation and reoxygenation is mediated by mitochondria and aids seedling survival in Arabidopsis. Plant Mol. Biol. 78, 109–122 (2012). PubMed

Yoo S.-D., Cho Y.-H., Tena G., Xiong Y. & Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451, 789–795 (2008). PubMed PMC

Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D. & Lee J. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in PubMed PMC

Beckers G. J. M. PubMed PMC

Yamada K., Nagano A. J., Nishina M., Hara-Nishimura I. & Nishimura M. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins. Plant Physiol. 161, 108–120 (2013). PubMed PMC

Matsushima R., Kondo M., Nishimura M. & Hara-Nishimura I. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J. Cell Mol. Biol. 33, 493–502 (2003). PubMed

Berriri S. PubMed PMC

Xing Y. PubMed

Xing Y., Chen W., Jia W. & Zhang J. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J. Exp. Bot. 66, 5971–5981 (2015). PubMed PMC

Xing Y., Jia W. & Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H PubMed

Takáč T. PubMed PMC

Baluska F. PubMed

Li J., Blanchoin L. & Staiger C. J. Signaling to actin stochastic dynamics. Annu. Rev. Plant Biol. 66, 415–440 (2015). PubMed

Murashige T. & Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 15, 473–497 (1962).

López-Bucio J. S. PubMed PMC

Takáč T., Pechan T., Šamajová O. & Šamaj J. Integrative chemical proteomics and cell biology methods to study endocytosis and vesicular trafficking in Arabidopsis. Methods Mol. Biol. Clifton NJ 1209, 265–283 (2014). PubMed

Dinkel H. PubMed PMC

Xue Y. PubMed PMC

Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). PubMed

Aebi H. Catalase PubMed

Liu C. & Mehdy M. C. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol. 145, 863–874 (2007). PubMed PMC

Hooks M. A. PubMed

Taylor N. L., Heazlewood J. L., Day D. A. & Millar A. H. Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol. 134, 838–848 (2004). PubMed PMC

Xu J., Yang J.-Y., Niu Q.-W. & Chua N.-H. Arabidopsis DCP2, DCP1, and VARICOSE Form a Decapping Complex Required for Postembryonic Development. Plant Cell 18, 3386–3398 (2006). PubMed PMC

Winter G., Todd C. D., Trovato M., Forlani G. & Funck D. Physiological implications of arginine metabolism in plants. Front Plant Sci 6, 534 (2015). PubMed PMC

Sung D. Y., Vierling E. & Guy C. L. Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiol. 126, 789–800 (2001). PubMed PMC

Guo Y., Xiong L., Ishitani M. & Zhu J.-K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. USA 99, 7786–7791 (2002). PubMed PMC

Gookin T. E. & Assmann S. M. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J. 80, 553–567 (2014). PubMed PMC

Park S., Rancour D. M. & Bednarek S. Y. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol. 148, 246–258 (2008). PubMed PMC

Heeg C. PubMed PMC

Mayfield J. D., Paul A.-L. & Ferl R. J. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. J. Exp. Bot. 63, 3061–3070 (2012). PubMed PMC

Deyholos M. K. PubMed

Jin H., Song Z. & Nikolau B. J. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J. 70, 1015–1032 (2012). PubMed

Suarez M. F. PubMed

Guo D. PubMed

Suzuki K. PubMed PMC

Chen M. & Thelen J. J. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22, 77–90 (2010). PubMed PMC

Ma X., Song L., Yang Y. & Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. New Phytol. 197, 751–762 (2013). PubMed

Strompen G. PubMed

Uváčková Ľ., Takáč T., Boehm N., Obert B. & Šamaj J. Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes. J. Proteomics 75, 1886–1894 (2012). PubMed

Kim S. Y. & Nam K. H. Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep. 29, 203–209 (2010). PubMed

Pereira L. A. R. PubMed

Yang M., Hu Y., Lodhi M., McCombie W. R. & Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA 96, 11416–11421 (1999). PubMed PMC

Yang X., Timofejeva L., Ma H. & Makaroff C. A. The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus. J. Cell Sci. 119, 3754–3763 (2006). PubMed

Porat R., Lu P. & O’Neill S. D. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204, 345–351 (1998). PubMed

Liu F. PubMed PMC

Kim J. Y. PubMed

Fusaro A. F. PubMed

Linkies A. PubMed PMC

Qin Y.-M. PubMed PMC

Péret B. PubMed

Shen L., Kang Y. G. G., Liu L. & Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. Plant Cell 23, 499–514 (2011). PubMed PMC

Renault H. PubMed

Kandasamy M. K., McKinney E. C. & Meagher R. B. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21, 701–718 (2009). PubMed PMC

Thitamadee S., Tuchihara K. & Hashimoto T. Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417, 193–196 (2002). PubMed

Matsumoto S. PubMed PMC

Kandasamy M. K., Gilliland L. U., McKinney E. C. & Meagher R. B. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13, 1541–1554 (2001). PubMed PMC

Gilliland L. U., Pawloski L. C., Kandasamy M. K. & Meagher R. B. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. Cell Mol. Biol. 33, 319–328 (2003). PubMed

Uraji M. PubMed PMC

Guo J. & Chen J.-G. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biol. 8, 108 (2008). PubMed PMC

Vellosillo T. PubMed PMC

Gallois J.-L. PubMed PMC

Ueda M. PubMed

Hossain Z. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...