TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103476
NIGMS NIH HHS - United States
PubMed
33995462
PubMed Central
PMC8117018
DOI
10.3389/fpls.2021.666229
Knihovny.cz E-zdroje
- Klíčová slova
- HvMPK3, PR proteins, TALEN, barley, chitinases, flagellin, proteomics, root hairs,
- Publikační typ
- časopisecké články MeSH
Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.
Zobrazit více v PubMed
Adachi H., Nakano T., Miyagawa N., Ishihama N., Yoshioka M., Katou Y., et al. (2015). WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH Oxidase in Nicotiana benthamiana. PubMed DOI PMC
Alhoraibi H., Bigeard J., Rayapuram N., Colcombet J., Hirt H. (2019). Plant immunity: The MTI-ETI model and beyond. PubMed DOI
Almagro L., Gómez Ros L. V., Belchi-Navarro S., Bru R., Ros Barceló A., Pedreño M. A. (2009). Class III peroxidases in plant defence reactions. PubMed DOI
Asai T., Tena G., Plotnikova J., Willmann M. R., Chiu W. L., Gomez-Gomez L., et al. (2002). MAP kinase signalling cascade in PubMed DOI
Bascom C. S., Hepler P. K., Bezanilla M. (2018). Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. PubMed DOI PMC
Bao C. C., Wang J., Zhang R. H., Zhang B. C., Zhang H., Zhou Y. H., et al. (2012). PubMed DOI
Bartlett J. G., Alves S. C., Smedley M., Snape J. W., Harwood W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. PubMed DOI PMC
Bassal M., Abukhalaf M., Majovsky P., Thieme D., Herr T., Ayash M., et al. (2020). Reshaping of the PubMed DOI
Bayless A. M., Smith J. M., Song J., McMinn P. H., Teillet A., August B. K., et al. (2016). Disease resistance through impairment of α-SNAP–NSF interaction and vesicular trafficking by soybean Rhg1. PubMed DOI PMC
Beck M., Komis G., Muller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. PubMed DOI PMC
Békésiová B., Hraška Š, Libantová J., Moravčíková J., Matušíková I. (2008). Heavy-metal stress induced accumulation of chitinase isoforms in plants. PubMed DOI
Bethke G., Pecher P., Eschen-Lippold L., Tsuda K., Katagiri F., Glazebrook J., et al. (2011). Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. PubMed DOI
Brunner F., Stintzi A., Fritig B., Legrand M. (1998). Substrate specificities of tobacco chitinases. PubMed DOI
Casasoli M., Spadoni S., Lilley K. S., Cervone F., De Lorenzo G., Mattei B. (2008). Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in PubMed DOI
Cermak T., Doyle E. L., Christian M., Wang L., Zhang Y., Schmidt C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. PubMed DOI PMC
Chivasa S. (2006). Proteomic analysis of differentially expressed proteins in fungal elicitor-treated PubMed DOI
Cheong M. S., Kirik A., Kim J.-G., Frame K., Kirik V., Mudgett M. B. (2014). AvrBsT acetylates PubMed DOI PMC
Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J. D. G., et al. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. PubMed DOI
Cosio C., Ranocha P., Francoz E., Burlat V., Zheng Y., Perry S. E., et al. (2017). The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation. PubMed DOI
Cui Y., Li X., Yu M., Li R., Fan L., Zhu Y., et al. (2018). Sterols regulate endocytic pathways during flg22-induced defense responses in PubMed DOI
Cui H., Tsuda K., Parker J. E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. PubMed DOI
Cui L., Yang G., Yan J., Pan Y., Nie X. (2019). Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. PubMed DOI PMC
Doyle E. L., Booher N. J., Standage D. S., Voytas D. F., Brendel V. P., VanDyk J. K., et al. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. PubMed DOI PMC
El Sarraf N., Gurel F., Tufan F., McGuffin L. J. (2019). Characterisation of HvVIP1 and expression profile analysis of stress response regulators in barley under Agrobacterium and Fusarium infections. PubMed DOI PMC
Evrard A., Kumar M., Lecourieux D., Lucks J., von Koskull-Döring P., Hirt H. (2013). Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PubMed DOI PMC
Fahraeus G. (1957). The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. PubMed DOI
Felix G., Duran J. D., Volko S., Boller T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. PubMed DOI
Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. (2014). Functional analysis of PubMed DOI PMC
Galletti R., Ferrari S., De Lorenzo G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. PubMed DOI PMC
Gao M., Liu J., Bi D., Zhang Z., Cheng F., Chen S., et al. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. PubMed DOI
Garrido-Oter R., Nakano R. T., Dombrowski N., Ma K.-W., AgBiome Team, McHardy A. C., et al. (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. PubMed DOI PMC
Genot B., Lang J., Berriri S., Garmier M., Gilard F., Pateyron S., et al. (2017). Constitutively active PubMed DOI PMC
Gigli Bisceglia N., Savatin D. V., Cervone F., Engelsdorf T., De Lorenzo G. (2017). Loss of the PubMed DOI PMC
Gómez-Gómez L., Boller T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in PubMed DOI
Gómez-Gómez L., Felix G., Boller T. (1999). A single locus determines sensitivity to bacterial flagellin in PubMed DOI
Goyal R. K., Tulpan D., Chomistek N., González-Peña Fundora D., West C., Ellis B. E., et al. (2018). Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. PubMed DOI PMC
Han L., Li G.-J., Yang K.-Y., Mao G., Wang R., Liu Y., et al. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in PubMed DOI
Han S., Fang L., Ren X., Wang W., Jiang J. (2015). MPK6 controls H2O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in PubMed DOI
Hao G., Pitino M., Duan Y., Stover E. (2016). Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. PubMed DOI
Harwood W. A., Bartlett J. G., Alves S. C., Perry M., Smedley M. A., Leyl N., et al. (2009). “Barley transformation using agrobacterium-mediated techniques,” in PubMed DOI
Henty-Ridilla J. L., Shimono M., Li J., Chang J. H., Day B., Staiger C. J. (2013). The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PubMed DOI PMC
Henty-Ridilla J. L., Li J., Day B., Staiger C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in PubMed DOI PMC
Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., et al. (2013). Identification of novel in vivo MAP kinase substrates in PubMed DOI PMC
Hrbáčková M., Luptovčiak I., Hlaváčková K., Dvořák P., Tichá M., Šamajová O., et al. (2020). Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production. PubMed DOI PMC
Huang S., Qu X., Zhang R. (2015). Plant villins: versatile actin regulatory proteins. PubMed DOI
Hückelhoven R., Seidl A. (2016). PAMP-triggered immune responses in barley and susceptibility to powdery mildew. PubMed DOI PMC
Jelenska J., van Hal J. A., Greenberg J. T. (2010). PubMed DOI PMC
Johrde A., Schweizer P. (2008). A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. PubMed DOI PMC
Kadota Y., Shirasu K., Zipfel C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. PubMed DOI
Kang S., Yang F., Li L., Chen H., Chen S., Zhang J. (2015). The PubMed DOI PMC
Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., et al. (2014). Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. PubMed DOI
Kim H. S., Bian X., Lee C.-J., Kim S.-E., Park S.-C., Xie Y., et al. (2019). IbMPK3/IbMPK6-mediated IbSPF1 phosphorylation promotes tolerance to bacterial pathogen in sweetpotato. PubMed DOI
Komis G., Šamajová O., Ovečka M., Šamaj J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. PubMed DOI
Kong Q., Qu N., Gao M., Zhang Z., Ding X., Yang F., et al. (2012). The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in PubMed DOI PMC
Křenek P., Niks R. E., Vels A., Vyplelová P., Šamaj J. (2015). Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection. DOI
Křenek P., Smékalová V. (2014). Quantification of stress-induced mitogen-activated protein kinase expressional dynamic using reverse transcription quantitative real-time PCR. PubMed DOI
Kwasniewski M., Chwialkowska K., Kwasniewska J., Kusak J., Siwinski K., Szarejko I. (2013). Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. PubMed DOI
Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D., Lee J. (2014). Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in PubMed DOI PMC
Lawrence S. R., Gaitens M., Guan Q., Dufresne C., Chen S. (2020). S-nitroso-proteome revealed in stomatal guard cell response to flg22. PubMed DOI PMC
Lee A. H.-Y., Hurley B., Felsensteiner C., Yea C., Ckurshumova W., Bartetzko V., et al. (2012). A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PubMed DOI PMC
Lee J. H., Kim H., Chae W. B., Oh M.-H. (2019). Pattern recognition receptors and their interactions with bacterial type III effectors in plants. PubMed DOI
Li B., Meng X., Shan L., He P. (2016). Transcriptional regulation of pattern-triggered immunity in plants. PubMed DOI PMC
Li J., Staiger C. J. (2018). Understanding cytoskeletal dynamics during the plant immune response. PubMed DOI
Li J., Henty-Ridilla J. L., Staiger B. H., Day B., Staiger C. J. (2015). Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. PubMed DOI PMC
Li Y., Guo G., Zhou L., Chen Y., Zong Y., Huang J., et al. (2019). Transcriptome analysis identifies candidate genes and functional pathways controlling the response of two contrasting barley varieties to powdery mildew infection. PubMed DOI PMC
Lippert D. N., Ralph S. G., Phillips M., White R., Smith D., Hardie D., et al. (2009). Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response. PubMed DOI
Liu H., Dong S., Li M., Gu F., Yang G., Guo T., et al. (2021). The Class III peroxidase gene OsPrx30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. PubMed DOI
Liu M., Wu F., Wang S., Lu Y., Chen X., Wang Y., et al. (2019). Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. PubMed DOI PMC
Liu P., Zhang H., Yu B., Xiong L., Xia Y. (2015). Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in PubMed DOI PMC
Lu D., Wu S., Gao X., Zhang Y., Shan L., He P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. PubMed DOI PMC
Mao G., Meng X., Liu Y., Zheng Z., Chen Z., Zhang S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in PubMed DOI PMC
Martinière A., Moreau P. (2020). Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never-ending story. PubMed DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. PubMed DOI
Mbengue M., Bourdais G., Gervasi F., Beck M., Zhou J., Spallek T., et al. (2016). Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. PubMed DOI PMC
McElroy D., Blowers A. D., Jenes B., Wu R. (1991). Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. PubMed DOI
McElroy D., Zhang W., Cao J., Wu R. (1990). Isolation of an efficient actin promoter for use in rice transformation. PubMed DOI PMC
Meng Q., Gupta R., Min C. W., Kim J., Kramer K., Wang Y., et al. (2019). A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. PubMed DOI
Meng X., Zhang S. (2013). MAPK cascades in plant disease resistance signaling. PubMed DOI
Meng X., Xu J., He Y., Yang K.-Y., Mordorski B., Liu Y., et al. (2013). Phosphorylation of an ERF transcription factor by PubMed DOI PMC
Mészáros T., Helfer A., Hatzimasoura E., Magyar Z., Serazetdinova L., Rios G., et al. (2006). The PubMed DOI
Movahedi S., Van de Peer Y., Vandepoele K. (2011). Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in PubMed DOI PMC
Mueller K., Bittel P., Chinchilla D., Jehle A. K., Albert M., Boller T., et al. (2012). Chimeric FLS2 receptors reveal the basis for differential flagellin perception in PubMed DOI PMC
Nakamura T., Ishikawa M., Nakatani H., Oda A. (2008). Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. PubMed DOI PMC
Naseem M., Kaltdorf M., Dandekar T. (2015). The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. PubMed DOI
Ohnuma T., Numata T., Osawa T., Mizuhara M., Lampela O., Juffer A. H., et al. (2011). A class V chitinase from PubMed DOI
Okada K., Kubota Y., Hirase T., Otani K., Goh T., Hiruma K., et al. (2021). Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in PubMed DOI
Pečenková T., Janda M., Ortmannová J., Hajná V., Stehlíková Z., Žárský V. (2017). Early PubMed DOI PMC
Peng Y., van Wersch R., Zhang Y. (2018). Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. PubMed DOI PMC
Pérez-Salamó I., Papdi C., Rigó G., Zsigmond L., Vilela B., Lumbreras V., et al. (2014). The Heat Shock Factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. PubMed DOI PMC
Poncini L., Wyrsch I., Dénervaud Tendon V., Vorley T., Boller T., Geldner N., et al. (2017). In roots of PubMed DOI PMC
Qiu J.-L., Fiil B. K., Petersen K., Nielsen H. B., Botanga C. J., Thorgrimsen S., et al. (2008). PubMed DOI PMC
Qu X. L., Zhang H., Xie Y. R., Wang J., Chen N. Z., Huang S. J. (2013). PubMed DOI PMC
Rasmussen M. W., Roux M., Petersen M., Mundy J. (2012). MAP kinase cascades in PubMed DOI PMC
Rayapuram N., Bigeard J., Alhoraibi H., Bonhomme L., Hesse A.-M., Vinh J., et al. (2018). Quantitative phosphoproteomic analysis reveals shared and specific targets of PubMed DOI PMC
Rayapuram N., Bonhomme L., Bigeard J., Haddadou K., Przybylski C., Hirt H., et al. (2014). Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in PubMed DOI
Ren D., Liu Y., Yang K.-Y., Han L., Mao G., Glazebrook J., et al. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in PubMed DOI PMC
Robatzek S., Bittel P., Chinchilla D., Köchner P., Felix G., Shiu S.-H., et al. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of PubMed DOI
Robatzek S., Chinchilla D., Boller T. (2006). Ligand-induced endocytosis of the pattern recognition receptor FLS2 in PubMed DOI PMC
Robatzek S., Wirthmueller L. (2013). Mapping FLS2 function to structure: LRRs, kinase and its working bits. PubMed DOI
Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. PubMed DOI PMC
Šamaj J., Müller J., Beck M., Böhm N., Menzel D. (2006). Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. PubMed DOI
Samakovli D., Tichá T., Vavrdová T., Ovečka M., Luptovčiak I., Zapletalová V., et al. (2020). YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in PubMed DOI
Savatin D. V., Bisceglia N. G., Marti L., Fabbri C., Cervone F., Lorenzo G. D. (2014). The PubMed DOI PMC
Scheres B., van der Putten W. H. (2017). The plant perceptron connects environment to development. PubMed DOI
Sheikh A. H., Eschen-Lippold L., Pecher P., Hoehenwarter W., Sinha A. K., Scheel D., et al. (2016). Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in PubMed DOI PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. (2014). Involvement of YODA and mitogen activated protein kinase 6 in PubMed DOI PMC
Staiger C. J., Poulter N. S., Henty J. L., Franklin-Tong V. E., Blanchoin L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. PubMed DOI
Su S.-H., Bush S. M., Zaman N., Stecker K., Sussman M. R., Krysan P. (2013). Deletion of a tandem gene family in PubMed DOI PMC
Suarez-Rodriguez M. C., Adams-Phillips L., Liu Y., Wang H., Su S.-H., Jester P. J., et al. (2007). MEKK1 is required for flg22-induced MPK4 activation in PubMed DOI PMC
Sun T., Nitta Y., Zhang Q., Wu D., Tian H., Lee J. S., et al. (2018). Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. PubMed DOI PMC
Takáč T., Šamajová O., Pechan T., Luptovčiak I., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in PubMed DOI PMC
Takáč T., Šamajová O., Vadovič P., Pechan T., Košútová P., Ovečka M., et al. (2014). Proteomic and biochemical analyses show functional network of proteins involved in antioxidant defense of PubMed DOI PMC
Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O., Šamaj J. (2016). Comparative proteomic study of PubMed DOI PMC
Takagi J., Renna L., Takahashi H., Koumoto Y., Tamura K., Stefano G., et al. (2013). MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in PubMed DOI PMC
Takai R., Isogai A., Takayama S., Che F.-S. (2008). Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. PubMed DOI
Takenaka Y., Nakano S., Tamoi M., Sakuda S., Fukamizo T. (2009). Chitinase gene expression in response to environmental stresses in PubMed DOI
Trdá L., Fernandez O., Boutrot F., Héloir M.-C., Kelloniemi J., Daire X., et al. (2014). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. PubMed DOI
van der Honing H. S., Kieft H., Emons A. M. C., Ketelaar T. (2012). Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. PubMed DOI PMC
Wang S., Sun Z., Wang H., Liu L., Lu F., Yang J., et al. (2015). Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. PubMed DOI
Wang X., Bi S., Wang L., Li H., Gao B., Huang S. (2020). GLABRA2 regulates actin bundling protein VILLIN1 in root hair growth in response to osmotic stress. PubMed DOI PMC
Wang Z., Bao L.-L., Zhao F.-Y., Tang M.-Q., Chen T., Li Y., et al. (2019). BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape. PubMed DOI PMC
Xu J., Xie J., Yan C., Zou X., Ren D., Zhang S. (2014). A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. PubMed DOI PMC
Yeh S., Moffatt B. A., Griffith M., Xiong F., Yang D. S. C., Wiseman S. B., et al. (2000). Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. PubMed DOI PMC
Zhang Y., Xiao Y., Du F., Cao L., Dong H., Ren H. (2011). PubMed DOI
Zhou J., Wang X., He Y., Sang T., Wang P., Dai S., et al. (2020). Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in PubMed DOI PMC
Zulak K. G., Khan M. F., Alcantara J., Schriemer D. C., Facchini P. J. (2009). Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics. PubMed DOI