TALEN-Based HvMPK3 Knock-Out Attenuates Proteome and Root Hair Phenotypic Responses to flg22 in Barley

. 2021 ; 12 () : 666229. [epub] 20210429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33995462

Grantová podpora
P20 GM103476 NIGMS NIH HHS - United States

Mitogen activated protein kinases (MAPKs) integrate elicitor perception with both early and late responses associated with plant defense and innate immunity. Much of the existing knowledge on the role of plant MAPKs in defense mechanisms against microbes stems from extensive research in the model plant Arabidopsis thaliana. In the present study, we investigated the involvement of barley (Hordeum vulgare) MPK3 in response to flagellin peptide flg22, a well-known bacterial elicitor. Using differential proteomic analysis we show that TALEN-induced MPK3 knock-out lines of barley (HvMPK3 KO) exhibit constitutive downregulation of defense related proteins such as PR proteins belonging to thaumatin family and chitinases. Further analyses showed that the same protein families were less prone to flg22 elicitation in HvMPK3 KO plants compared to wild types. These results were supported and validated by chitinase activity analyses and immunoblotting for HSP70. In addition, differential proteomes correlated with root hair phenotypes and suggested tolerance of HvMPK3 KO lines to flg22. In conclusion, our study points to the specific role of HvMPK3 in molecular and root hair phenotypic responses of barley to flg22.

Zobrazit více v PubMed

Adachi H., Nakano T., Miyagawa N., Ishihama N., Yoshioka M., Katou Y., et al. (2015). WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH Oxidase in Nicotiana benthamiana. Plant Cell 27 2645–2663. 10.1105/tpc.15.00213 PubMed DOI PMC

Alhoraibi H., Bigeard J., Rayapuram N., Colcombet J., Hirt H. (2019). Plant immunity: The MTI-ETI model and beyond. Curr. Issues Mol. Biol. 30 39–58. 10.21775/cimb.030.039 PubMed DOI

Almagro L., Gómez Ros L. V., Belchi-Navarro S., Bru R., Ros Barceló A., Pedreño M. A. (2009). Class III peroxidases in plant defence reactions. J. Exp. Bot. 60 377–390. 10.1093/jxb/ern277 PubMed DOI

Asai T., Tena G., Plotnikova J., Willmann M. R., Chiu W. L., Gomez-Gomez L., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 977–983. 10.1038/415977a PubMed DOI

Bascom C. S., Hepler P. K., Bezanilla M. (2018). Interplay between Ions, the Cytoskeleton, and Cell Wall Properties during Tip Growth. Plant Physiol. 176 28–40. 10.1104/pp.17.01466 PubMed DOI PMC

Bao C. C., Wang J., Zhang R. H., Zhang B. C., Zhang H., Zhou Y. H., et al. (2012). Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J. 71 962–975. 10.1111/j.1365-313X.2012.05044.x PubMed DOI

Bartlett J. G., Alves S. C., Smedley M., Snape J. W., Harwood W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22. 10.1186/1746-4811-4-22 PubMed DOI PMC

Bassal M., Abukhalaf M., Majovsky P., Thieme D., Herr T., Ayash M., et al. (2020). Reshaping of the Arabidopsis thaliana proteome landscape and co-regulation of proteins in development and immunity. Mol. Plant 13 1709–1732. 10.1016/j.molp.2020.09.024 PubMed DOI

Bayless A. M., Smith J. M., Song J., McMinn P. H., Teillet A., August B. K., et al. (2016). Disease resistance through impairment of α-SNAP–NSF interaction and vesicular trafficking by soybean Rhg1. Proc. Natl. Acad. Sci. U.S.A. 113 E7375–E7382. 10.1073/pnas.1610150113 PubMed DOI PMC

Beck M., Komis G., Muller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22 755–771. 10.1105/tpc.109.071746 PubMed DOI PMC

Békésiová B., Hraška Š, Libantová J., Moravčíková J., Matušíková I. (2008). Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol. Biol. Rep. 35 579–588. 10.1007/s11033-007-9127-x PubMed DOI

Bethke G., Pecher P., Eschen-Lippold L., Tsuda K., Katagiri F., Glazebrook J., et al. (2011). Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. MPMI 25 471–480. 10.1094/MPMI-11-11-0281 PubMed DOI

Brunner F., Stintzi A., Fritig B., Legrand M. (1998). Substrate specificities of tobacco chitinases. Plant J. 14 225–234. 10.1046/j.1365-313X.1998.00116.x PubMed DOI

Casasoli M., Spadoni S., Lilley K. S., Cervone F., De Lorenzo G., Mattei B. (2008). Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana. Proteomics 8 1042–1054. 10.1002/pmic.200700523 PubMed DOI

Cermak T., Doyle E. L., Christian M., Wang L., Zhang Y., Schmidt C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39:e82. 10.1093/nar/gkr218 PubMed DOI PMC

Chivasa S. (2006). Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. J. Exp. Bot. 57 1553–1562. 10.1093/jxb/erj149 PubMed DOI

Cheong M. S., Kirik A., Kim J.-G., Frame K., Kirik V., Mudgett M. B. (2014). AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10:e1003952. 10.1371/journal.ppat.1003952 PubMed DOI PMC

Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J. D. G., et al. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448 497–500. 10.1038/nature05999 PubMed DOI

Cosio C., Ranocha P., Francoz E., Burlat V., Zheng Y., Perry S. E., et al. (2017). The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation. New Phytol. 213 250–263. 10.1111/nph.14127 PubMed DOI

Cui Y., Li X., Yu M., Li R., Fan L., Zhu Y., et al. (2018). Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 145:dev165688. 10.1242/dev.165688 PubMed DOI

Cui H., Tsuda K., Parker J. E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66 487–511. 10.1146/annurev-arplant-050213-040012 PubMed DOI

Cui L., Yang G., Yan J., Pan Y., Nie X. (2019). Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics 20:750. 10.1186/s12864-019-6144-9 PubMed DOI PMC

Doyle E. L., Booher N. J., Standage D. S., Voytas D. F., Brendel V. P., VanDyk J. K., et al. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40 W117–W122. 10.1093/nar/gks608 PubMed DOI PMC

El Sarraf N., Gurel F., Tufan F., McGuffin L. J. (2019). Characterisation of HvVIP1 and expression profile analysis of stress response regulators in barley under Agrobacterium and Fusarium infections. PLoS One 14:e0218120. 10.1371/journal.pone.0218120 PubMed DOI PMC

Evrard A., Kumar M., Lecourieux D., Lucks J., von Koskull-Döring P., Hirt H. (2013). Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J. 1:e59. 10.7717/peerj.59 PubMed DOI PMC

Fahraeus G. (1957). The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16 374–381. 10.1099/00221287-16-2-374 PubMed DOI

Felix G., Duran J. D., Volko S., Boller T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18 265–276. 10.1046/j.1365-313x.1999.00265.x PubMed DOI

Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. (2014). Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC

Galletti R., Ferrari S., De Lorenzo G. (2011). Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol. 157 804–814. 10.1104/pp.111.174003 PubMed DOI PMC

Gao M., Liu J., Bi D., Zhang Z., Cheng F., Chen S., et al. (2008). MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18 1190–1198. 10.1038/cr.2008.300 PubMed DOI

Garrido-Oter R., Nakano R. T., Dombrowski N., Ma K.-W., AgBiome Team, McHardy A. C., et al. (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24 155–167. 10.1016/j.chom.2018.06.006 PubMed DOI PMC

Genot B., Lang J., Berriri S., Garmier M., Gilard F., Pateyron S., et al. (2017). Constitutively active Arabidopsis MAP kinase 3 d Responses involving salicylic acid and SUMM2 resistance protein. Plant Physiol. 174 1238–1249. 10.1104/pp.17.00378 PubMed DOI PMC

Gigli Bisceglia N., Savatin D. V., Cervone F., Engelsdorf T., De Lorenzo G. (2017). Loss of the Arabidopsis protein kinases ANPs affects root cell wall composition, and triggers the cell wall damage syndrome. Front. Plant. Sci. 8:2234. 10.3389/fpls.2017.02234 PubMed DOI PMC

Gómez-Gómez L., Boller T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell. 5 1003–1011. 10.1016/s1097-2765(00)80265-8 PubMed DOI

Gómez-Gómez L., Felix G., Boller T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18 277–284. 10.1046/j.1365-313x.1999.00451.x PubMed DOI

Goyal R. K., Tulpan D., Chomistek N., González-Peña Fundora D., West C., Ellis B. E., et al. (2018). Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genomics 19:178. 10.1186/s12864-018-4545-9 PubMed DOI PMC

Han L., Li G.-J., Yang K.-Y., Mao G., Wang R., Liu Y., et al. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J. 64 114–127. 10.1111/j.1365-313X.2010.04318.x PubMed DOI

Han S., Fang L., Ren X., Wang W., Jiang J. (2015). MPK6 controls H2O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings. New Phytol. 205 695–706. 10.1111/nph.12990 PubMed DOI

Hao G., Pitino M., Duan Y., Stover E. (2016). Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. Mol. Plant Microbe Interact. 29 132–142. 10.1094/MPMI-09-15-0211-R PubMed DOI

Harwood W. A., Bartlett J. G., Alves S. C., Perry M., Smedley M. A., Leyl N., et al. (2009). “Barley transformation using agrobacterium-mediated techniques,” in Transgenic Wheat, Barley and Oats: Production and Characterization Protocols. Methods in Molecular Biology, eds Jones H. D., Shewry P. R. (Totowa, NJ: Humana Press; ), 137–147. 10.1007/978-1-59745-379-0_9 PubMed DOI

Henty-Ridilla J. L., Shimono M., Li J., Chang J. H., Day B., Staiger C. J. (2013). The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 9:e1003290. 10.1371/journal.ppat.1003290 PubMed DOI PMC

Henty-Ridilla J. L., Li J., Day B., Staiger C. J. (2014). ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26 340–352. 10.1105/tpc.113.122499 PubMed DOI PMC

Hoehenwarter W., Thomas M., Nukarinen E., Egelhofer V., Röhrig H., Weckwerth W., et al. (2013). Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell Proteomics 12 369–380. 10.1074/mcp.M112.020560 PubMed DOI PMC

Hrbáčková M., Luptovčiak I., Hlaváčková K., Dvořák P., Tichá M., Šamajová O., et al. (2020). Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production. Plant Biotechnol. J. 10.1111/pbi.13503 [Epup ahead of print], PubMed DOI PMC

Huang S., Qu X., Zhang R. (2015). Plant villins: versatile actin regulatory proteins. J. Integr. Plant Biol. 57 40–49. 10.1111/jipb.12293 PubMed DOI

Hückelhoven R., Seidl A. (2016). PAMP-triggered immune responses in barley and susceptibility to powdery mildew. Plant Signal. Behav. 11:e1197465. 10.1080/15592324.2016.1197465 PubMed DOI PMC

Jelenska J., van Hal J. A., Greenberg J. T. (2010). Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc. Natl. Acad. Sci. U.S.A. 107 13177–13182. 10.1073/pnas.0910943107 PubMed DOI PMC

Johrde A., Schweizer P. (2008). A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol. Plant Pathol. 9 687–696. 10.1111/j.1364-3703.2008.00494.x PubMed DOI PMC

Kadota Y., Shirasu K., Zipfel C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56 1472–1480. 10.1093/pcp/pcv063 PubMed DOI

Kang S., Yang F., Li L., Chen H., Chen S., Zhang J. (2015). The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity. Plant Physiol. 167 1076–1086. 10.1104/pp.114.250985 PubMed DOI PMC

Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., et al. (2014). Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 588 3982–3988. 10.1016/j.febslet.2014.09.014 PubMed DOI

Kim H. S., Bian X., Lee C.-J., Kim S.-E., Park S.-C., Xie Y., et al. (2019). IbMPK3/IbMPK6-mediated IbSPF1 phosphorylation promotes tolerance to bacterial pathogen in sweetpotato. Plant Cell Rep. 38 1403–1415. 10.1007/s00299-019-02451-9 PubMed DOI

Komis G., Šamajová O., Ovečka M., Šamaj J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69 237–265. 10.1146/annurev-arplant-042817-040314 PubMed DOI

Kong Q., Qu N., Gao M., Zhang Z., Ding X., Yang F., et al. (2012). The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24 2225–2236. 10.1105/tpc.112.097253 PubMed DOI PMC

Křenek P., Niks R. E., Vels A., Vyplelová P., Šamaj J. (2015). Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection. Acta Physiol. Plant. 37 1–16. 10.1007/s11738-015-2010-9 DOI

Křenek P., Smékalová V. (2014). Quantification of stress-induced mitogen-activated protein kinase expressional dynamic using reverse transcription quantitative real-time PCR. Methods Mol. Biol. 1171 13–25. 10.1007/978-1-4939-0922-3_2 PubMed DOI

Kwasniewski M., Chwialkowska K., Kwasniewska J., Kusak J., Siwinski K., Szarejko I. (2013). Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J. Plant Physiol. 170 185–195. 10.1016/j.jplph.2012.09.017 PubMed DOI

Lassowskat I., Böttcher C., Eschen-Lippold L., Scheel D., Lee J. (2014). Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front. Plant Sci. 5:554. 10.3389/fpls.2014.00554 PubMed DOI PMC

Lawrence S. R., Gaitens M., Guan Q., Dufresne C., Chen S. (2020). S-nitroso-proteome revealed in stomatal guard cell response to flg22. Int. J. Mol. Sci. 21:1688. 10.3390/ijms21051688 PubMed DOI PMC

Lee A. H.-Y., Hurley B., Felsensteiner C., Yea C., Ckurshumova W., Bartetzko V., et al. (2012). A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog. 8:e1002523. 10.1371/journal.ppat.1002523 PubMed DOI PMC

Lee J. H., Kim H., Chae W. B., Oh M.-H. (2019). Pattern recognition receptors and their interactions with bacterial type III effectors in plants. Genes Genomics 41 499–506. 10.1007/s13258-019-00801-1 PubMed DOI

Li B., Meng X., Shan L., He P. (2016). Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19 641–650. 10.1016/j.chom.2016.04.011 PubMed DOI PMC

Li J., Staiger C. J. (2018). Understanding cytoskeletal dynamics during the plant immune response. Annu. Rev. Phytopathol. 56 513–533. 10.1146/annurev-phyto-080516-035632 PubMed DOI

Li J., Henty-Ridilla J. L., Staiger B. H., Day B., Staiger C. J. (2015). Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat. Commun. 6: 7206. 10.1038/ncomms8206 PubMed DOI PMC

Li Y., Guo G., Zhou L., Chen Y., Zong Y., Huang J., et al. (2019). Transcriptome analysis identifies candidate genes and functional pathways controlling the response of two contrasting barley varieties to powdery mildew infection. Int. J. Mol. Sci. 21:151. 10.3390/ijms21010151 PubMed DOI PMC

Lippert D. N., Ralph S. G., Phillips M., White R., Smith D., Hardie D., et al. (2009). Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics 9 350–367. 10.1002/pmic.200800252 PubMed DOI

Liu H., Dong S., Li M., Gu F., Yang G., Guo T., et al. (2021). The Class III peroxidase gene OsPrx30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. J. Integr. Plant Biol. 63 393–408. 10.1111/jipb.13040 PubMed DOI

Liu M., Wu F., Wang S., Lu Y., Chen X., Wang Y., et al. (2019). Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Hortic. Res. 6:68. 10.1038/s41438-019-0149-z PubMed DOI PMC

Liu P., Zhang H., Yu B., Xiong L., Xia Y. (2015). Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis. Sci. Rep. 5:8625. 10.1038/srep08625 PubMed DOI PMC

Lu D., Wu S., Gao X., Zhang Y., Shan L., He P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. U.S.A. 107 496–501. 10.1073/pnas.0909705107 PubMed DOI PMC

Mao G., Meng X., Liu Y., Zheng Z., Chen Z., Zhang S. (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23 1639–1653. 10.1105/tpc.111.084996 PubMed DOI PMC

Martinière A., Moreau P. (2020). Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never-ending story. J. Microsc. 280 140–157. 10.1111/jmi.12952 PubMed DOI

Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544 427–433. 10.1038/nature22043 PubMed DOI

Mbengue M., Bourdais G., Gervasi F., Beck M., Zhou J., Spallek T., et al. (2016). Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 113 11034–11039. 10.1073/pnas.1606004113 PubMed DOI PMC

McElroy D., Blowers A. D., Jenes B., Wu R. (1991). Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Molec. Gen. Genet. 231 150–160. 10.1007/BF00293832 PubMed DOI

McElroy D., Zhang W., Cao J., Wu R. (1990). Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2 163–171. 10.1105/tpc.2.2.163 PubMed DOI PMC

Meng Q., Gupta R., Min C. W., Kim J., Kramer K., Wang Y., et al. (2019). A proteomic insight into the MSP1 and flg22 induced signaling in Oryza sativa leaves. J.Prot. 196 120–130. 10.1016/j.jprot.2018.04.015 PubMed DOI

Meng X., Zhang S. (2013). MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51 245–266. 10.1146/annurev-phyto-082712-102314 PubMed DOI

Meng X., Xu J., He Y., Yang K.-Y., Mordorski B., Liu Y., et al. (2013). Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25 1126–1142. 10.1105/tpc.112.109074 PubMed DOI PMC

Mészáros T., Helfer A., Hatzimasoura E., Magyar Z., Serazetdinova L., Rios G., et al. (2006). The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J. 48 485–498. 10.1111/j.1365-313X.2006.02888.x PubMed DOI

Movahedi S., Van de Peer Y., Vandepoele K. (2011). Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and Rice. Plant Physiol. 156 1316–1330. 10.1104/pp.111.177865 PubMed DOI PMC

Mueller K., Bittel P., Chinchilla D., Jehle A. K., Albert M., Boller T., et al. (2012). Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24 2213–2224. 10.1105/tpc.112.096073 PubMed DOI PMC

Nakamura T., Ishikawa M., Nakatani H., Oda A. (2008). Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiol. 147 391–401. 10.1104/pp.106.081497 PubMed DOI PMC

Naseem M., Kaltdorf M., Dandekar T. (2015). The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 66 4885–4896. 10.1093/jxb/erv297 PubMed DOI

Ohnuma T., Numata T., Osawa T., Mizuhara M., Lampela O., Juffer A. H., et al. (2011). A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234 123–137. 10.1007/s00425-011-1390-3 PubMed DOI

Okada K., Kubota Y., Hirase T., Otani K., Goh T., Hiruma K., et al. (2021). Uncoupling root hair formation and defence activation from growth inhibition in response to damage-associated Pep peptides in Arabidopsis thaliana. New Phytol. 229 2844–2858. 10.1111/nph.17064 PubMed DOI

Pečenková T., Janda M., Ortmannová J., Hajná V., Stehlíková Z., Žárský V. (2017). Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae. Ann. Bot. 120 437–446. 10.1093/aob/mcx073 PubMed DOI PMC

Peng Y., van Wersch R., Zhang Y. (2018). Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 31 403–409. 10.1094/MPMI-06-17-0145-CR PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47 D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC

Pérez-Salamó I., Papdi C., Rigó G., Zsigmond L., Vilela B., Lumbreras V., et al. (2014). The Heat Shock Factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 165 319–334. 10.1104/pp.114.237891 PubMed DOI PMC

Poncini L., Wyrsch I., Dénervaud Tendon V., Vorley T., Boller T., Geldner N., et al. (2017). In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12:e0185808. 10.1371/journal.pone.0185808 PubMed DOI PMC

Qiu J.-L., Fiil B. K., Petersen K., Nielsen H. B., Botanga C. J., Thorgrimsen S., et al. (2008). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J. 27 2214–2221. 10.1038/emboj.2008.147 PubMed DOI PMC

Qu X. L., Zhang H., Xie Y. R., Wang J., Chen N. Z., Huang S. J. (2013). Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25 1803–1817. 10.1105/tpc.113.110940 PubMed DOI PMC

Rasmussen M. W., Roux M., Petersen M., Mundy J. (2012). MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 3:169. 10.3389/fpls.2012.00169 PubMed DOI PMC

Rayapuram N., Bigeard J., Alhoraibi H., Bonhomme L., Hesse A.-M., Vinh J., et al. (2018). Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis mitogen-activated protein kinases (MAPKs) MPK3. MPK4, and MPK6. Mol. Cell. Prot. 17 61–80. 10.1074/mcp.RA117.000135 PubMed DOI PMC

Rayapuram N., Bonhomme L., Bigeard J., Haddadou K., Przybylski C., Hirt H., et al. (2014). Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in Arabidopsis thaliana by quantitative phosphoproteomic analysis. J Prot. Res. 13 2137–2151. 10.1021/pr401268v PubMed DOI

Ren D., Liu Y., Yang K.-Y., Han L., Mao G., Glazebrook J., et al. (2008). A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 105 5638–5643. 10.1073/pnas.0711301105 PubMed DOI PMC

Robatzek S., Bittel P., Chinchilla D., Köchner P., Felix G., Shiu S.-H., et al. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol. Biol. 64 539–547. 10.1007/s11103-007-9173-8 PubMed DOI

Robatzek S., Chinchilla D., Boller T. (2006). Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20 537–542. 10.1101/gad.366506 PubMed DOI PMC

Robatzek S., Wirthmueller L. (2013). Mapping FLS2 function to structure: LRRs, kinase and its working bits. Protoplasma 250 671–681. 10.1007/s00709-012-0459-6 PubMed DOI

Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21 3296–3306. 10.1093/emboj/cdf349 PubMed DOI PMC

Šamaj J., Müller J., Beck M., Böhm N., Menzel D. (2006). Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 11 594–600. 10.1016/j.tplants.2006.10.002 PubMed DOI

Samakovli D., Tichá T., Vavrdová T., Ovečka M., Luptovčiak I., Zapletalová V., et al. (2020). YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Mol. Plant 13 612–633. 10.1016/j.molp.2020.01.001 PubMed DOI

Savatin D. V., Bisceglia N. G., Marti L., Fabbri C., Cervone F., Lorenzo G. D. (2014). The Arabidopsis NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-related protein kinases are required for elicitor-induced oxidative burst and immunity. Plant Physiol. 165 1188–1202. 10.1104/pp.114.236901 PubMed DOI PMC

Scheres B., van der Putten W. H. (2017). The plant perceptron connects environment to development. Nature 543 337–345. 10.1038/nature22010 PubMed DOI

Sheikh A. H., Eschen-Lippold L., Pecher P., Hoehenwarter W., Sinha A. K., Scheel D., et al. (2016). Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana. Front. Plant Sci. 7:61. 10.3389/fpls.2016.00061 PubMed DOI PMC

Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203 1175–1193. 10.1111/nph.12880 PubMed DOI PMC

Staiger C. J., Poulter N. S., Henty J. L., Franklin-Tong V. E., Blanchoin L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 61 1969–1986. 10.1093/jxb/erq012 PubMed DOI

Su S.-H., Bush S. M., Zaman N., Stecker K., Sussman M. R., Krysan P. (2013). Deletion of a tandem gene family in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted. Plant Cell 25 1895–1910. 10.1105/tpc.113.112102 PubMed DOI PMC

Suarez-Rodriguez M. C., Adams-Phillips L., Liu Y., Wang H., Su S.-H., Jester P. J., et al. (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 143 661–669. 10.1104/pp.106.091389 PubMed DOI PMC

Sun T., Nitta Y., Zhang Q., Wu D., Tian H., Lee J. S., et al. (2018). Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep. 19:e45324. 10.15252/embr.201745324 PubMed DOI PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43 D447–D452. 10.1093/nar/gku1003 PubMed DOI PMC

Takáč T., Šamajová O., Pechan T., Luptovčiak I., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Prot. 16 1591–1609. 10.1074/mcp.M117.068015 PubMed DOI PMC

Takáč T., Šamajová O., Vadovič P., Pechan T., Košútová P., Ovečka M., et al. (2014). Proteomic and biochemical analyses show functional network of proteins involved in antioxidant defense of Arabidopsis anp2anp3 double mutant. J.Prot. Res. 13 5347–5361. 10.1021/pr500588c PubMed DOI PMC

Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O., Šamaj J. (2016). Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci. Rep. 6:28306. 10.1038/srep28306 PubMed DOI PMC

Takagi J., Renna L., Takahashi H., Koumoto Y., Tamura K., Stefano G., et al. (2013). MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis. Plant Cell 25 4658–4675. 10.1105/tpc.113.118158 PubMed DOI PMC

Takai R., Isogai A., Takayama S., Che F.-S. (2008). Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol. Plant Microbe. Interact. 21 1635–1642. 10.1094/MPMI-21-12-1635 PubMed DOI

Takenaka Y., Nakano S., Tamoi M., Sakuda S., Fukamizo T. (2009). Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana?: chitinase inhibitor allosamidin enhances stress tolerance. Biosci. Biotechnol. Biochem. 73 1066–1071. 10.1271/bbb.80837 PubMed DOI

Trdá L., Fernandez O., Boutrot F., Héloir M.-C., Kelloniemi J., Daire X., et al. (2014). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol. 201 1371–1384. 10.1111/nph.12592 PubMed DOI

van der Honing H. S., Kieft H., Emons A. M. C., Ketelaar T. (2012). Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol. 158 1426–1438. 10.1104/pp.111.192385 PubMed DOI PMC

Wang S., Sun Z., Wang H., Liu L., Lu F., Yang J., et al. (2015). Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. Mol. Plant 8 1024–1037. 10.1016/j.molp.2015.01.012 PubMed DOI

Wang X., Bi S., Wang L., Li H., Gao B., Huang S. (2020). GLABRA2 regulates actin bundling protein VILLIN1 in root hair growth in response to osmotic stress. Plant Physiol. 184 176–193. 10.1104/pp.20.00480 PubMed DOI PMC

Wang Z., Bao L.-L., Zhao F.-Y., Tang M.-Q., Chen T., Li Y., et al. (2019). BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape. Front. Plant Sci. 10:91. 10.3389/fpls.2019.00091 PubMed DOI PMC

Xu J., Xie J., Yan C., Zou X., Ren D., Zhang S. (2014). A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. Plant J. 77 222–234. 10.1111/tpj.12382 PubMed DOI PMC

Yeh S., Moffatt B. A., Griffith M., Xiong F., Yang D. S. C., Wiseman S. B., et al. (2000). Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124 1251–1264. 10.1104/pp.124.3.1251 PubMed DOI PMC

Zhang Y., Xiao Y., Du F., Cao L., Dong H., Ren H. (2011). Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. New Phytol. 190 667–682. 10.1111/j.1469-8137.2010.03632.x PubMed DOI

Zhou J., Wang X., He Y., Sang T., Wang P., Dai S., et al. (2020). Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis. Plant Cell 32 2621–2638. 10.1105/tpc.19.00971 PubMed DOI PMC

Zulak K. G., Khan M. F., Alcantara J., Schriemer D. C., Facchini P. J. (2009). Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics. Mol. Cell. Proteomics 8 86–98. 10.1074/mcp.M800211-MCP200 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...