CRISPR/Cas9-Induced Loss-of-Function Mutation in the Barley Mitogen-Activated Protein Kinase 6 Gene Causes Abnormal Embryo Development Leading to Severely Reduced Grain Germination and Seedling Shootless Phenotype
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34394137
PubMed Central
PMC8361755
DOI
10.3389/fpls.2021.670302
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, Hordeum vulgare L., MPK6, abnormal embryo, barley, lethality, mitogen-activated protein kinase 6, shootless phenotype,
- Publikační typ
- časopisecké články MeSH
The diverse roles of mitogen-activated protein kinases (MAPKs, MPKs) in plant development could be efficiently revealed by reverse genetic studies. In Arabidopsis, mpk6 knockout mutants complete the life cycle; however, ~40% of their embryos show defects in the development leading to abnormal phenotypes of seeds and seedlings' roots. Contrary to the Arabidopsis MPK6, the rice MPK6 (OsMPK6) is an essential gene as transfer DNA (T-DNA) insertion and CRISPR/Cas9 induced loss-of-function mutations in the OsMPK6 cause early embryo arrest. In this study, we successfully developed a viable transgenic barley line with the CRISPR/Cas9-induced heterozygous single base pair cytosine-guanine (CG) deletion [wild type (WT)/-1C] in the third exon of the HvMPK6 gene, a barley ortholog of the Arabidopsis and rice MPK6. There were no obvious macroscopic phenotype differences between the WT/-1C plants and WT plants. All the grains collected from the WT/-1C plants were of similar size and appearance. However, seedling emergence percentage (SEP) from these grains was substantially decreased in the soil in the T2 and T3 generation. The mutation analysis of the 248 emerged T2 and T3 generation plants showed that none of them was a biallelic mutant in the HvMPK6 gene, suggesting lethality of the -1C/-1C homozygous knockout mutation. In the soil, the majority of the -1C/-1C grains did not germinate and the minority of them developed into abnormal seedlings with a shootless phenotype and a reduced root system. Some of the -1C/-1C seedlings also developed one or more small chlorotic leaf blade-like structure/structures. The -1C/-1C grains contained the late-stage developed abnormal embryos with the morphologically obvious scutellum and root part of the embryonic axis but with the missing or substantially reduced shoot part of the embryonic axis. The observed embryonic abnormalities correlated well with the shootless phenotype of the seedlings and suggested that the later-stage defect is predetermined already during the embryo development. In conclusion, our results indicate that barley MPK6 is essential for the embryologically predetermined shoot formation, but not for the most aspects of the embryo and early seedling development.
Zobrazit více v PubMed
Abass M., Morris P. C. (2013). The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J. Plant Physiol. 170, 1353–1359. 10.1016/j.jplph.2013.04.009 PubMed DOI
Aida M., Ishida T., Tasaka M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563–1570. 10.1242/dev.126.8.1563 PubMed DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Bartlett J. G., Alves S. C., Smedley M., Snape J. W., Harwood W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22. 10.1186/1746-4811-4-22 PubMed DOI PMC
Barton M. K., Poethig R. S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119, 823–831. 10.1242/dev.119.3.823 DOI
Bigeard J., Hirt H. (2018). Nuclear signaling of plant MAPKs. Front. Plant Sci. 9:469. 10.3389/fpls.2018.00469 PubMed DOI PMC
Budhagatapalli N., Schedel S., Gurushidze M., Pencs S., Hiekel S., Rutten T., et al. . (2016). A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:6. 10.1186/s13007-016-0118-6 PubMed DOI PMC
Bush S. M., Krysan P. J. (2007). Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J. Exp. Bot. 58, 2181–2191. 10.1093/jxb/erm092 PubMed DOI
Chen L., Yang D., Zhang Y., Wu L., Zhang Y., Ye L., et al. . (2018). Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. New Phytol. 219, 176–194. 10.1111/nph.15150 PubMed DOI
Concordet J.-P., Haeussler M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucl. Acids Res. 46, W242–W245. 10.1093/nar/gky354 PubMed DOI PMC
Cui L., Yang G., Yan J., Pan Y., Nie X. (2019). Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genom. 20:750. 10.1186/s12864-019-6144-9 PubMed DOI PMC
Doench J. G., Fusi N., Sullender M., Hegde M., Vaimberg E. W., Donovan K. F., et al. . (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191. 10.1038/nbt.3437 PubMed DOI PMC
Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protocols 2, 2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Frei dit Frey N., Garcia A. V., Bigeard J., Zaag R., Bueso E., Garmier M., et al. . (2014). Functional analysis of Arabidopsisimmune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biol. 15:R87. 10.1186/gb-2014-15-6-r87 PubMed DOI PMC
Genenncher B., Wirthmueller L., Roth C., Klenke M., Ma L., Sharon A., et al. . (2016). Nucleoporin-regulated MAP kinase signaling in immunity to a necrotrophic fungal pathogen. Plant Physiol. 172, 1293–1305. 10.1104/pp.16.00832 PubMed DOI PMC
Goyal R. K., Tulpan D., Chomistek N., González-Peña Fundora D., West C., Ellis B. E., et al. . (2018). Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genom. 19:178. 10.1186/s12864-018-4545-9 PubMed DOI PMC
Guo T., Chen K., Dong N.-Q., Shi C.-L., Ye W.-W., Gao J.-P., et al. . (2018). Grain size and number1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30, 871–888. 10.1105/tpc.17.00959 PubMed DOI PMC
Guo T., Lu Z.-Q., Shan J.-X., Ye W.-W., Dong N.-Q., Lin H.-X. (2020). ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32, 2763–2779. 10.1105/tpc.20.00351 PubMed DOI PMC
Hamel L.-P., Nicole M.-C., Sritubtim S., Morency M.-J., Ellis M., Ehlting J., et al. . (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192–198. 10.1016/j.tplants.2006.02.007 PubMed DOI
Harwood W. A. (2014). “A Protocol for High-Throughput Agrobacterium-Mediated Barley Transformation,” in Cereal Genomics: Methods and Protocols Methods in Molecular Biology, eds Henry R. J., Furtado A. (Totowa, NJ: Humana Press; ) 251–260. 10.1007/978-1-62703-715-0_20 PubMed DOI
Harwood W. A. (2019). An introduction to barley: the crop and the model. Methods Mol. Biol. 1900, 1–5. 10.1007/978-1-4939-8944-7_1 PubMed DOI
Howells R. M., Craze M., Bowden S., Wallington E. J. (2018). Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol. 18:215. 10.1186/s12870-018-1433-z PubMed DOI PMC
Hsu P. D., Scott D. A., Weinstein J. A., Ran F. A., Konermann S., Agarwala V., et al. . (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. 10.1038/nbt.2647 PubMed DOI PMC
Ishizaki T. (2016). CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol. Breeding 36:165. 10.1007/s11032-016-0591-7 DOI
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. (2012). A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. 10.1126/science.1225829 PubMed DOI PMC
Kapustin Y., Souvorov A., Tatusova T., Lipman D. (2008). Splign: algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3:20. 10.1186/1745-6150-3-20 PubMed DOI PMC
Kawasaki T., Yamada K., Yoshimura S., Yamaguchi K. (2017). Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signal Behav. 12:e1361076. 10.1080/15592324.2017.1361076 PubMed DOI PMC
Komis G., Šamajová O., Ovečka M., Šamaj J. (2018). Cell and developmental biology of plant mitogen-activated protein kinases. Ann. Rev. Plant Biol. 69, 237–265. 10.1146/annurev-arplant-042817-040314 PubMed DOI
Křenek P., Niks R. E., Vels A., Vyplelová P., Šamaj J. (2015). Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection. Acta Physiol. Plant 37:254. 10.1007/s11738-015-2010-9 DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Lawrenson T., Shorinola O., Stacey N., Li C., Østergaard L., Patron N., et al. . (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol. 16:258. 10.1186/s13059-015-0826-7 PubMed DOI PMC
Liu S., Hua L., Dong S., Chen H., Zhu X., Jiang J., et al. . (2015a). OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J. 84, 672–681. 10.1111/tpj.13025 PubMed DOI
Liu W., Xie X., Ma X., Li J., Chen J., Liu Y.-G. (2015b). DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol. Plant 8, 1431–1433. 10.1016/j.molp.2015.05.009 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
López-Bucio J. S., Dubrovsky J. G., Raya-González J., Ugartechea-Chirino Y., López-Bucio J., de Luna-Valdez L. A., et al. . (2014). Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J. Exp. Bot. 65, 169–183. 10.1093/jxb/ert368 PubMed DOI PMC
Lukowitz W., Roeder A., Parmenter D., Somerville C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in arabidopsis. Cell 116, 109–119. 10.1016/S0092-8674(03)01067-5 PubMed DOI
Marthe C., Kumlehn J., Hensel G. (2015). “Barley (Hordeum vulgare L.) transformation using immature embryos,” in Agrobacterium Protocols Methods in Molecular Biology. ed Wang K. (New York, NY: Springer New York; ), 71–83. 10.1007/978-1-4939-1695-5_6 PubMed DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. . (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. 10.1038/nature22043 PubMed DOI
Minkenberg B., Xie K., Yang Y. (2017). Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes. Plant J. 89, 636–648. 10.1111/tpj.13399 PubMed DOI
Modrzejewski D., Hartung F., Lehnert H., Sprink T., Kohl C., Keilwagen J., et al. . (2020). Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front. Plant Sci. 11:574959. 10.3389/fpls.2020.574959 PubMed DOI PMC
Mrízová K., Holasková E., Öz M. T., Jiskrová E., Frébort I., Galuszka P. (2014). Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol. Adv. 32, 137–157. 10.1016/j.biotechadv.2013.09.011 PubMed DOI
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. . (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. 10.1111/j.1365-313X.2009.04046.x PubMed DOI
Naito Y., Hino K., Bono H., Ui-Tei K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123. 10.1093/bioinformatics/btu743 PubMed DOI PMC
Pilu R., Consonni G., Busti E., MacCabe A. P., Giulini A., Dolfini S., et al. . (2002). Mutations in two independent genes lead to suppression of the shoot apical meristem in maize. Plant Physiol. 128, 502–511. 10.1104/pp.010767 PubMed DOI PMC
Ran F. A., Cong L., Yan W. X., Scott D. A., Gootenberg J. S., Kriz A. J., et al. . (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191. 10.1038/nature14299 PubMed DOI PMC
Rao K. P., Richa T., Kumar K., Raghuram B., Sinha A. K. (2010). In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res. 17, 139–153. 10.1093/dnares/dsq011 PubMed DOI PMC
Rapazote-Flores P., Bayer M., Milne L., Mayer C.-D., Fuller J., Guo W., et al. . (2019). BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genom. 20:968. 10.1186/s12864-019-6243-7 PubMed DOI PMC
Saisho D., Takeda K. (2011). Barley: emergence as a new research material of crop science. Plant Cell Physiol. 52, 724–727. 10.1093/pcp/pcr049 PubMed DOI
Šamajová O., Komis G., Šamaj J. (2013). Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci. 18, 140–148. 10.1016/j.tplants.2012.11.004 PubMed DOI
Samakovli D., Tichá T., Vavrdová T., Ovečka M., Luptovčiak I., Zapletalová V., et al. . (2020). YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in arabidopsis. Mol. Plant 13, 612–633. 10.1016/j.molp.2020.01.001 PubMed DOI
Satoh N., Hong S. K., Nishimura A., Matsuoka M., Kitano H., Nagato Y. (1999). Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development 126, 3629–3636. 10.1242/dev.126.16.3629 PubMed DOI
Schreiber M., Mascher M., Wright J., Padmarasu S., Himmelbach A., Heavens D., et al. . (2020). A genome assembly of the barley “transformation reference” cultivar golden promise. Genes Genom. Genet. 10, 1823–1827. 10.1534/g3.119.401010 PubMed DOI PMC
Scofield S., Dewitte W., Murray J. A. (2014). STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal. Behav. 9:e28934. 10.4161/psb.28934 PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., et al. . (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. 10.1038/msb.2011.75 PubMed DOI PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880 PubMed DOI PMC
Takáč T., Krenek P., Komis G., Vadovič P., Ovečka M., Ohnoutková L., et al. . (2021). TALEN-based HvMPK3 knock-out attenuates proteome and root hair phenotypic responses to flg22 in barley. Front. Plant Sci. 12:666229. 10.3389/fpls.2021.666229 PubMed DOI PMC
Takáč T., Šamajová O., Pechan T., Luptovčiak I., Šamaj J. (2017). Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Prot. 16, 1591–1609. 10.1074/mcp.M117.068015 PubMed DOI PMC
von Post R., von Post L., Dayteg C., Nilsson M., Forster B. P., Tuvesson S. (2003). A high-throughput DNA extraction method for barley seed. Euphytica 130, 255–260. 10.1023/A:1022863006134 DOI
Wang H., Ngwenyama N., Liu Y., Walker J. C., Zhang S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in arabidopsis. Plant Cell 19, 63–73. 10.1105/tpc.106.048298 PubMed DOI PMC
Wang L., Chen L., Li R., Zhao R., Yang M., Sheng J., et al. . (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J. Agric Food Chem. 65, 8674–8682. 10.1021/acs.jafc.7b02745 PubMed DOI
Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., et al. . (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 1, 65–74. 10.1089/crispr.2017.0010 PubMed DOI PMC
Xu R., Duan P., Yu H., Zhou Z., Zhang B., Wang R., et al. . (2018). Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol. Plant 11, 860–873. 10.1016/j.molp.2018.04.004 PubMed DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13:134. 10.1186/1471-2105-13-134 PubMed DOI PMC
Yi J., Lee Y.-S., Lee D.-Y., Cho M.-H., Jeon J.-S., An G. (2016). OsMPK6 plays a critical role in cell differentiation during early embryogenesis in Oryza sativa. J. Exp. Bot. 67, 2425–2437. 10.1093/jxb/erw052 PubMed DOI PMC
Zhang M., Wu H., Su J., Wang H., Zhu Q., Liu Y., et al. . (2017). Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant J. 92, 1005–1019. 10.1111/tpj.13737 PubMed DOI
Zhang Y., Xiong Y., Liu R., Xue H.-W., Yang Z. (2019). The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proc. Natl. Acad. Sci. U. S. A. 116, 16121–16126. 10.1073/pnas.1902321116 PubMed DOI PMC