Separase and Roads to Disengage Sister Chromatids during Anaphase

. 2023 Feb 27 ; 24 (5) : . [epub] 20230227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36902034

Grantová podpora
20-25850S Czech Science Foundation
RO 0518 Ministry of Agriculture

Receiving complete and undamaged genetic information is vital for the survival of daughter cells after chromosome segregation. The most critical steps in this process are accurate DNA replication during S phase and a faithful chromosome segregation during anaphase. Any errors in DNA replication or chromosome segregation have dire consequences, since cells arising after division might have either changed or incomplete genetic information. Accurate chromosome segregation during anaphase requires a protein complex called cohesin, which holds together sister chromatids. This complex unifies sister chromatids from their synthesis during S phase, until separation in anaphase. Upon entry into mitosis, the spindle apparatus is assembled, which eventually engages kinetochores of all chromosomes. Additionally, when kinetochores of sister chromatids assume amphitelic attachment to the spindle microtubules, cells are finally ready for the separation of sister chromatids. This is achieved by the enzymatic cleavage of cohesin subunits Scc1 or Rec8 by an enzyme called Separase. After cohesin cleavage, sister chromatids remain attached to the spindle apparatus and their poleward movement on the spindle is initiated. The removal of cohesion between sister chromatids is an irreversible step and therefore it must be synchronized with assembly of the spindle apparatus, since precocious separation of sister chromatids might lead into aneuploidy and tumorigenesis. In this review, we focus on recent discoveries concerning the regulation of Separase activity during the cell cycle.

Zobrazit více v PubMed

Michaelis C., Ciosk R., Nasmyth K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91:35–45. doi: 10.1016/S0092-8674(01)80007-6. PubMed DOI

Guacci V., Koshland D., Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997;91:47–57. doi: 10.1016/S0092-8674(01)80008-8. PubMed DOI PMC

Haering C.H., Farcas A.M., Arumugam P., Metson J., Nasmyth K. The cohesin ring concatenates sister DNA molecules. Nature. 2008;454:297–301. doi: 10.1038/nature07098. PubMed DOI

Nasmyth K., Haering C.H. Cohesin: Its roles and mechanisms. Annu. Rev. Genet. 2009;43:525–558. doi: 10.1146/annurev-genet-102108-134233. PubMed DOI

Peters J.M., Nishiyama T. Sister chromatid cohesion. Cold Spring Harb. Perspect. Biol. 2012;4:a011130. doi: 10.1101/cshperspect.a011130. PubMed DOI PMC

Morales C., Losada A. Establishing and dissolving cohesion during the vertebrate cell cycle. Curr. Opin. Cell Biol. 2018;52:51–57. doi: 10.1016/j.ceb.2018.01.010. PubMed DOI

Yatskevich S., Rhodes J., Nasmyth K. Organization of Chromosomal DNA by SMC Complexes. Annu. Rev. Genet. 2019;53:445–482. doi: 10.1146/annurev-genet-112618-043633. PubMed DOI

Perea-Resa C., Wattendorf L., Marzouk S., Blower M.D. Cohesin: Behind Dynamic Genome Topology and Gene Expression Reprogramming. Trends Cell Biol. 2021;31:760–773. doi: 10.1016/j.tcb.2021.03.005. PubMed DOI PMC

Davidson I.F., Peters J.M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 2021;22:445–464. doi: 10.1038/s41580-021-00349-7. PubMed DOI

Higashi T.L., Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr. Opin. Cell. Biol. 2022;74:13–22. doi: 10.1016/j.ceb.2021.12.003. PubMed DOI PMC

Hartman T., Stead K., Koshland D., Guacci V. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 2000;151:613–626. doi: 10.1083/jcb.151.3.613. PubMed DOI PMC

Losada A., Yokochi T., Kobayashi R., Hirano T. Identification and Characterization of Sa/Scc3p Subunits in the Xenopus and Human Cohesin Complexes. J. Cell Biol. 2000;150:405–416. doi: 10.1083/jcb.150.3.405. PubMed DOI PMC

Kueng S., Hegemann B., Peters B.H., Lipp J.J., Schleiffer A., Mechtler K., Peters J.M. Wapl controls the dynamic association of cohesin with chromatin. Cell. 2006;127:955–967. doi: 10.1016/j.cell.2006.09.040. PubMed DOI

Haering C.H., Nasmyth K. Building and breaking bridges between sister chromatids. Bioessays. 2003;25:1178–1191. doi: 10.1002/bies.10361. PubMed DOI

Makrantoni V., Marston A.L. Cohesin and chromosome segregation. Curr. Biol. 2018;28:R688–R693. doi: 10.1016/j.cub.2018.05.019. PubMed DOI PMC

Ciosk R., Shirayama M., Shevchenko A., Tanaka T., Toth A., Shevchenko A., Nasmyth K. Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell. 2000;5:243–254. doi: 10.1016/S1097-2765(00)80420-7. PubMed DOI

Gillespie P.J., Hirano T. Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr. Biol. 2004;14:1598–1603. doi: 10.1016/j.cub.2004.07.053. PubMed DOI

Tonkin E.T., Wang T.J., Lisgo S., Bamshad M.J., Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 2004;36:636–641. doi: 10.1038/ng1363. PubMed DOI

Watrin E., Schleiffer A., Tanaka K., Eisenhaber F., Nasmyth K., Peters J.M. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol. 2006;16:863–874. doi: 10.1016/j.cub.2006.03.049. PubMed DOI

Rankin S., Ayad N.G., Kirschner M.W. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell. 2005;18:185–200. doi: 10.1016/j.molcel.2005.03.017. PubMed DOI

Ladurner R., Kreidl E., Ivanov M.P., Ekker H., Idarraga-Amado M.H., Busslinger G.A., Wutz G., Cisneros D.A., Peters J.M. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016;35:635–653. doi: 10.15252/embj.201592532. PubMed DOI PMC

Sundin O., Varshavsky A. Arrest of segregation leads to accumulation of highly intertwined catenated dimers: Dissection of the final stages of SV40 DNA replication. Cell. 1981;25:659–669. doi: 10.1016/0092-8674(81)90173-2. PubMed DOI

Murray A.W., Schultes N.P., Szostak J.W. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986;45:529–536. doi: 10.1016/0092-8674(86)90284-9. PubMed DOI

Farcas A.M., Uluocak P., Helmhart W., Nasmyth K. Cohesin’s concatenation of sister DNAs maintains their intertwining. Mol. Cell. 2011;44:97–107. doi: 10.1016/j.molcel.2011.07.034. PubMed DOI PMC

Coelho P.A., Queiroz-Machado J., Sunkel C.E. Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. J. Cell Sci. 2003;116:4763–4776. doi: 10.1242/jcs.00799. PubMed DOI

Charbin A., Bouchoux C., Uhlmann F. Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic. Acids Res. 2014;42:340–348. doi: 10.1093/nar/gkt882. PubMed DOI PMC

Piskadlo E., Oliveira R.A. A Topology-Centric View on Mitotic Chromosome Architecture. Int. J. Mol. Sci. 2017;18:2751. doi: 10.3390/ijms18122751. PubMed DOI PMC

Chu L., Zhang Z., Mukhina M., Zickler D., Kleckner N. Sister chromatids separate during anaphase in a three-stage program as directed by interaxis bridges. Proc. Natl. Acad. Sci. USA. 2022;119:e2123363119. doi: 10.1073/pnas.2123363119. PubMed DOI PMC

Waizenegger I.C., Hauf S., Meinke A., Peters J.M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000;103:399–410. doi: 10.1016/S0092-8674(00)00132-X. PubMed DOI

Haarhuis J.H., Elbatsh A.M., Rowland B.D. Cohesin and its regulation: On the logic of X-shaped chromosomes. Dev. Cell. 2014;31:7–18. doi: 10.1016/j.devcel.2014.09.010. PubMed DOI

Tedeschi A., Wutz G., Huet S., Jaritz M., Wuensche A., Schirghuber E., Davidson I.F., Tang W., Cisneros D.A., Bhaskara V., et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature. 2013;501:564–568. doi: 10.1038/nature12471. PubMed DOI PMC

Kitajima T.S., Kawashima S.A., Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature. 2004;427:510–517. doi: 10.1038/nature02312. PubMed DOI

Rabitsch K.P., Gregan J., Schleiffer A., Javerzat J.P., Eisenhaber F., Nasmyth K. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 2004;14:287–301. doi: 10.1016/j.cub.2004.01.051. PubMed DOI

Salic A., Waters J.C., Mitchison T.J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell. 2004;118:567–578. doi: 10.1016/j.cell.2004.08.016. PubMed DOI

Kitajima T.S., Sakuno T., Ishiguro K., Iemura S., Natsume T., Kawashima S.A., Watanabe Y. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature. 2006;441:46–52. doi: 10.1038/nature04663. PubMed DOI

Riedel C.G., Katis V.L., Katou Y., Mori S., Itoh T., Helmhart W., Gálová M., Petronczki M., Gregan J., Cetin B., et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature. 2006;441:53–61. doi: 10.1038/nature04664. PubMed DOI

Marston A.L. Shugoshins: Tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol. Cell Biol. 2015;35:634–648. doi: 10.1128/MCB.01176-14. PubMed DOI PMC

Kudo N.R., Wassmann K., Anger M., Schuh M., Wirth K.G., Xu H., Helmhart W., Kudo H., McKay M., Maro B., et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell. 2006;126:135–146. doi: 10.1016/j.cell.2006.05.033. PubMed DOI

Silva M.C.C., Powell S., Ladstätter S., Gassler J., Stocsits R., Tedeschi A., Peters J.M., Tachibana K. Wapl releases Scc1-cohesin and regulates chromosome structure and segregation in mouse oocytes. J. Cell Biol. 2020;219:e201906100. doi: 10.1083/jcb.201906100. PubMed DOI PMC

Uhlmann F., Lottspeich F., Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400:37–42. doi: 10.1038/21831. PubMed DOI

Uhlmann F., Wernic D., Poupart M.A., Koonin E.V., Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 2000;103:375–386. doi: 10.1016/S0092-8674(00)00130-6. PubMed DOI

Hauf S., Waizenegger I.C., Peters J.M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320–1323. doi: 10.1126/science.1061376. PubMed DOI

Wirth K.G., Wutz G., Kudo N.R., Desdouets C., Zetterberg A., Taghybeeglu S., Seznec J., Ducos G.M., Ricci R., Firnberg N., et al. Separase: A universal trigger for sister chromatid disjunction but not chromosome cycle progression. J. Cell Biol. 2006;172:847–860. doi: 10.1083/jcb.200506119. PubMed DOI PMC

Baum P., Yip C., Goetsch L., Byers B. A yeast gene essential for regulation of spindle pole duplication. Mol. Cell Biol. 1988;8:5386–5397. PubMed PMC

Uzawa S., Samejima I., Hirano T., Tanaka K., Yanagida M. The fission yeast cut1+ gene regulates spindle pole body duplication and has homology to the budding yeast ESP1 gene. Cell. 1990;62:913–925. doi: 10.1016/0092-8674(90)90266-H. PubMed DOI

Buonomo S.B., Clyne R.K., Fuchs J., Loidl J., Uhlmann F., Nasmyth K. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell. 2000;103:387–398. doi: 10.1016/S0092-8674(00)00131-8. PubMed DOI

Alexandru G., Uhlmann F., Mechtler K., Poupart M.A., Nasmyth K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell. 2001;105:459–472. doi: 10.1016/S0092-8674(01)00362-2. PubMed DOI

Hauf S., Roitinger E., Koch B., Dittrich C.M., Mechtler K., Peters J.M. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 2005;3:e69. doi: 10.1371/journal.pbio.0030069. PubMed DOI PMC

Katis V.L., Lipp J.J., Imre R., Bogdanova A., Okaz E., Habermann B., Mechtler K., Nasmyth K., Zachariae W. Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Dev. Cell. 2010;18:397–409. doi: 10.1016/j.devcel.2010.01.014. PubMed DOI PMC

Viadiu H., Stemmann O., Kirschner M.W., Walz T. Domain structure of separase and its binding to securin as determined by EM. Nat. Struct. Mol. Biol. 2005;12:552–553. doi: 10.1038/nsmb935. PubMed DOI

Luo S., Tong L. Molecular mechanism for the regulation of yeast separase by securin. Nature. 2017;542:255–259. doi: 10.1038/nature21061. PubMed DOI PMC

Boland A., Martin T.G., Zhang Z., Yang J., Bai X.C., Chang L., Scheres S.H., Barford D. Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution. Nat. Struct. Mol. Biol. 2017;24:414–418. doi: 10.1038/nsmb.3386. PubMed DOI PMC

Lin Z., Luo X., Yu H. Structural basis of cohesin cleavage by separase. Nature. 2016;532:131–134. doi: 10.1038/nature17402. PubMed DOI PMC

Sun Y., Kucej M., Fan H.Y., Yu H., Sun Q.Y., Zou H. Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner. Cell. 2009;137:123–132. doi: 10.1016/j.cell.2009.01.040. PubMed DOI PMC

Hellmuth S., Gutiérrez-Caballero C., Llano E., Pendás A.M., Stemmann O. Local activation of mammalian separase in interphase promotes double-strand break repair and prevents oncogenic transformation. EMBO J. 2018:37. doi: 10.15252/embj.201899184. PubMed DOI PMC

Hellmuth S., Rata S., Brown A., Heidmann S., Novak B., Stemmann O. Human chromosome segregation involves multi-layered regulation of separase by the peptidyl-prolyl-isomerase Pin1. Mol. Cell. 2015;58:495–506. doi: 10.1016/j.molcel.2015.03.025. PubMed DOI

Stemmann O., Zou H., Gerber S.A., Gygi S.P., Kirschner M.W. Dual inhibition of sister chromatid separation at metaphase. Cell. 2001;107:715–726. doi: 10.1016/S0092-8674(01)00603-1. PubMed DOI

Yu J., Raia P., Ghent C.M., Raisch T., Sadian Y., Cavadini S., Sabale P.M., Barford D., Raunser S., Morgan D.O., et al. Structural basis of human separase regulation by securin and CDK1-cyclin B1. Nature. 2021;596:138–142. doi: 10.1038/s41586-021-03764-0. PubMed DOI PMC

Holland A.J., Taylor S.S. Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. J. Cell Sci. 2006;119:3325–3336. doi: 10.1242/jcs.03083. PubMed DOI

Boos D., Kuffer C., Lenobel R., Körner R., Stemmann O. Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase. J. Biol. Chem. 2008;283:816–823. doi: 10.1074/jbc.M706748200. PubMed DOI

Gorr I.H., Boos D., Stemmann O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell. 2005;19:135–141. doi: 10.1016/j.molcel.2005.05.022. PubMed DOI

Holland A.J., Böttger F., Stemmann O., Taylor S.S. Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J. Biol. Chem. 2007;282:24623–24632. doi: 10.1074/jbc.M702545200. PubMed DOI

Waizenegger I., Giménez-Abián J.F., Wernic D., Peters J.M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 2002;12:1368–1378. doi: 10.1016/S0960-9822(02)01073-4. PubMed DOI

Zou H., Stemman O., Anderson J.S., Mann M., Kirschner M.W. Anaphase specific auto-cleavage of separase. FEBS Lett. 2002;528:246–250. doi: 10.1016/S0014-5793(02)03238-6. PubMed DOI

Funabiki H., Kumada K., Yanagida M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 1996;15:6617–6628. doi: 10.1002/j.1460-2075.1996.tb01052.x. PubMed DOI PMC

Funabiki H., Yamano H., Kumada K., Nagao K., Hunt T., Yanagida M. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature. 1996;381:438–441. doi: 10.1038/381438a0. PubMed DOI

Yamamoto A., Guacci V., Koshland D. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell Biol. 1996;133:85–97. doi: 10.1083/jcb.133.1.85. PubMed DOI PMC

Cohen-Fix O., Peters J.M., Kirschner M.W., Koshland D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 1996;10:3081–3093. doi: 10.1101/gad.10.24.3081. PubMed DOI

Ciosk R., Zachariae W., Michaelis C., Shevchenko A., Mann M., Nasmyth K. An ESP1/PDS1 Complex Regulates Loss of Sister Chromatid Cohesion at the Metaphase to Anaphase Transition in Yeast. Cell. 1998;93:1067–1076. doi: 10.1016/S0092-8674(00)81211-8. PubMed DOI

Zou H., McGarry T.J., Bernal T., Kirschner M.W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999;285:418–422. doi: 10.1126/science.285.5426.418. PubMed DOI

Rosen L.E., Klebba J.E., Asfaha J.B., Ghent C.M., Campbell M.G., Cheng Y., Morgan D.O. Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site. Nat. Commun. 2019;10:5189. doi: 10.1038/s41467-019-13209-y. PubMed DOI PMC

Shindo N., Kumada K., Hirota T. Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition. Dev. Cell. 2012;23:112–123. doi: 10.1016/j.devcel.2012.06.015. PubMed DOI

Hellmuth S., Böttger F., Pan C., Mann M., Stemmann O. PP2A delays APC/C-dependent degradation of separase-associated but not free securin. EMBO J. 2014;33:1134–1147. doi: 10.1002/embj.201488098. PubMed DOI PMC

Thomas C., Wetherall B., Levasseur M.D., Harris R.J., Kerridge S.T., Higgins J.M.G., Davies O.R., Madgwick S. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat. Commun. 2021;12:4322. doi: 10.1038/s41467-021-24554-2. PubMed DOI PMC

Kishimoto T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. Proc. Jpn. Acad. Ser. B. 2018;94:180–203. doi: 10.2183/pjab.94.013. PubMed DOI PMC

Crncec A., Hochegger H. Triggering mitosis. FEBS Lett. 2019;593:2868–2888. doi: 10.1002/1873-3468.13635. PubMed DOI

Holder J., Poser E., Barr F.A. Getting out of mitosis: Spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett. 2019;593:2908–2924. doi: 10.1002/1873-3468.13595. PubMed DOI

Radonova L., Pauerova T., Jansova D., Danadova J., Skultety M., Kubelka M., Anger M. Cyclin A1 in Oocytes Prevents Chromosome Segregation and Anaphase Entry. Sci. Rep. 2020;10:7455. doi: 10.1038/s41598-020-64418-1. PubMed DOI PMC

Papi M., Berdougo E., Randall C.L., Ganguly S., Jallepalli P.V. Multiple roles for separase auto-cleavage during the G2/M transition. Nat. Cell Biol. 2005;7:1029–1035. doi: 10.1038/ncb1303. PubMed DOI

Shindo N., Kumada K., Iemura K., Yasuda J., Fujimori H., Mochizuki M., Tamai K., Tanaka K., Hirota T. Autocleavage of separase suppresses its premature activation by promoting binding to cyclin B1. Cell Rep. 2022;41:111723. doi: 10.1016/j.celrep.2022.111723. PubMed DOI

Hellmuth S., Gómez-H L., Pendás A.M., Stemmann O. Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2. Nature. 2020;580:536–541. doi: 10.1038/s41586-020-2182-3. PubMed DOI

Chiang T., Schultz R.M., Lampson M.A. Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biol. Reprod. 2011;85:1279–1283. doi: 10.1095/biolreprod.111.094094. PubMed DOI PMC

Sun Y., Yu H., Zou H. Nuclear exclusion of separase prevents cohesin cleavage in interphase cells. Cell Cycle. 2006;5:2537–2542. doi: 10.4161/cc.5.21.3407. PubMed DOI

Hornig N.C., Knowles P.P., McDonald N.Q., Uhlmann F. The dual mechanism of separase regulation by securin. Curr. Biol. 2002;12:973–982. doi: 10.1016/S0960-9822(02)00847-3. PubMed DOI

Musacchio A. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr. Biol. 2015;25:R1002–R1018. doi: 10.1016/j.cub.2015.08.051. PubMed DOI

Lara-Gonzalez P., Pines J., Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin. Cell Dev. Biol. 2021;117:86–98. doi: 10.1016/j.semcdb.2021.06.009. PubMed DOI PMC

Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013;14:25–37. doi: 10.1038/nrm3494. PubMed DOI PMC

McVey S.L., Cosby J.K., Nannas N.J. Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int. J. Mol. Sci. 2021;22:8818. doi: 10.3390/ijms22168818. PubMed DOI PMC

Sudakin V., Ganoth D., Dahan A., Heller H., Hershko J., Luca F.C., Ruderman J.V., Hershko A. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell. 1995;6:185–197. doi: 10.1091/mbc.6.2.185. PubMed DOI PMC

Hartwell L.H., Culotti J., Reid B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl. Acad. Sci. USA. 1970;66:352–359. doi: 10.1073/pnas.66.2.352. PubMed DOI PMC

King R.W., Peters J.M., Tugendreich S., Rolfe M., Hieter P., Kirschner M.W. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell. 1995;81:279–288. doi: 10.1016/0092-8674(95)90338-0. PubMed DOI

Peters J.M. The anaphase promoting complex/cyclosome: A machine designed to destroy. Nat. Rev. Mol. Cell Biol. 2006;7:644–656. doi: 10.1038/nrm1988. PubMed DOI

King R.W., Glotzer M., Kirschner M.W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell. 1996;7:1343–1357. doi: 10.1091/mbc.7.9.1343. PubMed DOI PMC

Gregan J., Polakova S., Zhang L., Tolić-Nørrelykke I.M., Cimini D. Merotelic kinetochore attachment: Causes and effects. Trends Cell Biol. 2011;21:374–381. doi: 10.1016/j.tcb.2011.01.003. PubMed DOI PMC

Nagao K., Adachi Y., Yanagida M. Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature. 2004;430:1044–1048. doi: 10.1038/nature02803. PubMed DOI

McAleenan A., Clemente-Blanco A., Cordon-Preciado V., Sen N., Esteras M., Jarmuz A., Aragón L. Post-replicative repair involves separase-dependent removal of the kleisin subunit of cohesin. Nature. 2013;493:250–254. doi: 10.1038/nature11630. PubMed DOI

Stegmeier F., Visintin R., Amon A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell. 2002;108:207–220. doi: 10.1016/S0092-8674(02)00618-9. PubMed DOI

D’Amours D., Amon A. At the interface between signaling and executing anaphase--Cdc14 and the FEAR network. Genes Dev. 2004;18:2581–2595. doi: 10.1101/gad.1247304. PubMed DOI

Sullivan M., Lehane C., Uhlmann F. Orchestrating anaphase and mitotic exit: Separase cleavage and localization of Slk19. Nat. Cell Biol. 2001;3:771–777. doi: 10.1038/ncb0901-771. PubMed DOI PMC

Wurzenberger C., Gerlich D.W. Phosphatases: Providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 2011;12:469–482. doi: 10.1038/nrm3149. PubMed DOI

Kim J., Ishiguro K., Nambu A., Akiyoshi B., Yokobayashi S., Kagami A., Ishiguro T., Pendas A.M., Takeda N., Sakakibara Y., et al. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature. 2015;517:466–471. doi: 10.1038/nature14097. PubMed DOI

Maier N.K., Ma J., Lampson M.A., Cheeseman I.M. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev. Cell. 2021;56:2192–2206.e8. doi: 10.1016/j.devcel.2021.06.019. PubMed DOI PMC

Nigg E.A. Centrosome duplication: Of rules and licenses. Trends Cell Biol. 2007;17:215–221. doi: 10.1016/j.tcb.2007.03.003. PubMed DOI

Tsou M.F., Stearns T. Mechanism limiting centrosome duplication to once per cell cycle. Nature. 2006;442:947–951. doi: 10.1038/nature04985. PubMed DOI

Tsou M.F., Wang W.J., George K.A., Uryu K., Stearns T., Jallepalli P.V. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell. 2009;17:344–354. doi: 10.1016/j.devcel.2009.07.015. PubMed DOI PMC

Schöckel L., Möckel M., Mayer B., Boos D., Stemmann O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat. Cell Biol. 2011;13:966–972. doi: 10.1038/ncb2280. PubMed DOI

Matsuo K., Ohsumi K., Iwabuchi M., Kawamata T., Ono Y., Takahashi M. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 2012;22:915–921. doi: 10.1016/j.cub.2012.03.048. PubMed DOI

Oliveira R.A., Nasmyth K. Cohesin cleavage is insufficient for centriole disengagement in Drosophila. Curr. Biol. 2013;23:R601–R603. doi: 10.1016/j.cub.2013.04.003. PubMed DOI

Hassold T., Hunt P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001;2:280–291. doi: 10.1038/35066065. PubMed DOI

Petronczki M., Siomos M.F., Nasmyth K. Un ménage à quatre: The molecular biology of chromosome segregation in meiosis. Cell. 2003;112:423–440. doi: 10.1016/S0092-8674(03)00083-7. PubMed DOI

Terret M.E., Wassmann K., Waizenegger I., Maro B., Peters J.-M., Verlhac M.-H. The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity. Curr. Biol. 2003;13:1797–1802. doi: 10.1016/j.cub.2003.09.032. PubMed DOI

Herbert M., Levasseur M., Homer H., Yallop K., Murdoch A., McDougall A. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat. Cell Biol. 2003;5:1023–1025. doi: 10.1038/ncb1062. PubMed DOI

Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go. Cells. 2022;11:3399. doi: 10.3390/cells11213399. PubMed DOI PMC

Nabti I., Reis A., Levasseur M., Stemmann O., Jones K.T. Securin and not CDK1/cyclin B1 regulates sister chromatid disjunction during meiosis II in mouse eggs. Dev. Biol. 2008;321:379–386. doi: 10.1016/j.ydbio.2008.06.036. PubMed DOI

Nabti I., Grimes R., Sarna H., Marangos P., Carroll J. Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat. Commun. 2017;8:15346. doi: 10.1038/ncomms15346. PubMed DOI PMC

Huang X., Andreu-Vieyra C.V., Wang M., Cooney A.J., Matzuk M.M., Zhang P. Preimplantation mouse embryos depend on inhibitory phosphorylation of separase to prevent chromosome missegregation. Mol. Cell Biol. 2009;29:1498–1505. doi: 10.1128/MCB.01778-08. PubMed DOI PMC

Levine M.S., Holland A.J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. 2018;32:620–638. doi: 10.1101/gad.314351.118. PubMed DOI PMC

Mei J., Huang X., Zhang P. Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr. Biol. 2001;11:1197–1201. doi: 10.1016/S0960-9822(01)00325-6. PubMed DOI

Wang Z., Yu R., Melmed S. Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol. Endocrinol. 2001;15:1870–1879. doi: 10.1210/mend.15.11.0729. PubMed DOI

Henschke L., Frese M., Hellmuth S., Marx A., Stemmann O., Mayer T.U. Identification of Bioactive Small Molecule Inhibitors of Separase. ACS Chem. Biol. 2019;14:2155–2159. doi: 10.1021/acschembio.9b00661. PubMed DOI

Spiess B., Kleiner H., Flach J., Fabarius A., Saussele S., Hofmann W.K., Seifarth W. Separase activity distribution can be a marker of major molecular response and proliferation of CD34+ cells in TKI-treated chronic myeloid leukemia patients. Ann. Hematol. 2020;99:991–1006. doi: 10.1007/s00277-020-04007-4. PubMed DOI PMC

Jo M., Kusano Y., Hirota T. Unraveling pathologies underlying chromosomal instability in cancers. Cancer Sci. 2021;112:2975–2983. doi: 10.1111/cas.14989. PubMed DOI PMC

Gurvits N., Löyttyniemi E., Nykänen M., Kuopio T., Kronqvist P., Talvinen K. Separase is a marker for prognosis and mitotic activity in breast cancer. Br. J. Cancer. 2017;117:1383–1391. doi: 10.1038/bjc.2017.301. PubMed DOI PMC

Zhang N., Scorsone K., Ge G., Kaffes C.C., Dobrolecki L.E., Mukherjee M., Lewis M.T., Berg S., Stephan C.C., Pati D. Identification and Characterization of Separase Inhibitors (Sepins) for Cancer Therapy. J. Biomol. Screen. 2014;19:878–889. doi: 10.1177/1087057114520972. PubMed DOI

Zhang N., Pati D. Separase Inhibitor Sepin-1 Inhibits Foxm1 Expression and Breast Cancer Cell Growth. J. Cancer Sci. Ther. 2018;10:517. doi: 10.4172/1948-5956.1000517. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...