Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production

. 2021 Apr ; 19 (4) : 767-784. [epub] 20201128

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33112469

Nitrogen-fixing rhizobia and legumes have developed complex mutualistic mechanism that allows to convert atmospheric nitrogen into ammonia. Signalling by mitogen-activated protein kinases (MAPKs) seems to be involved in this symbiotic interaction. Previously, we reported that stress-induced MAPK (SIMK) shows predominantly nuclear localization in alfalfa root epidermal cells. Nevertheless, SIMK is activated and relocalized to the tips of growing root hairs during their development. SIMK kinase (SIMKK) is a well-known upstream activator of SIMK. Here, we characterized production parameters of transgenic alfalfa plants with genetically manipulated SIMK after infection with Sinorhizobium meliloti. SIMKK RNAi lines, causing strong downregulation of both SIMKK and SIMK, showed reduced root hair growth and lower capacity to form infection threads and nodules. In contrast, constitutive overexpression of GFP-tagged SIMK promoted root hair growth as well as infection thread and nodule clustering. Moreover, SIMKK and SIMK downregulation led to decrease, while overexpression of GFP-tagged SIMK led to increase of biomass in above-ground part of plants. These data suggest that genetic manipulations causing downregulation or overexpression of SIMK affect root hair, nodule and shoot formation patterns in alfalfa, and point to the new biotechnological potential of this MAPK.

Zobrazit více v PubMed

Aung, B. , Gruber, M.Y. , Amyot, L. , Omari, K. , Bertrand, A. and Hannoufa, A. (2015) Micro RNA 156 as a promising tool for alfalfa improvement. Plant Biotechnol. J. 13, 779–790. PubMed

Baluška, F. , Ovečka, M. and Hirt, H. (2000a) Salt stress induces changes in amounts and localization of the mitogen‐activated protein kinase SIMK in alfalfa roots. Protoplasma, 212, 262–267.

Baluška, F. , Salaj, J. , Mathur, J. , Braun, M. , Jasper, F. , Šamaj, J. , Chua, N. H. et al. (2000b) Root hair formation: F‐actin‐dependent tip growth is initiated by local assembly of profilin‐supported F‐actin meshworks accumulated within expansin‐enriched bulges. Dev. Biol. 227, 618–632. PubMed

Bekešová, S. , Komis, G. , Křenek, P. , Vyplelová, P. , Ovečka, M. , Luptovčiak, I. and Šamaj, J. (2015) Monitoring protein phosphorylation by acrylamide pendant Phos‐Tag™ in various plants. Front. Plant Sci. 6, 336. PubMed PMC

Biazzi, E. , Nazzicari, N. , Pecetti, L. , Brummer, E.C. , Palmonari, A. , Tava, A. and Annicchiarico, P. (2017) Genome‐wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS One, 12, e0169234. PubMed PMC

Bögre, L. , Calderini, O. , Binarova, P. , Mattauch, M. , Till, S. , Kiegerl, S. , Jonak, C. et al. (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell, 11, 101–113. PubMed PMC

Boivin, C. , Camut, S. , Malpica, C.A. , Truchet, G. and Rosenberg, C. (1990) Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell, 2, 1157–1170. PubMed PMC

van Brussel, A.A. , Bakhuizen, R. , van Spronsen, P.C. , Spaink, H.P. , Tak, T. , Lugtenberg, B.J. and Kijne, J.W. (1992) Induction of pre‐infection thread structures in the leguminous host plant by mitogenic lipo‐oligosaccharides of Rhizobium . Science, 257, 70–72. PubMed

Bubb, M.R. , Spector, I. , Beyer, B.B. and Fosen, K.M. (2000) Effects of jasplakinolide on the kinetics of actin polymerization an explanation for certain in vivo observations. J. Biol. Chem. 275, 5163–5170. PubMed

Caetano‐Anollés, G. and Bauer, W.D. (1988) Feedback regulation of nodule formation in alfalfa. Planta 175, 546–557. PubMed

Caetano‐Anollés, G. , Paparozzi, E.T. and Gresshoff, P.M. (1991) Mature nodules and root tips control nodulation in soybean. J. Plant Physiol. 137, 389–396.

Cardinale, F. , Jonak, C. , Ligterink, W. , Niehaus, K. , Boller, T. and Hirt, H. (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740. PubMed

Cardinale, F. , Meskiene, I. , Ouaked, F. and Hirt, H. (2002) Convergence and divergence of stress‐induced mitogen‐activated protein kinase signaling pathways at the level of two distinct mitogen‐activated protein kinase kinases. Plant Cell, 14, 703–711. PubMed PMC

Carro, L. , Veyisoglu, A. , Riesco, R. , Spröer, C. , Klenk, H.P. , Sahin, N. and Trujillo, M.E. (2018) Micromonospora phytophila sp. nov. and Micromonospora luteiviridis sp. nov., isolated as natural inhabitants of plant nodules. Int. J. Syst. Evol. Microbiol. 68, 248–253. PubMed

Casse, F. , Boucher, C. , Julliot, J.S. , Michel, M. and Denarie, J. (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. Microbiology 113, 229–242.

Chen, T. , Zhou, B. , Duan, L. , Zhu, H. and Zhang, Z. (2017) MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula . Physiol. Plant. 159, 492–503. PubMed

Chen, T. , Zhu, H. , Ke, D. , Cai, K. , Wang, C. , Gou, H. , Hong, Z. et al. (2012) A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus . Plant Cell, 24, 823–838. PubMed PMC

Concha, C. and Doerner, P. (2020) The impact of the rhizobia–legume symbiosis on host root system architecture. J. Exp. Bot. 71, 3902–3921. PubMed PMC

Costes, S.V. , Daelemans, D. , Cho, E.H. , Dobbin, Z. , Pavlakis, G. and Lockett, S. (2004) Automatic and quantitative measurement of protein‐protein colocalization in live cells. Biophys. J . 86, 3993–4003. PubMed PMC

Cristina, M.S. , Petersen, M. and Mundy, J. (2010) Mitogen‐activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649. PubMed

Delves, A.C. , Mathews, A. , Day, D.A. , Carter, A.S. , Carroll, B.J. and Gresshoff, P.M. (1986) Regulation of the soybean‐Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol. 82, 588–590. PubMed PMC

Djordjevic, M.A. , Mohd‐Radzman, N.A. and Imin, N. (2015) Small‐peptide signals that control root nodule number, development, and symbiosis. J. Exp. Bot. 66, 5171–5181. PubMed

Efroni, I. , Eshed, Y. and Lifschitz, E. (2010) Morphogenesis of simple and compound leaves: A critical review. Plant Cell, 22, 1019–1032. PubMed PMC

Fåhreus, G. (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Microbiology, 16, 374–381. PubMed

Gautrat, P. , Laffont, C. and Frugier, F. (2020) Compact Root Architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr. Biol. 30, 1339–1345. PubMed

Ge, Y.Y. , Xiang, Q.W. , Wagner, C. , Zhang, D. , Xie, Z.P. and Staehelin, C. (2016) The type 3 effector NopL ofSinorhizobium sp. strain NGR234 is a mitogen‐activated protein kinase substrate. J. Exp. Bot. 67, 2483–2494. PubMed

Geurts, R. , Xiao, T.T. and Reinhold‐Hurek, B. (2016) What does it take to evolve a nitrogen‐fixing endosymbiosis? Trends Plant Sci. 21, 199–208. PubMed

Gou, J. , Debnath, S. , Sun, L. , Flanagan, A. , Tang, Y. , Jiang, Q. and Wang, Z.Y. (2018) From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 16, 951–962. PubMed PMC

Grimsrud, P.A. , den Os, D. , Wenger, C.D. , Swaney, D.L. , Schwartz, D. , Sussman, M.R. , Ané, J.M. et al. (2010) Large‐scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol. 152, 19–28. PubMed PMC

Heidstra, R. , Yang, W.C. , Yalcin, Y. , Peck, S. , Emons, A.M. , van Kammen, A. and Bisseling, T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor‐induced root hair tip growth in Rhizobium–legume interaction. Development 124, 1781–1787. PubMed

Hyoungseok, L. , Jitae, K. , Jong, H.I. , Ho, B.K. , Chang, J.O. and Chung, S.A. (2008) Mitogen‐Activated Protein Kinase Is Involved in the Symbiotic Interaction between Bradyrhizobium japonicum USDA110 and Soybean. J. Plant Biol. 51, 291–296.

Ichimura, K. , Mizoguchi, T. , Yoshida, R. , Yuasa, T. and Shinozaki, K. (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24, 655–665. PubMed

Jonak, C. , Kiegerl, S. , Hirt, H. , Lloyd, C. and Chan, J. (1995) MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. Mol Gen Genet. 248, 686–694. PubMed

Jonak, C. , Kiegerl, S. , Ligterink, W. , Barker, P.J. , Huskisson, N.S. and Hirt, H. (1996) Stress signaling in plants: a mitogen‐activated protein kinase pathway is activated by cold and drought. Proc. Natl Acad. Sci. 93, 11274–11279. PubMed PMC

Jonak, C. , Okresz, L. , Bögre, L. and Hirt, H. (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5, 415–424. PubMed

Jones, K.M. , Kobayashi, H. , Davies, B.W. , Taga, M.E. and Walker, G.C. (2007) How rhizobial symbionts invade plants: the Sinorhizobium‐Medicago model. Nat. Rev. Microbiol. 5, 619–633. PubMed PMC

Karimi, M. , Bleys, A. , Vanderhaeghen, R. and Hilson, P. (2007) Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191. PubMed PMC

Karimi, M. , De Meyer, B. and Hilson, P. (2005) Modular cloning and expression of tagged fluorescent protein in plant cells. Trends Plant Sci. 10, 103–105. PubMed

Kiegerl, S. , Cardinale, F. , Siligan, C. , Gross, A. , Baudouin, E. and Liwosz, A. (2000) SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK. Plant Cell 12, 2247–2258. PubMed PMC

Kitaeva, A.B. , Demchenko, K.N. , Tikhonovich, I.A. , Timmers, A.C. and Tsyganov, V.E. (2016) Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol. 210, 168–183. PubMed

Komis, G. , Novák, D. , Ovečka, M. , Šamajová, O. and Šamaj, J. (2018) Advances in imaging plant cell dynamics. Plant Physiol. 176, 80–93. PubMed PMC

Lei, Y. , Hannoufa, A. and Yu, P. (2017) The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. Int. J. Mol. Sci. 18, 298. PubMed PMC

Lopez‐Gomez, M. , Sandal, N. , Stougaard, J. and Boller, T. (2012) Interplay of flg22‐induced defence responses and nodulation in Lotus japonicus . J. Exp. Bot. 63, 393–401. PubMed PMC

Manders, E.M.M. , Verbeek, F.J. and Aten, J.A. (1993) Measurement of co‐localization of objects in dual‐colour confocal images. J. Microsc. 169, 375–382. PubMed

Mortier, V. , Den Herder, G. , Whitford, R. , Van de Velde, W. , Rombauts, S. , D’Haeseleer, K. , Holsters, M. et al. (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol. 153, 222–237. PubMed PMC

Mortier, V. , Holsters, M. and Goormachtig, S. (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ. 35, 245–258. PubMed

Munnik, T. , Ligterink, W. , Meskiene, I. , Calderini, O. , Beyerly, J. , Musgrave, A. and Hirt, H. (1999) Distinct osmo‐sensing protein kinase pathways are involved in signalling moderate and severe hyper‐osmotic stress. Plant J. 20, 381–388. PubMed

Oldroyd, G.E. (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252–264. PubMed

Oldroyd, G.E. , Murray, J.D. , Poole, P.S. and Downie, J.A. (2011) The rules of engagement in the legume‐rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144. PubMed

Ovečka, M. , Takáč, T. , Komis, G. , Vadovič, P. , Bekešová, S. , Doskočilová, A. , Smékalová, V. et al. (2014) Salt‐induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis . J. Exp. Bot. 65, 2335–2350. PubMed PMC

Perret, X. , Staehelin, C. and Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201. PubMed PMC

Pierce, M. and Bauer, W.D. (1983) A rapid regulatory response governing nodulation in soybean. Plant Physiol. 73, 286–290. PubMed PMC

Pitzschke, A. , Schikora, A. and Hirt, H. (2009) MAPK cascade signaling networks in plant defence. Curr. Opin. Plant Biol. 12, 421–426. PubMed

Radović, J. , Lugić, Z. , Jevtić, G. , Mrfat‐Vukelić, S. and Ignjatović, S. (2003) Variability for production and morfological traits of alfalfa (Medicago sativa L.). Czech J. Genet. Plant Breeding, 39, A1‐A3. (Special issue).

Radović, J. , Sokolović, D. and Marković, J. (2009) Alfalfa‐most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husband. 25, 465–475.

Rasmussen, M.W. , Roux, M. , Petersen, M. and Mundy, J. (2012) MAP kinase cascades in Arabidopsis innate immunity Front. Plant Sci. 3, 169. PubMed PMC

Remigi, P. , Zhu, J. , Young, J.P. and Masson‐Boivin, C. (2016) Symbiosis within Symbiosis: Evolving Nitrogen‐Fixing Legume Symbionts. Trends Microbiol. 24, 63–75. PubMed

Roy, S. , Liu, W. , Nandety, R. S. , Crook, A. , Mysore, K. S. , Pislariu, C. I. , Frugoli, J. et al. (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 32, 15–41. PubMed PMC

Ryu, H. , Cho, H. , Choi, D. and Hwang, I. (2012) Plant hormonal regulation of nitrogen‐fixing nodule organogenesis. Mol. Cells, 34, 117–126. PubMed PMC

Ryu, H. , Laffont, C. , Frugier, F. and Hwang, I. (2017) MAP kinase‐mediated negative regulation of symbiotic nodule formation in Medicago truncatula . Mol. Cells, 40, 17–23. PubMed PMC

Samac, D.A. and Austin‐Phillips, S. (2006) Alfalfa (Medicago sativa L.). In Agrobacterium Protocols. Methods Mol Biol. ( Wang, K. , ed) 343, pp, 301–312. Clifton, N.J.: Humana Press. PubMed

Šamaj, J. , Ovečka, M. , Hlavačka, A. , Lecourieux, F. , Meskiene, I. , Lichtscheidl, I. , Baluška, F. et al., (2002) Involvement of the mitogen‐activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–3306. PubMed PMC

Šamajová, O. , Komis, G. and Šamaj, J. (2013b) Emerging topics in the cell biology of mitogen‐activated protein kinases. Trends Plant Sci. 18, 140–148. PubMed

Šamajová, O. , Plíhal, O. , Al‐Yousif, M. , Hirt, H. and Šamaj, J. (2013a) Improvement of stress tolerance in plants by genetic manipulation of mitogen‐activated protein kinases. Biotechnol. Adv. 31, 118–128. PubMed

Sasaki, T. , Suzaki, T. , Soyano, T. , Kojima, M. , Sakakibara, H. and Kawaguchi, M. (2014) Shoot‐derived cytokinins systemically regulate root nodulation. Nat. Commun. 5, 4983. PubMed

Saur, I. , Oakes, M. , Djordjevic, M.A. and Imin, N. (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula . New Phytol. 190, 865–874. PubMed

Schnabel, E. , Journet, E.P. , de Carvalho‐Niebel, F. , Duc, G. and Frugoli, J. (2005) The Medicago truncatula SUNN gene encodes a CLV1‐like leucine‐rich repeat receptor kinase that regulates nodule number and root length. Plant Mol. Biol. 58, 809–822. PubMed

Sinha, A.K. , Jaggi, M. , Raghuram, B. and Tuteja, N. (2011) Mitogen‐activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6, 196–203. PubMed PMC

Smékalová, V. , Doskočilová, A. , Komis, G. and Šamaj, J. (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32, 2–11. PubMed

Stracke, S. , Kistner, C. , Yoshida, S. , Mulder, L. , Sato, S. , Kaneko, T. , Tabata, S. et al. (2002) A plant receptor‐like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959–962. PubMed

Takáč, T. , Šamajová, O. , Luptovčiak, I. , Pechan, T. and Šamaj, J. (2017) Feedback microtubule control and microtubule‐actin cross‐talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Proteomics, 16, 1591–1609. PubMed PMC

Tichá, M. , Hlaváčková, K. , Hrbáčková, M. , Ovečka, M. , Šamajová, O. and Šamaj, J. (2020) Super‐resolution imaging of microtubules in Medicago sativa . Methods Cell Biol. 160, 237–251. PubMed

Wang, Q. , Liu, J. and Zhu, H. (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume‐rhizobium interactions. Front. Plant Sci. 9, 313. PubMed PMC

Yin, J. , Guan, X. , Zhang, H. , Wang, L. , Li, H. , Zhang, Q. , Chen, T. et al. (2019) An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus . Sci. China Life Sci. 62, 1–15. PubMed

Zhang, J.Y. , Broeckling, C.D. , Blancaflor, E.B. , Sledge, M.K. , Sumner, L.W. and Wang, Z.Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain‐containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace