Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33112469
PubMed Central
PMC8051612
DOI
10.1111/pbi.13503
Knihovny.cz E-zdroje
- Klíčová slova
- Medicago sativa, SIMK, SIMKK, infection thread, nodule, root hair,
- MeSH
- biomasa MeSH
- Medicago sativa * genetika MeSH
- mitogenem aktivované proteinkinasy kinas MeSH
- rostlinné proteiny * genetika MeSH
- shluková analýza MeSH
- symbióza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitogenem aktivované proteinkinasy kinas MeSH
- rostlinné proteiny * MeSH
Nitrogen-fixing rhizobia and legumes have developed complex mutualistic mechanism that allows to convert atmospheric nitrogen into ammonia. Signalling by mitogen-activated protein kinases (MAPKs) seems to be involved in this symbiotic interaction. Previously, we reported that stress-induced MAPK (SIMK) shows predominantly nuclear localization in alfalfa root epidermal cells. Nevertheless, SIMK is activated and relocalized to the tips of growing root hairs during their development. SIMK kinase (SIMKK) is a well-known upstream activator of SIMK. Here, we characterized production parameters of transgenic alfalfa plants with genetically manipulated SIMK after infection with Sinorhizobium meliloti. SIMKK RNAi lines, causing strong downregulation of both SIMKK and SIMK, showed reduced root hair growth and lower capacity to form infection threads and nodules. In contrast, constitutive overexpression of GFP-tagged SIMK promoted root hair growth as well as infection thread and nodule clustering. Moreover, SIMKK and SIMK downregulation led to decrease, while overexpression of GFP-tagged SIMK led to increase of biomass in above-ground part of plants. These data suggest that genetic manipulations causing downregulation or overexpression of SIMK affect root hair, nodule and shoot formation patterns in alfalfa, and point to the new biotechnological potential of this MAPK.
Zobrazit více v PubMed
Aung, B. , Gruber, M.Y. , Amyot, L. , Omari, K. , Bertrand, A. and Hannoufa, A. (2015) Micro RNA 156 as a promising tool for alfalfa improvement. Plant Biotechnol. J. 13, 779–790. PubMed
Baluška, F. , Ovečka, M. and Hirt, H. (2000a) Salt stress induces changes in amounts and localization of the mitogen‐activated protein kinase SIMK in alfalfa roots. Protoplasma, 212, 262–267.
Baluška, F. , Salaj, J. , Mathur, J. , Braun, M. , Jasper, F. , Šamaj, J. , Chua, N. H. et al. (2000b) Root hair formation: F‐actin‐dependent tip growth is initiated by local assembly of profilin‐supported F‐actin meshworks accumulated within expansin‐enriched bulges. Dev. Biol. 227, 618–632. PubMed
Bekešová, S. , Komis, G. , Křenek, P. , Vyplelová, P. , Ovečka, M. , Luptovčiak, I. and Šamaj, J. (2015) Monitoring protein phosphorylation by acrylamide pendant Phos‐Tag™ in various plants. Front. Plant Sci. 6, 336. PubMed PMC
Biazzi, E. , Nazzicari, N. , Pecetti, L. , Brummer, E.C. , Palmonari, A. , Tava, A. and Annicchiarico, P. (2017) Genome‐wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS One, 12, e0169234. PubMed PMC
Bögre, L. , Calderini, O. , Binarova, P. , Mattauch, M. , Till, S. , Kiegerl, S. , Jonak, C. et al. (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell, 11, 101–113. PubMed PMC
Boivin, C. , Camut, S. , Malpica, C.A. , Truchet, G. and Rosenberg, C. (1990) Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell, 2, 1157–1170. PubMed PMC
van Brussel, A.A. , Bakhuizen, R. , van Spronsen, P.C. , Spaink, H.P. , Tak, T. , Lugtenberg, B.J. and Kijne, J.W. (1992) Induction of pre‐infection thread structures in the leguminous host plant by mitogenic lipo‐oligosaccharides of Rhizobium . Science, 257, 70–72. PubMed
Bubb, M.R. , Spector, I. , Beyer, B.B. and Fosen, K.M. (2000) Effects of jasplakinolide on the kinetics of actin polymerization an explanation for certain in vivo observations. J. Biol. Chem. 275, 5163–5170. PubMed
Caetano‐Anollés, G. and Bauer, W.D. (1988) Feedback regulation of nodule formation in alfalfa. Planta 175, 546–557. PubMed
Caetano‐Anollés, G. , Paparozzi, E.T. and Gresshoff, P.M. (1991) Mature nodules and root tips control nodulation in soybean. J. Plant Physiol. 137, 389–396.
Cardinale, F. , Jonak, C. , Ligterink, W. , Niehaus, K. , Boller, T. and Hirt, H. (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J. Biol. Chem. 275, 36734–36740. PubMed
Cardinale, F. , Meskiene, I. , Ouaked, F. and Hirt, H. (2002) Convergence and divergence of stress‐induced mitogen‐activated protein kinase signaling pathways at the level of two distinct mitogen‐activated protein kinase kinases. Plant Cell, 14, 703–711. PubMed PMC
Carro, L. , Veyisoglu, A. , Riesco, R. , Spröer, C. , Klenk, H.P. , Sahin, N. and Trujillo, M.E. (2018) Micromonospora phytophila sp. nov. and Micromonospora luteiviridis sp. nov., isolated as natural inhabitants of plant nodules. Int. J. Syst. Evol. Microbiol. 68, 248–253. PubMed
Casse, F. , Boucher, C. , Julliot, J.S. , Michel, M. and Denarie, J. (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. Microbiology 113, 229–242.
Chen, T. , Zhou, B. , Duan, L. , Zhu, H. and Zhang, Z. (2017) MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula . Physiol. Plant. 159, 492–503. PubMed
Chen, T. , Zhu, H. , Ke, D. , Cai, K. , Wang, C. , Gou, H. , Hong, Z. et al. (2012) A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus . Plant Cell, 24, 823–838. PubMed PMC
Concha, C. and Doerner, P. (2020) The impact of the rhizobia–legume symbiosis on host root system architecture. J. Exp. Bot. 71, 3902–3921. PubMed PMC
Costes, S.V. , Daelemans, D. , Cho, E.H. , Dobbin, Z. , Pavlakis, G. and Lockett, S. (2004) Automatic and quantitative measurement of protein‐protein colocalization in live cells. Biophys. J . 86, 3993–4003. PubMed PMC
Cristina, M.S. , Petersen, M. and Mundy, J. (2010) Mitogen‐activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649. PubMed
Delves, A.C. , Mathews, A. , Day, D.A. , Carter, A.S. , Carroll, B.J. and Gresshoff, P.M. (1986) Regulation of the soybean‐Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol. 82, 588–590. PubMed PMC
Djordjevic, M.A. , Mohd‐Radzman, N.A. and Imin, N. (2015) Small‐peptide signals that control root nodule number, development, and symbiosis. J. Exp. Bot. 66, 5171–5181. PubMed
Efroni, I. , Eshed, Y. and Lifschitz, E. (2010) Morphogenesis of simple and compound leaves: A critical review. Plant Cell, 22, 1019–1032. PubMed PMC
Fåhreus, G. (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Microbiology, 16, 374–381. PubMed
Gautrat, P. , Laffont, C. and Frugier, F. (2020) Compact Root Architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr. Biol. 30, 1339–1345. PubMed
Ge, Y.Y. , Xiang, Q.W. , Wagner, C. , Zhang, D. , Xie, Z.P. and Staehelin, C. (2016) The type 3 effector NopL ofSinorhizobium sp. strain NGR234 is a mitogen‐activated protein kinase substrate. J. Exp. Bot. 67, 2483–2494. PubMed
Geurts, R. , Xiao, T.T. and Reinhold‐Hurek, B. (2016) What does it take to evolve a nitrogen‐fixing endosymbiosis? Trends Plant Sci. 21, 199–208. PubMed
Gou, J. , Debnath, S. , Sun, L. , Flanagan, A. , Tang, Y. , Jiang, Q. and Wang, Z.Y. (2018) From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol. J. 16, 951–962. PubMed PMC
Grimsrud, P.A. , den Os, D. , Wenger, C.D. , Swaney, D.L. , Schwartz, D. , Sussman, M.R. , Ané, J.M. et al. (2010) Large‐scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol. 152, 19–28. PubMed PMC
Heidstra, R. , Yang, W.C. , Yalcin, Y. , Peck, S. , Emons, A.M. , van Kammen, A. and Bisseling, T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor‐induced root hair tip growth in Rhizobium–legume interaction. Development 124, 1781–1787. PubMed
Hyoungseok, L. , Jitae, K. , Jong, H.I. , Ho, B.K. , Chang, J.O. and Chung, S.A. (2008) Mitogen‐Activated Protein Kinase Is Involved in the Symbiotic Interaction between Bradyrhizobium japonicum USDA110 and Soybean. J. Plant Biol. 51, 291–296.
Ichimura, K. , Mizoguchi, T. , Yoshida, R. , Yuasa, T. and Shinozaki, K. (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24, 655–665. PubMed
Jonak, C. , Kiegerl, S. , Hirt, H. , Lloyd, C. and Chan, J. (1995) MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. Mol Gen Genet. 248, 686–694. PubMed
Jonak, C. , Kiegerl, S. , Ligterink, W. , Barker, P.J. , Huskisson, N.S. and Hirt, H. (1996) Stress signaling in plants: a mitogen‐activated protein kinase pathway is activated by cold and drought. Proc. Natl Acad. Sci. 93, 11274–11279. PubMed PMC
Jonak, C. , Okresz, L. , Bögre, L. and Hirt, H. (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5, 415–424. PubMed
Jones, K.M. , Kobayashi, H. , Davies, B.W. , Taga, M.E. and Walker, G.C. (2007) How rhizobial symbionts invade plants: the Sinorhizobium‐Medicago model. Nat. Rev. Microbiol. 5, 619–633. PubMed PMC
Karimi, M. , Bleys, A. , Vanderhaeghen, R. and Hilson, P. (2007) Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191. PubMed PMC
Karimi, M. , De Meyer, B. and Hilson, P. (2005) Modular cloning and expression of tagged fluorescent protein in plant cells. Trends Plant Sci. 10, 103–105. PubMed
Kiegerl, S. , Cardinale, F. , Siligan, C. , Gross, A. , Baudouin, E. and Liwosz, A. (2000) SIMKK, a mitogen‐activated protein kinase (MAPK) kinase, is a specific activator of the salt stress‐induced MAPK, SIMK. Plant Cell 12, 2247–2258. PubMed PMC
Kitaeva, A.B. , Demchenko, K.N. , Tikhonovich, I.A. , Timmers, A.C. and Tsyganov, V.E. (2016) Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol. 210, 168–183. PubMed
Komis, G. , Novák, D. , Ovečka, M. , Šamajová, O. and Šamaj, J. (2018) Advances in imaging plant cell dynamics. Plant Physiol. 176, 80–93. PubMed PMC
Lei, Y. , Hannoufa, A. and Yu, P. (2017) The use of gene modification and advanced molecular structure analyses towards improving alfalfa forage. Int. J. Mol. Sci. 18, 298. PubMed PMC
Lopez‐Gomez, M. , Sandal, N. , Stougaard, J. and Boller, T. (2012) Interplay of flg22‐induced defence responses and nodulation in Lotus japonicus . J. Exp. Bot. 63, 393–401. PubMed PMC
Manders, E.M.M. , Verbeek, F.J. and Aten, J.A. (1993) Measurement of co‐localization of objects in dual‐colour confocal images. J. Microsc. 169, 375–382. PubMed
Mortier, V. , Den Herder, G. , Whitford, R. , Van de Velde, W. , Rombauts, S. , D’Haeseleer, K. , Holsters, M. et al. (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol. 153, 222–237. PubMed PMC
Mortier, V. , Holsters, M. and Goormachtig, S. (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ. 35, 245–258. PubMed
Munnik, T. , Ligterink, W. , Meskiene, I. , Calderini, O. , Beyerly, J. , Musgrave, A. and Hirt, H. (1999) Distinct osmo‐sensing protein kinase pathways are involved in signalling moderate and severe hyper‐osmotic stress. Plant J. 20, 381–388. PubMed
Oldroyd, G.E. (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252–264. PubMed
Oldroyd, G.E. , Murray, J.D. , Poole, P.S. and Downie, J.A. (2011) The rules of engagement in the legume‐rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144. PubMed
Ovečka, M. , Takáč, T. , Komis, G. , Vadovič, P. , Bekešová, S. , Doskočilová, A. , Smékalová, V. et al. (2014) Salt‐induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis . J. Exp. Bot. 65, 2335–2350. PubMed PMC
Perret, X. , Staehelin, C. and Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201. PubMed PMC
Pierce, M. and Bauer, W.D. (1983) A rapid regulatory response governing nodulation in soybean. Plant Physiol. 73, 286–290. PubMed PMC
Pitzschke, A. , Schikora, A. and Hirt, H. (2009) MAPK cascade signaling networks in plant defence. Curr. Opin. Plant Biol. 12, 421–426. PubMed
Radović, J. , Lugić, Z. , Jevtić, G. , Mrfat‐Vukelić, S. and Ignjatović, S. (2003) Variability for production and morfological traits of alfalfa (Medicago sativa L.). Czech J. Genet. Plant Breeding, 39, A1‐A3. (Special issue).
Radović, J. , Sokolović, D. and Marković, J. (2009) Alfalfa‐most important perennial forage legume in animal husbandry. Biotechnol. Anim. Husband. 25, 465–475.
Rasmussen, M.W. , Roux, M. , Petersen, M. and Mundy, J. (2012) MAP kinase cascades in Arabidopsis innate immunity Front. Plant Sci. 3, 169. PubMed PMC
Remigi, P. , Zhu, J. , Young, J.P. and Masson‐Boivin, C. (2016) Symbiosis within Symbiosis: Evolving Nitrogen‐Fixing Legume Symbionts. Trends Microbiol. 24, 63–75. PubMed
Roy, S. , Liu, W. , Nandety, R. S. , Crook, A. , Mysore, K. S. , Pislariu, C. I. , Frugoli, J. et al. (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 32, 15–41. PubMed PMC
Ryu, H. , Cho, H. , Choi, D. and Hwang, I. (2012) Plant hormonal regulation of nitrogen‐fixing nodule organogenesis. Mol. Cells, 34, 117–126. PubMed PMC
Ryu, H. , Laffont, C. , Frugier, F. and Hwang, I. (2017) MAP kinase‐mediated negative regulation of symbiotic nodule formation in Medicago truncatula . Mol. Cells, 40, 17–23. PubMed PMC
Samac, D.A. and Austin‐Phillips, S. (2006) Alfalfa (Medicago sativa L.). In Agrobacterium Protocols. Methods Mol Biol. ( Wang, K. , ed) 343, pp, 301–312. Clifton, N.J.: Humana Press. PubMed
Šamaj, J. , Ovečka, M. , Hlavačka, A. , Lecourieux, F. , Meskiene, I. , Lichtscheidl, I. , Baluška, F. et al., (2002) Involvement of the mitogen‐activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–3306. PubMed PMC
Šamajová, O. , Komis, G. and Šamaj, J. (2013b) Emerging topics in the cell biology of mitogen‐activated protein kinases. Trends Plant Sci. 18, 140–148. PubMed
Šamajová, O. , Plíhal, O. , Al‐Yousif, M. , Hirt, H. and Šamaj, J. (2013a) Improvement of stress tolerance in plants by genetic manipulation of mitogen‐activated protein kinases. Biotechnol. Adv. 31, 118–128. PubMed
Sasaki, T. , Suzaki, T. , Soyano, T. , Kojima, M. , Sakakibara, H. and Kawaguchi, M. (2014) Shoot‐derived cytokinins systemically regulate root nodulation. Nat. Commun. 5, 4983. PubMed
Saur, I. , Oakes, M. , Djordjevic, M.A. and Imin, N. (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula . New Phytol. 190, 865–874. PubMed
Schnabel, E. , Journet, E.P. , de Carvalho‐Niebel, F. , Duc, G. and Frugoli, J. (2005) The Medicago truncatula SUNN gene encodes a CLV1‐like leucine‐rich repeat receptor kinase that regulates nodule number and root length. Plant Mol. Biol. 58, 809–822. PubMed
Sinha, A.K. , Jaggi, M. , Raghuram, B. and Tuteja, N. (2011) Mitogen‐activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6, 196–203. PubMed PMC
Smékalová, V. , Doskočilová, A. , Komis, G. and Šamaj, J. (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol. Adv. 32, 2–11. PubMed
Stracke, S. , Kistner, C. , Yoshida, S. , Mulder, L. , Sato, S. , Kaneko, T. , Tabata, S. et al. (2002) A plant receptor‐like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959–962. PubMed
Takáč, T. , Šamajová, O. , Luptovčiak, I. , Pechan, T. and Šamaj, J. (2017) Feedback microtubule control and microtubule‐actin cross‐talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Mol. Cell. Proteomics, 16, 1591–1609. PubMed PMC
Tichá, M. , Hlaváčková, K. , Hrbáčková, M. , Ovečka, M. , Šamajová, O. and Šamaj, J. (2020) Super‐resolution imaging of microtubules in Medicago sativa . Methods Cell Biol. 160, 237–251. PubMed
Wang, Q. , Liu, J. and Zhu, H. (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume‐rhizobium interactions. Front. Plant Sci. 9, 313. PubMed PMC
Yin, J. , Guan, X. , Zhang, H. , Wang, L. , Li, H. , Zhang, Q. , Chen, T. et al. (2019) An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus . Sci. China Life Sci. 62, 1–15. PubMed
Zhang, J.Y. , Broeckling, C.D. , Blancaflor, E.B. , Sledge, M.K. , Sumner, L.W. and Wang, Z.Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain‐containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707. PubMed