Advanced microscopy resolves dynamic localization patterns of stress-induced mitogen-activated protein kinase (SIMK) during alfalfa root hair interactions with Ensifer meliloti
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36951479
PubMed Central
PMC10299790
DOI
10.1093/jxb/erad111
PII: 7084758
Knihovny.cz E-zdroje
- Klíčová slova
- Ensifer meliloti, Alfalfa, MAPKs, SIMK, immunolocalization, infection pocket, infection thread, light-sheet fluorescence microscopy, root hairs, subcellular localization,
- MeSH
- Medicago sativa genetika metabolismus MeSH
- mikroskopie MeSH
- mitogenem aktivované proteinkinasy * metabolismus MeSH
- rostliny metabolismus MeSH
- Sinorhizobium meliloti * metabolismus MeSH
- symbióza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitogenem aktivované proteinkinasy * MeSH
Leguminous plants have established mutualistic endosymbiotic interactions with nitrogen-fixing rhizobia to secure nitrogen sources in root nodules. Before nodule formation, the development of early symbiotic structures is essential for rhizobia docking, internalization, targeted delivery, and intracellular accommodation. We recently reported that overexpression of stress-induced mitogen-activated protein kinase (SIMK) in alfalfa affects root hair, nodule, and shoot formation, raising the question of how SIMK modulates these processes. In particular, detailed subcellular spatial distribution, activation, and developmental relocation of SIMK during early stages of alfalfa nodulation remain unclear. Here, we characterized SIMK distribution in Ensifer meliloti-infected root hairs using live-cell imaging and immunolocalization, employing alfalfa stable transgenic lines with genetically manipulated SIMK abundance and kinase activity. In the SIMKK-RNAi line, showing down-regulation of SIMKK and SIMK, we found considerably decreased accumulation of phosphorylated SIMK around infection pockets and infection threads. However, this was strongly increased in the GFP-SIMK line, constitutively overexpressing green fluorescent protein (GFP)-tagged SIMK. Thus, genetically manipulated SIMK modulates root hair capacity to form infection pockets and infection threads. Advanced light-sheet fluorescence microscopy on intact plants allowed non-invasive imaging of spatiotemporal interactions between root hairs and symbiotic E. meliloti, while immunofluorescence detection confirmed that SIMK was activated in these locations. Our results shed new light on SIMK spatiotemporal participation in early interactions between alfalfa and E. meliloti, and its internalization into root hairs, showing that local accumulation of active SIMK modulates early nodulation in alfalfa.
Zobrazit více v PubMed
Bekešová S, Komis G, Křenek P, Vyplelová P, Ovečka M, Luptovčiak I, Šamaj J.. 2015. Monitoring protein phosphorylation by acrylamide pendant Phos-Tag™ in various plants. Frontiers in Plant Science 6, 336. PubMed PMC
Bisseling T, Geurts R.. 2020. Specificity in legume nodule symbiosis. Science 369, 620–621. PubMed
Brewin NJ. 2004. Plant cell wall remodeling in the rhizobium–legume symbiosis. Critical Reviews in Plant Sciences 23, 293–316.
Brundrett MC. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154, 275–304. PubMed
Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H.. 2000. Differential activation of four specific MAPK pathways by distinct elicitors. Journal of Biological Chemistry 275, 36734–36740. PubMed
Cardinale F, Meskiene I, Ouaked F, Hirt H.. 2002. Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. The Plant Cell 14, 703–711. PubMed PMC
Checcucci A, Azzarello E, Bazzicalupo M, et al. . 2016. Mixed nodule infection in Sinorhizobium meliloti–Medicago sativa symbiosis suggest the presence of cheating behavior. Frontiers in Plant Science 7, 835. PubMed PMC
Chen T, Zhou B, Duan L, Zhu H, Zhang Z.. 2017. MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula. Physiologia Plantarum 159, 492–503. PubMed
Chen T, Zhu H, Ke D, Cai K, Wang C, Gou H, Hong Z, Zhang Z.. 2012. A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. The Plant Cell 24, 823–838. PubMed PMC
Clúa J, Roda C, Zanetti ME, Blanco FA.. 2018. Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes (Basel) 9, 125. PubMed PMC
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S.. 2004. Automatic and quantitative measurement of protein–protein colocalization in live cells. Biophysical Journal 86, 3993–4003. PubMed PMC
Dénarié J, Cullimore J.. 1993. Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell 74, 951–954. PubMed
Downie JA. 2010. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews 34, 150–170. PubMed
Fåhreus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Journal of General Microbiology 16, 374–381. PubMed
Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG.. 2015. Remodelling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiology 167, 1233–1242. PubMed PMC
Fournier J, Timmers AC, Sieberer BJ, Jauneau A, Chabaud M, Barker DG.. 2008. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiology 148, 1985–1995. PubMed PMC
Gage DJ. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews 68, 280–300. PubMed PMC
Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ.. 2010. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiology 152, 19–28. PubMed PMC
Hrbáčková M, Luptovčiak I, Hlaváčková K, et al. . 2021. Overexpression of alfalfa SIMK promotes root hair growth, nodule clustering and shoot biomass production. Plant Biotechnology Journal 19, 767–784. PubMed PMC
Ibáñez F, Wall L, Fabra A.. 2017. Starting points in plant–bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. Journal of Experimental Botany 68, 1905–1918. PubMed
Kidaj D, Krysa M, Susniak K, Matys J, Komaniecka I, Sroka-Bartnicka A.. 2020. Biological activity of Nod factors. Acta Biochimica Polonica 67, 435–440. PubMed
Kiegerl S, Cardinale F, Siligan C, et al. . 2000. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. The Plant Cell 12, 2247–2258. PubMed PMC
Komis G, Šamajová O, Ovečka M, Šamaj J.. 2018. Cell and developmental biology of plant mitogen-activated protein kinases. Annual Review of Plant Biology 69, 237–265. PubMed
Laus MC, Logman TJ, Lamers GE, Van Brussel AAN, Carlson RW, Kijne JW.. 2006. A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology 59, 1704–1713. PubMed
Lopez-Gomez M, Sandal N, Stougaard J, Boller T.. 2012. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. Journal of Experimental Botany 63, 393–401. PubMed PMC
Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H.. 1999. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. The Plant Journal 20, 381–388. PubMed
Oldroyd GED. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews. Microbiology 11, 252–263. PubMed
Oldroyd GED, Downie JA.. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annual Review of Plant Biology 59, 519–546. PubMed
Oldroyd GED, Murray JD, Poole PS, Downie JA.. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annual Review of Genetics 45, 119–144. PubMed
Ovečka M, Sojka J, Tichá M, Komis G, Basheer J, Marchetti C, Šamajová O, Kuběnová L, Šamaj J.. 2022. Imaging plant cells and organs with light-sheet and super-resolution microscopy. Plant Physiology 188, 683–702. PubMed PMC
Ovečka M, Takáč T, Komis G, et al. . 2014. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. Journal of Experimental Botany 65, 2335–2350. PubMed PMC
Ovečka M, Vaškebová L, Komis G, Luptovčiak I, Smertenko A, Šamaj J.. 2015. Preparation of plants for developmental and cellular imaging by lightsheet microscopy. Nature Protocols 10, 1234–1247. PubMed
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J.. 2018. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nature Plants 4, 639–650. PubMed
Pitzschke A. 2015. Modes of MAPK substrate recognition and control. Trends in Plant Science 20, 49–55. PubMed
Poole P, Ramachandran V, Terpolilli J.. 2018. Rhizobia: from saprophytes to endosymbionts. Nature Reviews. Microbiology 16, 291–303. PubMed
Rae AE, Rolland V, White RG, Mathesius U.. 2021. New methods for confocal imaging of infection threads in crop and model legumes. Plant Methods 17, 24. PubMed PMC
Rashid MH, Krehenbrink M, Akhtar MS.. 2015. Nitrogen-fixing plant–microbe symbioses. In: Lichtfouse E, eds. Sustainable agriculture reviews, Vol. 15. Cham: Springer International Publishing, 193−234.
Rasmussen MW, Roux M, Petersen M, Mundy J.. 2012. MAP kinase cascades in Arabidopsis innate immunity. Frontiers in Plant Science 3, 169. PubMed PMC
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK.. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell 32, 15–41. PubMed PMC
Ryu H, Laffont C, Frugier F, Hwang I.. 2017. MAP kinase-mediated negative regulation of symbiotic nodule formation in Medicago truncatula. Molecules and Cells 40, 17–23. PubMed PMC
Samac DA, Austin-Phillips S.. 2006. Alfalfa (Medicago sativa L.). Methods in Molecular Biology 343, 301–312. PubMed
Šamaj J, Ovečka M, Hlavacka A, et al. . 2002. Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. The EMBO Journal 21, 3296–3306. PubMed PMC
Šamaj J, Ovečka M, Hlavacka A, et al. . 2003. Involvement of MAP kinase SIMK and actin cytoskeleton in the regulation of root hair tip growth. Cell Biology International 27, 257–259. PubMed
Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J.. 2013. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnology Advances 31, 118–128. PubMed
Smékalová V, Doskočilová A, Komis G, Šamaj J.. 2014. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnology Advances 32, 2–11. PubMed
Smit G, Swart S, Lugtenberg BJJ, Kijne JW.. 1992. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Molecular Microbiology 6, 2897–2903. PubMed
Sprent JI. 2008. 60Ma of legume nodulation. What’s new? What’s changing? Journal of Experimental Botany 59, 1081–1084. PubMed
Sprent JI, James E.. 2007. Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiology 144, 575–581. PubMed PMC
Sun T, Zhang Y.. 2022. MAP kinase cascades in plant development and immune signaling. EMBO Reports 23, e53817. PubMed PMC
Terpolilli JJ, Hood GA, Poole PS.. 2012. What determines the efficiency of N2-fixing Rhizobium–legume symbioses. Advances in Microbial Physiology 60, 325–389. PubMed
Tichá M, Hlaváčková K, Hrbáčková M, Ovečka M, Šamajová O, Šamaj J.. 2020. Super-resolution imaging of microtubules in Medicago sativa. Methods in Cell Biology 160, 237–251. PubMed
Timmers ACJ. 2008. The role of the plant cytoskeleton in the interaction between legumes and rhizobia. Journal of Microscopy 231, 247–256. PubMed
Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M, Bainar P, Heckmann S, Tomancak P, Riha K.. 2020. Imaging plant germline differentiation within Arabidopsis flower by light sheet microscopy. eLife 9, e52546. PubMed PMC
Vyplelová P, Ovečka M, Komis G, Šamaj J.. 2018. Advanced microscopy methods for bioimaging of mitotic microtubules in plants. Methods in Cell Biology 145, 129–158. PubMed
Wang Q, Liu J, Zhu H.. 2018. Genetic and molecular mechanisms underlying symbiotic specificity in legume–rhizobium interactions. Frontiers in Plant Science 9, 313. PubMed PMC
White J, Prell J, James EK, Poole P.. 2007. Nutrient sharing between symbionts. Plant Physiology 144, 604–614. PubMed PMC
Xu J, Zhang S.. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science 20, 56–64. PubMed
Yan Z, Cao J, Fan Q, Chao H, Guan X, Zhang Z, Duanmu D.. 2020. Dephosphorylation of LjMPK6 by phosphatase LjPP2C is involved in regulating nodule organogenesis in Lotus japonicus. International Journal of Molecular Sciences 21, 5565. PubMed PMC
Yang J, Lan L, Jin Y, Yu N, Wang D, Wang E.. 2022. Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology 64, 244–267. PubMed
Yin J, Guan X, Zhang H, et al. . 2019. An MAP kinase interacts with LHK1 and regulates nodule organogenesis in Lotus japonicus. Science China Life Science 62, 1203–1217. PubMed
Zhang M, Zhang S.. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64, 301–341. PubMed