Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants

. 2019 ; 10 () : 362. [epub] 20190405

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31024579

Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.

Zobrazit více v PubMed

Andreeva Z., Barton D., Armour W. J., Li M. Y., Liao L. F., McKellar H. L., et al. . (2010). Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Planta 232, 1263–1279. 10.1007/s00425-010-1256-0, PMID: PubMed DOI

Angelini J., Vosolsobě S., Skůpa P., Ho A. Y. Y., Bellinvia E., Valentová O., et al. . (2018). Phospholipase Dδ assists to cortical microtubule recovery after salt stress. Protoplasma 255, 1195–1204. 10.1007/s00709-018-1204-6, PMID: PubMed DOI

Antonescu C. N., Danuser G., Schmid S. L. (2010). Phosphatidic acid plays a regulatory role in clathrin-mediated endocytosis. Mol. Biol. Cell 21, 2944–2952. 10.1091/mbc.E10-05-0421 PubMed DOI PMC

Apostolakos P., Panteris E., Galatis B. (2008). The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. Cell Motil. Cytoskeleton 65, 863–875. 10.1002/cm.20308, PMID: PubMed DOI

Arisz S. A., Munnik T. (2011). The salt stress-induced LPA response in Chlamydomonas is produced via PLA 2 hydrolysis of DGK-generated phosphatidic acid. J. Lipid Res. 52, 2012–2020. 10.1194/jlr.M016873, PMID: PubMed DOI PMC

Arisz S. A., Testerink C., Munnik T. (2009). Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta 1791, 869–875. 10.1016/j.bbalip.2009.04.006 PubMed DOI

Bahn S. C., Lee H. Y., Kim H. J., Ryu S. B., Shin J. S. (2003). Characterization of Arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties. FEBS Lett. 553, 113–118. 10.1016/S0014-5793(03)00982-7 PubMed DOI

Bargmann B. O. R., Laxalt A. M., Riet B. t., van Schooten B., Merquiol E., Testerink C., et al. . (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. 10.1093/pcp/pcn173, PMID: PubMed DOI PMC

Boutté Y., Moreau P. (2014). Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. Curr. Opin. Plant Biol. 22, 22–29. 10.1016/j.pbi.2014.08.004, PMID: PubMed DOI

Camoni L., Di Lucente C., Pallucca R., Visconti S., Aducci P. (2012). Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 64, 710–716. 10.1002/iub.1058, PMID: PubMed DOI

Chandrika N. N. P., Sundaravelpandian K., Yu S.-M., Schmidt W. (2013). ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol. 198, 709–720. 10.1111/nph.12194, PMID: PubMed DOI

Chen G., Greer M. S., Weselake R. J. (2013). Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. Biomol. Concepts 4, 527–532. 10.1515/bmc-2013-0011, PMID: PubMed DOI

Chen G., Snyder C. L., Greer M. S., Weselake R. J. (2011). Biology and biochemistry of plant phospholipases. Crit. Rev. Plant Sci. 30, 239–258. 10.1080/07352689.2011.572033 DOI

Chen X., Li L., Xu B., Zhao S., Lu P., He Y., et al. . (2018). Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. Plant Cell Environ. in press. 10.1111/pce.13492, PMID: PubMed DOI

Cruz-Ramírez A., Oropeza-Aburto A., Razo-Hernández F., Ramírez-Chávez E., Herrera-Estrella L. (2006). Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc. Natl. Acad. Sci. U.S.A. 103, 6765–6770. 10.1073/pnas.0600863103 PubMed DOI PMC

den Hartog M., Musgrave A., Munnik T. (2001). Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 25, 55–65. 10.1046/j.1365-313x.2001.00931.x, PMID: PubMed DOI

Dhonukshe P., Laxalt A. M., Goedhart J., Gadella T. W. J., Munnik T. (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666–2679. 10.1105/tpc.014977, PMID: PubMed DOI PMC

di Fino L. M., D’Ambrosio J. M., Tejos R., van Wijk R., Lamattina L., Munnik T., et al. . (2017). Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta 245, 717–728. 10.1007/s00425-016-2634-z, PMID: PubMed DOI

Donaldson J. G. (2009). Phospholipase D in endocytosis and endosomal recycling pathways. Biochim. Biophys. Acta 1791, 845–849. 10.1016/j.bbalip.2009.05.011 PubMed DOI PMC

Dong Y., Li M., Zhang P., Wang X., Fan C., Zhou Y. (2014). Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC Plant Biol. 14:332. 10.1186/s12870-014-0332-1, PMID: PubMed DOI PMC

Dowd P. E., Coursol S., Skirpan A. L., Kao T. H., Gilroy S. (2006). Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18, 1438–1453. 10.1105/tpc.106.041582, PMID: PubMed DOI PMC

Effendi Y., Radatz K., Labusch C., Rietz S., Wimalasekera R., Helizon H., et al. . (2014). Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype: phospholipase A pPLA-I in auxin and light signalling. Plant Cell Environ. 37, 1626–1640. 10.1111/pce.12278, PMID: PubMed DOI

Fan L., Zheng S., Cui D., Wang X. (1999). Subcellular distribution and tissue expression of phospholipase Dalpha, Dbeta, and Dgamma in Arabidopsis. Plant Physiol. 119, 1371–1378. 10.1104/pp.119.4.1371, PMID: PubMed DOI PMC

Gao H.-B., Chu Y.-J., Xue H.-W. (2013). Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Mol. Plant 6, 1692–1702. 10.1093/mp/sst076, PMID: PubMed DOI

Gao K., Liu Y.-L., Li B., Zhou R.-G., Sun D.-Y., Zheng S.-Z. (2014). Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol. 55, 1873–1883. 10.1093/pcp/pcu116, PMID: PubMed DOI

Gaude N., Nakamura Y., Scheible W.-R., Ohta H., Dörmann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56, 28–39. 10.1111/j.1365-313X.2008.03582.x, PMID: PubMed DOI

Guo J., Wang S., Valerius O., Hall H., Zeng Q., Li J. F., et al. . (2011). Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol. 155, 370–383. 10.1104/pp.110.160663, PMID: PubMed DOI PMC

Guo L., Mishra G., Markham J. E., Li M., Tawfall A., Welti R., et al. . (2012). Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J. Biol. Chem. 287, 8286–8296. 10.1074/jbc.M111.274274, PMID: PubMed DOI PMC

Heilmann I. (2016). Phosphoinositide signaling in plant development. Development 143, 2044–2055. 10.1242/dev.136432, PMID: PubMed DOI

Helling D., Possart A., Cottier S., Klahre U., Kost B. (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18, 3519–3534. 10.1105/tpc.106.047373, PMID: PubMed DOI PMC

Hong Y., Devaiah S. P., Bahn S. C., Thamasandra B. N., Li M., Welti R., et al. . (2009). Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J. 58, 376–387. 10.1111/j.1365-313X.2009.03788.x, PMID: PubMed DOI PMC

Hong Y., Pan X., Welti R., Wang X. (2008). Phospholipase D 3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20, 803–816. 10.1105/tpc.107.056390, PMID: PubMed DOI PMC

Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., et al. . (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55–74. 10.1016/j.plipres.2016.01.002, PMID: PubMed DOI

Hou Q., Ufer G., Bartels D. (2016). Lipid signalling in plant responses to abiotic stress: lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–1048. 10.1111/pce.12666, PMID: PubMed DOI

Huang S. (2001). Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol. 125, 573–584. 10.1104/pp.125.2.573, PMID: PubMed DOI PMC

Huang S. (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol. Biol. Cell 17, 1946–1958. 10.1091/mbc.E05-09-0840 PubMed DOI PMC

Huang C. H., Crain R. C. (2009). Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton. Planta 230, 925–933. 10.1007/s00425-009-0990-7, PMID: PubMed DOI

Huo C., Zhang B., Wang H., Wang F., Liu M., Gao Y., et al. . (2016). Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol. Cell. Proteomics 15, 1397–1411. 10.1074/mcp.M115.049759, PMID: PubMed DOI PMC

Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13, 2191–2209. 10.1105/tpc.13.10.2191, PMID: PubMed DOI PMC

Ito T., Ng K. H., Lim T. S., Yu H., Meyerowitz E. M. (2007). The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19, 3516–3529. 10.1105/tpc.107.055467, PMID: PubMed DOI PMC

Janda M., Šašek V., Chmelařová H., Andrejch J., Nováková M., Hajšlová J., et al. . (2015). Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Front. Plant Sci. 6:59. 10.3389/fpls.2015.00059, PMID: PubMed DOI PMC

Jang J. H., Lee O. R. (2019). Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis. J. Ginseng Res. in press. 10.1016/j.jgr.2019.01.004 PubMed DOI PMC

Jung J., Kumar K., Lee H. Y., Park Y.-I., Cho H.-T., Ryu S. B. (2012). Translocation of phospholipase A2α to apoplasts is modulated by developmental stages and bacterial infection in Arabidopsis. Front. Plant Sci. 3:126. 10.3389/fpls.2012.00126, PMID: PubMed DOI PMC

Kanehara K., Yu C.-Y., Cho Y., Cheong W.-F., Torta F., Shui G., et al. . (2015). Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genet. 11:e1005511. 10.1371/journal.pgen.1005511, PMID: PubMed DOI PMC

Kato T., Morita M. T., Fukaki H., Yamauchi Y., Uehara M., Niihama M., et al. . (2002). SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14, 33–46. 10.1105/tpc.010215, PMID: PubMed DOI PMC

Kim H. J., Ok S. H., Bahn S. C., Jang J., Oh S. A., Park S. K., et al. . (2011). Endoplasmic reticulum– and golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell 23, 94–110. 10.1105/tpc.110.074799, PMID: PubMed DOI PMC

Kim S. C., Guo L., Wang X. (2013). Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J. Biol. Chem. 288, 11834–11844. 10.1074/jbc.M112.427229, PMID: PubMed DOI PMC

Kimata Y., Kato T., Higaki T., Kurihara D., Yamada T., Segami S., et al. . (2019). Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. Proc. Natl. Acad. Sci. U. S. A. 116, 2338–2343. 10.1073/pnas.1814160116, PMID: PubMed DOI PMC

Krčková Z., Brouzdová J., Daněk M., Kocourková D., Rainteau D., Ruelland E., et al. . (2015). Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front. Plant Sci. 6:928. 10.3389/fpls.2015.00928, PMID: PubMed DOI PMC

Krčková Z., Kocourková D., Daněk M., Brouzdová J., Pejchar P., Janda M., et al. . (2018). The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann. Bot. 121, 297–310. 10.1093/aob/mcx160, PMID: PubMed DOI PMC

Labusch C., Shishova M., Effendi Y., Li M., Wang X., Scherer G. F. E. (2013). Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. Mol. Plant 6, 1473–1486. 10.1093/mp/sst053, PMID: PubMed DOI

Lanteri M. L., Laxalt A. M., Lamattina L. (2008). Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol. 147, 188–198. 10.1104/pp.107.111815, PMID: PubMed DOI PMC

Lee H. Y. (2003). Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15, 1990–2002. 10.1105/tpc.014423, PMID: PubMed DOI PMC

Lee H. Y., Bahn S. C., Shin J. S., Hwang I., Back K., Doelling J. H., et al. . (2005). Multiple forms of secretory phospholipase A2 in plants. Prog. Lipid Res. 44, 52–67. 10.1016/j.plipres.2004.10.002, PMID: PubMed DOI

Lee O. R., Kim S. J., Kim H. J., Hong J. K., Ryu S. B., Lee S. H., et al. (2010). Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell 22, 1812–1825. 10.1105/tpc.110.074211 PubMed DOI PMC

Li G., Xue H.-W. (2007). Arabidopsis PLD 2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19, 281–295. 10.1105/tpc.106.041426, PMID: PubMed DOI PMC

Li L., He Y., Wang Y., Zhao S., Chen X., Ye T., et al. . (2015). Arabidopsis PLC2 is involved in auxin-modulated reproductive development. Plant J. 84, 504–515. 10.1111/tpj.13016, PMID: PubMed DOI

Li M., Bahn S. C., Guo L., Musgrave W., Berg H., Welti R., et al. . (2011). Patatin-related phospholipase pPLAIII-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23, 1107–1123. 10.1105/tpc.110.081240, PMID: PubMed DOI PMC

Li M., Qin C., Welti R., Wang X. (2006a). Double knockouts of phospholipases Dzeta1 and Dzeta2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol. 140, 761–770. 10.1104/pp.105.070995 PubMed DOI PMC

Li M., Wang X. (2014). “pPLA: patatin-related phospholipase as with multiple biological functions” in Phospholipases in plant signaling. ed. Wang X. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 93–108.

Li M., Welti R., Wang X. (2006b). Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol. 142, 750–761. 10.1104/pp.106.085647 PubMed DOI PMC

Lindeboom J. J., Nakamura M., Hibbel A., Shundyak K., Gutierrez R., Ketelaar T., et al. . (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533. 10.1126/science.1245533, PMID: PubMed DOI

Liu G., Zhang K., Ai J., Deng X., Hong Y., wang X. (2015). Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. J. Exp. Bot. 66, 6945–6955. 10.1093/jxb/erv402, PMID: PubMed DOI PMC

Long W., Wang Y., Zhu S., Jing W., Wang Y., Ren Y., et al. . (2018). FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiol. 177, 698–712. 10.1104/pp.17.01826, PMID: PubMed DOI PMC

Luptovčiak I., Komis G., Takáč T., Ovečka M., Šamaj J. (2017). Katanin: a sword cutting microtubules for cellular, developmental, and physiological purposes. Front. Plant Sci. 8:1982. 10.3389/fpls.2017.01982, PMID: PubMed DOI PMC

Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264–266. 10.1126/science.1123769, PMID: PubMed DOI

Morita M. T., Kato T., Nagafusa K., Saito C., Ueda T., Nakano A., et al. . (2002). Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14, 47–56. 10.1105/tpc.010216, PMID: PubMed DOI PMC

Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280, 7469–7476. 10.1074/jbc.M408799200, PMID: PubMed DOI

Ngo A. H., Lin Y.-C., Liu Y., Gutbrod K., Peisker H., Dörmann P., et al. . (2018). A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in Arabidopsis. New Phytol. 219, 163–175. 10.1111/nph.15147, PMID: PubMed DOI

Noack L. C., Jaillais Y. (2017). Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22–33. 10.1016/j.pbi.2017.06.017, PMID: PubMed DOI

Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. . (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9:371. 10.3389/fpls.2018.00371, PMID: PubMed DOI PMC

Pandey S. (2016). Phospholipases as GTPase activity accelerating proteins (GAPs) in plants. Plant Signal. Behav. 11:e1176821. 10.1080/15592324.2016.1176821, PMID: PubMed DOI PMC

Park K. Y., Kim E. Y., Seo Y. S., Kim W. T. (2016). Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants. Plant Mol. Biol. 90, 517–532. 10.1007/s11103-016-0440-4, PMID: PubMed DOI

Pejchar P., Potocký M., Krčková Z., Brouzdová J., Daněk M., Martinec J. (2015). Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana. Front. Plant Sci. 6:66. 10.3389/fpls.2015.00066, PMID: PubMed DOI PMC

Peng Y. J., Shih C. F., Yang J. Y., Tan C. M., Hsu W. H., Huang Y. P., et al. . (2013). A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis. Plant J. 74, 310–327. 10.1111/tpj.12122, PMID: PubMed DOI

Peters C., Kim S. C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 37, 2002–2013. 10.1111/pce.12334, PMID: PubMed DOI

Peters C., Li M., Narasimhan R., Roth M., Welti R., Wang X. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22, 2642–2659. 10.1105/tpc.109.071720, PMID: PubMed DOI PMC

Pinosa F., Buhot N., Kwaaitaal M., Fahlberg P., Thordal-Christensen H., Ellerstrom M., et al. . (2013). Arabidopsis phospholipase D is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol. 163, 896–906. 10.1104/pp.113.223503, PMID: PubMed DOI PMC

Pleskot R., Li J., Žárský V., Potocký M., Staiger C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18, 496–504. 10.1016/j.tplants.2013.04.005, PMID: PubMed DOI

Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. . (2012). Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front. Plant Sci. 3:54. 10.3389/fpls.2012.00054, PMID: PubMed DOI PMC

Pleskot R., Potocký M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. . (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62, 494–507. 10.1111/j.1365-313X.2010.04168.x, PMID: PubMed DOI

Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. . (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog. Lipid Res. 52, 62–79. 10.1016/j.plipres.2012.09.001, PMID: PubMed DOI

Potocký M., Eliás M., Profotová B., Novotná Z., Valentová O., Zárský V. (2003). Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217, 122–130. 10.1007/s00425-002-0965-4, PMID: PubMed DOI

Ren H., Gao K., Liu Y., Sun D., Zheng S. (2017). The role of AtPLC3 and AtPLC9 in thermotolerance in Arabidopsis. Plant Signal. Behav. 12:e1162368. 10.1080/15592324.2016.1162368, PMID: PubMed DOI PMC

Repp A., Mikami K., Mittmann F., Hartmann E. (2004). Phosphoinositide-specific phospholipase C is involved in cytokinin and gravity responses in the moss Physcomitrella patens. Plant J. 40, 250–259. 10.1111/j.1365-313X.2004.02205.x, PMID: PubMed DOI

Rietz S., Dermendjiev G., Oppermann E., Tafesse F. G., Effendi Y., Holk A., et al. . (2010). Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol. Plant 3, 524–538. 10.1093/mp/ssp109, PMID: PubMed DOI

Roth M. G. (2008). Molecular mechanisms of PLD function in membrane traffic. Traffic 9, 1233–1239. 10.1111/j.1600-0854.2008.00742.x, PMID: PubMed DOI

Roy Choudhury S., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86, 50–61. 10.1111/tpj.13151, PMID: PubMed DOI

Sang Y., Cui D., Wang X. (2001). Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126, 1449–1458. 10.1104/pp.126.4.1449, PMID: PubMed DOI PMC

Sassi M., Ali O., Boudon F., Cloarec G., Abad U., Cellier C., et al. . (2014). An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr. Biol. 24, 2335–2342. 10.1016/j.cub.2014.08.036, PMID: PubMed DOI

Scandola S., Samuel M. A. (2019). A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr. Biol. 29, 506–512.e4. 10.1016/j.cub.2018.12.037 PubMed DOI

Scherer G. F. E., Labusch C., Effendi Y. (2012). Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model. Front. Plant Sci. 3:56. 10.3389/fpls.2012.00056, PMID: PubMed DOI PMC

Scherer G. F. E., Ryu S. B., Wang X., Matos A. R., Heitz T. (2010). Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci. 15, 693–700. 10.1016/j.tplants.2010.09.005, PMID: PubMed DOI

Selvy P. E., Lavieri R. R., Lindsley C. W., Brown H. A. (2011). Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064–6119. 10.1021/cr200296t, PMID: PubMed DOI PMC

Seo Y. S., Kim E. Y., Kim W. T. (2011). The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability. J. Exp. Bot. 62, 5683–5698. 10.1093/jxb/err250, PMID: PubMed DOI PMC

Seo Y. S., Kim E. Y., Mang H. G., Kim W. T. (2008). Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J. Cell Mol. Biol. 53, 895–908. 10.1111/j.1365-313X.2007.03380.x, PMID: PubMed DOI

Singh A., Bhatnagar N., Pandey A., Pandey G. K. (2015). Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58, 139–146. 10.1016/j.ceca.2015.04.003, PMID: PubMed DOI

Su Y., Li M., Guo L., Wang X. (2018). Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant J. 94, 315–326. 10.1111/tpj.13858, PMID: PubMed DOI

Tabata R., Ikezaki M., Fujibe T., Aida M., Tian C. E., Ueno Y., et al. (2010). Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol. 51, 64–75. 10.1093/pcp/pcp176 PubMed DOI

Takáč T., Šamajová O., Pechan T., Šamaj J. (2019a). Proteomic analysis of Arabidopsis pldα1 mutants revealed an important role of phospholipase D alpha 1 in chloroplast biogenesis. Front. Plant Sci. 10:89. 10.3389/fpls.2019.00089 PubMed DOI PMC

Takáč T., Šamajová O., Vadovič P., Pechan T., Šamaj J. (2019b). Shot-gun proteomic analysis on roots of Arabidopsis pldα1 mutants suggesting the involvement of PLDα1 in mitochondrial protein import, vesicular trafficking and glucosinolate biosynthesis. Int. J. Mol. Sci. 20:E82. 10.3390/ijms20010082 PubMed DOI PMC

Tasma I. M., Brendel V., Whitham S. A., Bhattacharyya M. K. (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol. Biochem. 46, 627–637. 10.1016/j.plaphy.2008.04.015, PMID: PubMed DOI

Ufer G., Gertzmann A., Gasulla F., Röhrig H., Bartels D. (2017). Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. Plant J. 92, 276–290. 10.1111/tpj.13651, PMID: PubMed DOI

Umezawa T., Sugiyama N., Takahashi F., Anderson J. C., Ishihama Y., Peck S. C., et al. . (2013). Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6:rs8. 10.1126/scisignal.2003509, PMID: PubMed DOI

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. . (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 159, 450–460. 10.1104/pp.112.195578, PMID: PubMed DOI PMC

Vadovič P., Šamajová O., Takáč T., Novák D., Zapletalová V., Colcombet J., et al. (2019). Biochemical and genetic interactions of phospholipase D alpha 1 and mitogen activated protein kinase 3 affect Arabidopsis stress response. Front. Plant Sci. 10:275. 10.3389/fpls.2019.00275 PubMed DOI PMC

Wang G., Ryu S., Wang X. (2012). “Plant phospholipases: an overview” in Lipases and phospholipases. ed. Sandoval G. (Totowa, NJ: Humana Press; ), 123–137. PubMed

Wasternack C., Song S. (2016). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. J. Exp. Bot. 68, 1303–1321. 10.1093/jxb/erw443, PMID: PubMed DOI

Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol. Plant 3, 610–625. 10.1093/mp/ssq005, PMID: PubMed DOI

Wang X. (Ed.) (2014). Phospholipases in plant signaling. (Berlin, Heidelberg: Springer Berlin Heidelberg; ).

Xia K., Wang B., Zhang J., Li Y., Yang H., Ren D. (2017). Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance: AtPLC4 negatively regulates salt tolerance. Plant Cell Environ. 40, 1317–1331. 10.1111/pce.12918, PMID: PubMed DOI

Yamaguchi T., Kuroda M., Yamakawa H., Ashizawa T., Hirayae K., Kurimoto L., et al. . (2009). Suppression of a phospholipase D gene, OsPLDβ1, activates defense responses and increases disease resistance in rice. Plant Physiol. 150, 308–319. 10.1104/pp.108.131979, PMID: PubMed DOI PMC

Yamaoka S., Shimono Y., Shirakawa M., Fukao Y., Kawase T., Hatsugai N., et al. . (2013). Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. Plant Cell 25, 2958–2969. 10.1105/tpc.113.114082, PMID: PubMed DOI PMC

Yao H., Wang G., Guo L., Wang X. (2013). Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell 25, 5030–5042. 10.1105/tpc.113.120162 PubMed DOI PMC

Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. . (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762–773. 10.1111/j.1469-8137.2010.03422.x, PMID: PubMed DOI

Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. . (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555–4576. 10.1105/tpc.112.104182, PMID: PubMed DOI PMC

Zhang Q., Qu Y., Wang Q., Song P., Wang P., Jia Q., et al. (2017a). Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. J. Plant Res. 130, 193–202. 10.1007/s10265-016-0870-8 PubMed DOI

Zhang Q., Song P., Qu Y., Wang P., Jia Q., Guo L., et al. (2017b). Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis: PLD regulation of microtubules and heat shock. Plant Cell Environ. 40, 2220–2235. 10.1111/pce.13023 PubMed DOI

Zhang Q., van Wijk R., Shahbaz M., Roels W., van Schooten B., Vermeer J. E. M., et al. (2018a). Arabidopsis phospholipase C3 is involved in lateral root initiation and ABA responses in seed germination and stomatal closure. Plant Cell Physiol. 59, 469–486. 10.1093/pcp/pcx194 PubMed DOI

Zhang Q., van Wijk R., Zarza X., Shahbaz M., van Hooren M., Guardia A., et al. (2018b). Knock-down of Arabidopsis PLC5 reduces primary root growth and secondary root formation while overexpression improves drought tolerance and causes stunted root hair growth. Plant Cell Physiol. 59, 2004–2019. 10.1093/pcp/pcy120 PubMed DOI

Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. J. Exp. Bot. 66, 1721–1736. 10.1093/jxb/eru540, PMID: PubMed DOI PMC

Zhao J., Wang C., Bedair M., Welti R., Sumner L. W., Baxter I., et al. . (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS One 6:e28086. 10.1371/journal.pone.0028086, PMID: PubMed DOI PMC

Zheng S.-Z., Liu Y.-L., Li B., Shang Z.- l., Zhou R.-G., Sun D.-Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis: AtPLC9 plays a role in thermotolerance. Plant J. 69, 689–700. 10.1111/j.1365-313X.2011.04823.x, PMID: PubMed DOI

Zheng Y., Li M., Wang X. (2014). Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIδ in Arabidopsis thaliana. Plant Signal. Behav. 9:e28519. 10.4161/psb.28519, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...