Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31024579
PubMed Central
PMC6459882
DOI
10.3389/fpls.2019.00362
Knihovny.cz E-zdroje
- Klíčová slova
- cellular functions, phosphatidic acid, phospholipase A, phospholipase C, phospholipase D, phospholipases, phytohormones, plant development,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Zobrazit více v PubMed
Andreeva Z., Barton D., Armour W. J., Li M. Y., Liao L. F., McKellar H. L., et al. (2010). Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in PubMed DOI
Angelini J., Vosolsobě S., Skůpa P., Ho A. Y. Y., Bellinvia E., Valentová O., et al. (2018). Phospholipase Dδ assists to cortical microtubule recovery after salt stress. Protoplasma 255, 1195–1204. 10.1007/s00709-018-1204-6, PMID: PubMed DOI
Antonescu C. N., Danuser G., Schmid S. L. (2010). Phosphatidic acid plays a regulatory role in clathrin-mediated endocytosis. Mol. Biol. Cell 21, 2944–2952. 10.1091/mbc.E10-05-0421 PubMed DOI PMC
Apostolakos P., Panteris E., Galatis B. (2008). The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. Cell Motil. Cytoskeleton 65, 863–875. 10.1002/cm.20308, PMID: PubMed DOI
Arisz S. A., Munnik T. (2011). The salt stress-induced LPA response in PubMed DOI PMC
Arisz S. A., Testerink C., Munnik T. (2009). Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta 1791, 869–875. 10.1016/j.bbalip.2009.04.006 PubMed DOI
Bahn S. C., Lee H. Y., Kim H. J., Ryu S. B., Shin J. S. (2003). Characterization of PubMed DOI
Bargmann B. O. R., Laxalt A. M., Riet B. t., van Schooten B., Merquiol E., Testerink C., et al. (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. 10.1093/pcp/pcn173, PMID: PubMed DOI PMC
Boutté Y., Moreau P. (2014). Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. Curr. Opin. Plant Biol. 22, 22–29. 10.1016/j.pbi.2014.08.004, PMID: PubMed DOI
Camoni L., Di Lucente C., Pallucca R., Visconti S., Aducci P. (2012). Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 64, 710–716. 10.1002/iub.1058, PMID: PubMed DOI
Chandrika N. N. P., Sundaravelpandian K., Yu S.-M., Schmidt W. (2013). ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in PubMed DOI
Chen G., Greer M. S., Weselake R. J. (2013). Plant phospholipase A: advances in molecular biology, biochemistry, and cellular function. Biomol. Concepts 4, 527–532. 10.1515/bmc-2013-0011, PMID: PubMed DOI
Chen G., Snyder C. L., Greer M. S., Weselake R. J. (2011). Biology and biochemistry of plant phospholipases. Crit. Rev. Plant Sci. 30, 239–258. 10.1080/07352689.2011.572033 DOI
Chen X., Li L., Xu B., Zhao S., Lu P., He Y., et al. (2018). Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. Plant Cell Environ. in press. 10.1111/pce.13492, PMID: PubMed DOI
Cruz-Ramírez A., Oropeza-Aburto A., Razo-Hernández F., Ramírez-Chávez E., Herrera-Estrella L. (2006). Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in PubMed DOI PMC
den Hartog M., Musgrave A., Munnik T. (2001). Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 25, 55–65. 10.1046/j.1365-313x.2001.00931.x, PMID: PubMed DOI
Dhonukshe P., Laxalt A. M., Goedhart J., Gadella T. W. J., Munnik T. (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666–2679. 10.1105/tpc.014977, PMID: PubMed DOI PMC
di Fino L. M., D’Ambrosio J. M., Tejos R., van Wijk R., Lamattina L., Munnik T., et al. (2017). PubMed DOI
Donaldson J. G. (2009). Phospholipase D in endocytosis and endosomal recycling pathways. Biochim. Biophys. Acta 1791, 845–849. 10.1016/j.bbalip.2009.05.011 PubMed DOI PMC
Dong Y., Li M., Zhang P., Wang X., Fan C., Zhou Y. (2014). Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in PubMed DOI PMC
Dowd P. E., Coursol S., Skirpan A. L., Kao T. H., Gilroy S. (2006). Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18, 1438–1453. 10.1105/tpc.106.041582, PMID: PubMed DOI PMC
Effendi Y., Radatz K., Labusch C., Rietz S., Wimalasekera R., Helizon H., et al. (2014). Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype: phospholipase A pPLA-I in auxin and light signalling. Plant Cell Environ. 37, 1626–1640. 10.1111/pce.12278, PMID: PubMed DOI
Fan L., Zheng S., Cui D., Wang X. (1999). Subcellular distribution and tissue expression of phospholipase Dalpha, Dbeta, and Dgamma in PubMed DOI PMC
Gao H.-B., Chu Y.-J., Xue H.-W. (2013). Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Mol. Plant 6, 1692–1702. 10.1093/mp/sst076, PMID: PubMed DOI
Gao K., Liu Y.-L., Li B., Zhou R.-G., Sun D.-Y., Zheng S.-Z. (2014). PubMed DOI
Gaude N., Nakamura Y., Scheible W.-R., Ohta H., Dörmann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of PubMed DOI
Guo J., Wang S., Valerius O., Hall H., Zeng Q., Li J. F., et al. (2011). Involvement of PubMed DOI PMC
Guo L., Mishra G., Markham J. E., Li M., Tawfall A., Welti R., et al. (2012). Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in PubMed DOI PMC
Heilmann I. (2016). Phosphoinositide signaling in plant development. Development 143, 2044–2055. 10.1242/dev.136432, PMID: PubMed DOI
Helling D., Possart A., Cottier S., Klahre U., Kost B. (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18, 3519–3534. 10.1105/tpc.106.047373, PMID: PubMed DOI PMC
Hong Y., Devaiah S. P., Bahn S. C., Thamasandra B. N., Li M., Welti R., et al. (2009). Phospholipase Dε and phosphatidic acid enhance PubMed DOI PMC
Hong Y., Pan X., Welti R., Wang X. (2008). Phospholipase D 3 is involved in the hyperosmotic response in PubMed DOI PMC
Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., et al. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55–74. 10.1016/j.plipres.2016.01.002, PMID: PubMed DOI
Hou Q., Ufer G., Bartels D. (2016). Lipid signalling in plant responses to abiotic stress: lipid signalling in plant responses to abiotic stress. Plant Cell Environ. 39, 1029–1048. 10.1111/pce.12666, PMID: PubMed DOI
Huang S. (2001). Cloning of an PubMed DOI PMC
Huang S. (2006). Heterodimeric capping protein from PubMed DOI PMC
Huang C. H., Crain R. C. (2009). Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton. Planta 230, 925–933. 10.1007/s00425-009-0990-7, PMID: PubMed DOI
Huo C., Zhang B., Wang H., Wang F., Liu M., Gao Y., et al. (2016). Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol. Cell. Proteomics 15, 1397–1411. 10.1074/mcp.M115.049759, PMID: PubMed DOI PMC
Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in PubMed DOI PMC
Ito T., Ng K. H., Lim T. S., Yu H., Meyerowitz E. M. (2007). The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in PubMed DOI PMC
Janda M., Šašek V., Chmelařová H., Andrejch J., Nováková M., Hajšlová J., et al. (2015). Phospholipase D affects translocation of NPR1 to the nucleus in PubMed DOI PMC
Jang J. H., Lee O. R. (2019). Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in PubMed DOI PMC
Jung J., Kumar K., Lee H. Y., Park Y.-I., Cho H.-T., Ryu S. B. (2012). Translocation of phospholipase A2α to apoplasts is modulated by developmental stages and bacterial infection in PubMed DOI PMC
Kanehara K., Yu C.-Y., Cho Y., Cheong W.-F., Torta F., Shui G., et al. (2015). PubMed DOI PMC
Kato T., Morita M. T., Fukaki H., Yamauchi Y., Uehara M., Niihama M., et al. (2002). SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of PubMed DOI PMC
Kim H. J., Ok S. H., Bahn S. C., Jang J., Oh S. A., Park S. K., et al. (2011). Endoplasmic reticulum– and golgi-localized phospholipase A PubMed DOI PMC
Kim S. C., Guo L., Wang X. (2013). Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in PubMed DOI PMC
Kimata Y., Kato T., Higaki T., Kurihara D., Yamada T., Segami S., et al. (2019). Polar vacuolar distribution is essential for accurate asymmetric division of PubMed DOI PMC
Krčková Z., Brouzdová J., Daněk M., Kocourková D., Rainteau D., Ruelland E., et al. (2015). PubMed DOI PMC
Krčková Z., Kocourková D., Daněk M., Brouzdová J., Pejchar P., Janda M., et al. (2018). The PubMed DOI PMC
Labusch C., Shishova M., Effendi Y., Li M., Wang X., Scherer G. F. E. (2013). Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. Mol. Plant 6, 1473–1486. 10.1093/mp/sst053, PMID: PubMed DOI
Lanteri M. L., Laxalt A. M., Lamattina L. (2008). Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol. 147, 188–198. 10.1104/pp.107.111815, PMID: PubMed DOI PMC
Lee H. Y. (2003). Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in PubMed DOI PMC
Lee H. Y., Bahn S. C., Shin J. S., Hwang I., Back K., Doelling J. H., et al. (2005). Multiple forms of secretory phospholipase A2 in plants. Prog. Lipid Res. 44, 52–67. 10.1016/j.plipres.2004.10.002, PMID: PubMed DOI
Lee O. R., Kim S. J., Kim H. J., Hong J. K., Ryu S. B., Lee S. H., et al. (2010). Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the PubMed DOI PMC
Li G., Xue H.-W. (2007). PubMed DOI PMC
Li L., He Y., Wang Y., Zhao S., Chen X., Ye T., et al. (2015). PubMed DOI
Li M., Bahn S. C., Guo L., Musgrave W., Berg H., Welti R., et al. (2011). Patatin-related phospholipase pPLAIII-induced changes in lipid metabolism alter cellulose content and cell elongation in PubMed DOI PMC
Li M., Qin C., Welti R., Wang X. (2006a). Double knockouts of phospholipases Dzeta1 and Dzeta2 in PubMed DOI PMC
Li M., Wang X. (2014). “pPLA: patatin-related phospholipase as with multiple biological functions” in Phospholipases in plant signaling. ed. Wang X. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 93–108.
Li M., Welti R., Wang X. (2006b). Quantitative profiling of PubMed DOI PMC
Lindeboom J. J., Nakamura M., Hibbel A., Shundyak K., Gutierrez R., Ketelaar T., et al. (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533. 10.1126/science.1245533, PMID: PubMed DOI
Liu G., Zhang K., Ai J., Deng X., Hong Y., wang X. (2015). Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. J. Exp. Bot. 66, 6945–6955. 10.1093/jxb/erv402, PMID: PubMed DOI PMC
Long W., Wang Y., Zhu S., Jing W., Wang Y., Ren Y., et al. (2018). FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiol. 177, 698–712. 10.1104/pp.17.01826, PMID: PubMed DOI PMC
Luptovčiak I., Komis G., Takáč T., Ovečka M., Šamaj J. (2017). Katanin: a sword cutting microtubules for cellular, developmental, and physiological purposes. Front. Plant Sci. 8:1982. 10.3389/fpls.2017.01982, PMID: PubMed DOI PMC
Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in PubMed DOI
Morita M. T., Kato T., Nagafusa K., Saito C., Ueda T., Nakano A., et al. (2002). Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in PubMed DOI PMC
Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in PubMed DOI
Ngo A. H., Lin Y.-C., Liu Y., Gutbrod K., Peisker H., Dörmann P., et al. (2018). A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in PubMed DOI
Noack L. C., Jaillais Y. (2017). Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22–33. 10.1016/j.pbi.2017.06.017, PMID: PubMed DOI
Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., et al. (2018). Gene expression pattern and protein localization of PubMed DOI PMC
Pandey S. (2016). Phospholipases as GTPase activity accelerating proteins (GAPs) in plants. Plant Signal. Behav. 11:e1176821. 10.1080/15592324.2016.1176821, PMID: PubMed DOI PMC
Park K. Y., Kim E. Y., Seo Y. S., Kim W. T. (2016). Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants. Plant Mol. Biol. 90, 517–532. 10.1007/s11103-016-0440-4, PMID: PubMed DOI
Pejchar P., Potocký M., Krčková Z., Brouzdová J., Daněk M., Martinec J. (2015). Non-specific phospholipase C4 mediates response to aluminum toxicity in PubMed DOI PMC
Peng Y. J., Shih C. F., Yang J. Y., Tan C. M., Hsu W. H., Huang Y. P., et al. (2013). A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in PubMed DOI
Peters C., Kim S. C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in PubMed DOI
Peters C., Li M., Narasimhan R., Roth M., Welti R., Wang X. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in PubMed DOI PMC
Pinosa F., Buhot N., Kwaaitaal M., Fahlberg P., Thordal-Christensen H., Ellerstrom M., et al. (2013). PubMed DOI PMC
Pleskot R., Li J., Žárský V., Potocký M., Staiger C. J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18, 496–504. 10.1016/j.tplants.2013.04.005, PMID: PubMed DOI
Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. (2012). Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front. Plant Sci. 3:54. 10.3389/fpls.2012.00054, PMID: PubMed DOI PMC
Pleskot R., Potocký M., Pejchar P., Linek J., Bezvoda R., Martinec J., et al. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62, 494–507. 10.1111/j.1365-313X.2010.04168.x, PMID: PubMed DOI
Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog. Lipid Res. 52, 62–79. 10.1016/j.plipres.2012.09.001, PMID: PubMed DOI
Potocký M., Eliás M., Profotová B., Novotná Z., Valentová O., Zárský V. (2003). Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217, 122–130. 10.1007/s00425-002-0965-4, PMID: PubMed DOI
Ren H., Gao K., Liu Y., Sun D., Zheng S. (2017). The role of AtPLC3 and AtPLC9 in thermotolerance in PubMed DOI PMC
Repp A., Mikami K., Mittmann F., Hartmann E. (2004). Phosphoinositide-specific phospholipase C is involved in cytokinin and gravity responses in the moss Physcomitrella patens. Plant J. 40, 250–259. 10.1111/j.1365-313X.2004.02205.x, PMID: PubMed DOI
Rietz S., Dermendjiev G., Oppermann E., Tafesse F. G., Effendi Y., Holk A., et al. (2010). Roles of PubMed DOI
Roth M. G. (2008). Molecular mechanisms of PLD function in membrane traffic. Traffic 9, 1233–1239. 10.1111/j.1600-0854.2008.00742.x, PMID: PubMed DOI
Roy Choudhury S., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in PubMed DOI
Sang Y., Cui D., Wang X. (2001). Phospholipase D and phosphatidic acid-mediated generation of superoxide in PubMed DOI PMC
Sassi M., Ali O., Boudon F., Cloarec G., Abad U., Cellier C., et al. (2014). An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in PubMed DOI
Scandola S., Samuel M. A. (2019). A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in PubMed DOI
Scherer G. F. E., Labusch C., Effendi Y. (2012). Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model. Front. Plant Sci. 3:56. 10.3389/fpls.2012.00056, PMID: PubMed DOI PMC
Scherer G. F. E., Ryu S. B., Wang X., Matos A. R., Heitz T. (2010). Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci. 15, 693–700. 10.1016/j.tplants.2010.09.005, PMID: PubMed DOI
Selvy P. E., Lavieri R. R., Lindsley C. W., Brown H. A. (2011). Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064–6119. 10.1021/cr200296t, PMID: PubMed DOI PMC
Seo Y. S., Kim E. Y., Kim W. T. (2011). The PubMed DOI PMC
Seo Y. S., Kim E. Y., Mang H. G., Kim W. T. (2008). Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog. Plant J. Cell Mol. Biol. 53, 895–908. 10.1111/j.1365-313X.2007.03380.x, PMID: PubMed DOI
Singh A., Bhatnagar N., Pandey A., Pandey G. K. (2015). Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58, 139–146. 10.1016/j.ceca.2015.04.003, PMID: PubMed DOI
Su Y., Li M., Guo L., Wang X. (2018). Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in PubMed DOI
Tabata R., Ikezaki M., Fujibe T., Aida M., Tian C. E., Ueno Y., et al. (2010). PubMed DOI
Takáč T., Šamajová O., Pechan T., Šamaj J. (2019a). Proteomic analysis of PubMed DOI PMC
Takáč T., Šamajová O., Vadovič P., Pechan T., Šamaj J. (2019b). Shot-gun proteomic analysis on roots of PubMed DOI PMC
Tasma I. M., Brendel V., Whitham S. A., Bhattacharyya M. K. (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in PubMed DOI
Ufer G., Gertzmann A., Gasulla F., Röhrig H., Bartels D. (2017). Identification and characterization of the phosphatidic acid-binding PubMed DOI
Umezawa T., Sugiyama N., Takahashi F., Anderson J. C., Ishihama Y., Peck S. C., et al. (2013). Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in PubMed DOI
Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. (2012). Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in PubMed DOI PMC
Vadovič P., Šamajová O., Takáč T., Novák D., Zapletalová V., Colcombet J., et al. (2019). Biochemical and genetic interactions of phospholipase D alpha 1 and mitogen activated protein kinase 3 affect PubMed DOI PMC
Wang G., Ryu S., Wang X. (2012). “Plant phospholipases: an overview” in Lipases and phospholipases. ed. Sandoval G. (Totowa, NJ: Humana Press; ), 123–137. PubMed
Wasternack C., Song S. (2016). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. J. Exp. Bot. 68, 1303–1321. 10.1093/jxb/erw443, PMID: PubMed DOI
Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in PubMed DOI
Wang X. (Ed.) (2014). Phospholipases in plant signaling. (Berlin, Heidelberg: Springer Berlin Heidelberg; ).
Xia K., Wang B., Zhang J., Li Y., Yang H., Ren D. (2017). PubMed DOI
Yamaguchi T., Kuroda M., Yamakawa H., Ashizawa T., Hirayae K., Kurimoto L., et al. (2009). Suppression of a phospholipase D gene, OsPLDβ1, activates defense responses and increases disease resistance in rice. Plant Physiol. 150, 308–319. 10.1104/pp.108.131979, PMID: PubMed DOI PMC
Yamaoka S., Shimono Y., Shirakawa M., Fukao Y., Kawase T., Hatsugai N., et al. (2013). Identification and dynamics of PubMed DOI PMC
Yao H., Wang G., Guo L., Wang X. (2013). Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in PubMed DOI PMC
Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in PubMed DOI
Zhang Q., Lin F., Mao T., Nie J., Yan M., Yuan M., et al. (2012). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in PubMed DOI PMC
Zhang Q., Qu Y., Wang Q., Song P., Wang P., Jia Q., et al. (2017a). PubMed DOI
Zhang Q., Song P., Qu Y., Wang P., Jia Q., Guo L., et al. (2017b). Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in PubMed DOI
Zhang Q., van Wijk R., Shahbaz M., Roels W., van Schooten B., Vermeer J. E. M., et al. (2018a). PubMed DOI
Zhang Q., van Wijk R., Zarza X., Shahbaz M., van Hooren M., Guardia A., et al. (2018b). Knock-down of PubMed DOI
Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. J. Exp. Bot. 66, 1721–1736. 10.1093/jxb/eru540, PMID: PubMed DOI PMC
Zhao J., Wang C., Bedair M., Welti R., Sumner L. W., Baxter I., et al. (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in PubMed DOI PMC
Zheng S.-Z., Liu Y.-L., Li B., Shang Z.- l., Zhou R.-G., Sun D.-Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of PubMed DOI
Zheng Y., Li M., Wang X. (2014). Proteomic insight into reduced cell elongation resulting from overexpression of patatin-related phospholipase pPLAIIIδ in PubMed DOI PMC
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations
Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity