Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress

. 2015 ; 6 () : 928. [epub] 20151104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26581502

The Arabidopsis non-specific phospholipase C (NPC) protein family is encoded by the genes NPC1 - NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat.

Zobrazit více v PubMed

Alonso J. M. (2003). Genome-wide insertional mutagenesis of PubMed DOI

Andersson M. X., Larsson K. E., Tjellström H., Liljenberg C., Sandelius A. S. (2005). Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. PubMed DOI

Arnon D. I. (1949). Copper enzymes in isolated chloroplasts - polyphenoloxidase in PubMed DOI PMC

Bolte S., Talbot C., Boutte Y., Catrice O., Read N. D., Satiat-Jeunemaitre B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. PubMed DOI

Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in PubMed DOI

Clarke S. M., Mur L. A. J., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in PubMed DOI

Dettmer J., Hong-Hermesdorf A., Stierhof Y. D., Schumacher K. (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in PubMed DOI PMC

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in PubMed DOI

Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. PubMed DOI

Dong W., Lv H., Xia G., Wang M. (2012). Does diacylglycerol serve as a signaling molecule in plants? PubMed DOI PMC

Falcone D. L., Ogas J. P., Somerville C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of PubMed DOI PMC

Gao K., Liu Y.-L., Li B., Zhou R.-G., Sun D.-Y., Zheng S.-Z. (2014). PubMed DOI

Gaude N., Nakamura Y., Scheible W. R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of PubMed DOI

Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., et al. (2003). The PubMed DOI

Geldner N., Dénervaud-Tendon V., Hyman D. L., Mayer U., Stierhof Y. D., Chory J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. PubMed DOI PMC

Grebe M., Xu J., Möbius W., Ueda T., Nakano A., Geuze H. J., et al. (2003). PubMed DOI

Higashi Y., Okazaki Y., Myouga F., Shinozaki K., Saito K. (2015). Landscape of the lipidome and transcriptome under heat stress in PubMed DOI PMC

Hong S. W., Vierling E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. PubMed DOI

Horváth I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., et al. (2012). Heat shock response in photosynthetic organisms: membrane and lipid connections. PubMed DOI

Hugly S., Kunst L., Browse J., Somerville C. (1989). Enhanced thermal tolerance of photosyntesis and altered chloroplast ultrastructure Iin a mutant of PubMed DOI PMC

Kocourková D., Krčková Z., Pejchar P., Veselková Š., Valentová O., Wimalasekera R., et al. (2011). The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of PubMed DOI PMC

Kojo K. H., Fujiwara M. T., Itoh R. D. (2009). Involvement of AtMinE1 in plastid morphogenesis in various tissues of PubMed DOI

Lam S. K., Cai Y., Tse Y. C., Wang J., Law A. H. Y., Pimpl P., et al. (2009). BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. PubMed DOI

Larkindale J., Huang B. R. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. DOI

Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in PubMed DOI PMC

Larkindale J., Mishkind M., Vierling E. (2005). “Plant responses to high temperature,” in DOI

Liu H. C., Liao H. T., Charng Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in PubMed DOI

Malínská K., Jelínková A., Petrášek J. (2014). The use of FM dyes to analyze plant endocytosis. PubMed DOI

Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. PubMed DOI

Mishkind M., Vermeer J. E. M., Darwish E., Munnik T. (2009). Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. PubMed DOI

Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K. (2000). Trienoic fatty acids and plant tolerance of high temperature. PubMed DOI

Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. PubMed DOI

Nakamura Y. (2014). “NPC: nonspecific phospholipase Cs in plant functions,” in DOI

Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in PubMed DOI

Park J., Gu Y., Lee Y., Yang Z. B. (2004). Phosphatidic acid induces leaf cell death in PubMed DOI PMC

Pejchar P., Martinec J. (2015). Aluminium ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties. PubMed DOI PMC

Pejchar P., Potocký M., Krčková Z., Brouzdová J., Daněk M., Martinec J. (2015). Non-specific phospholipase C4 mediates response to aluminum toxicity in PubMed DOI PMC

Pejchar P., Potocký M., Novotná Z., Veselková Š, Kocourková D., Valentová O., et al. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. PubMed DOI

Pejchar P., Scherer G. F. E., Martinec J. (2013). Assaying nonspecific phospholipase C activity. PubMed DOI

Peters C., Kim S.-C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in PubMed DOI

Peters C., Li M., Narasimhan R., Roth M., Welti R., Wang X. M. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in PubMed DOI PMC

Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. PubMed DOI

Qu A.-L., Ding Y.-F., Jiang Q., Zhu C. (2013). Molecular mechanisms of the plant heat stress response. PubMed DOI

Rainteau D., Humbert L., Delage E., Vergnolle C., Cantrel C., Maubert M.-A., et al. (2012). Acyl chains of phospholipase D transphosphatidylation products in PubMed DOI PMC

Reddy V. S., Rao D. K. V., Rajasekharan R. (2010). Functional characterization of lysophosphatidic acid phosphatase from PubMed DOI

Ruelland E., Zachowski A. (2010). How plants sense temperature. DOI

Saidi Y., Peter M., Finka A., Cicekli C., Vigh L., Goloubinoff P. (2010). Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. PubMed DOI PMC

Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., et al. (2010). Auxins reverse plant male sterility caused by high temperatures. PubMed DOI PMC

Scherer G. F. E., Paul R. U., Holk A., Martinec J. (2002). Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. PubMed DOI

Schramm F., Larkindale J., Kiehlmann E., Ganguli A., Englich G., Vierling E., et al. (2008). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of PubMed DOI

Singh A., Kanwar P., Pandey A., Tyagi A. K., Sopory S. K., Kapoor S., et al. (2013). Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PubMed DOI PMC

Sun W. N., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. PubMed DOI

Suzuki N., Sejima H., Tam R., Schlauch K., Mittler R. (2011). Identification of the MBF1 heat-response regulon of PubMed DOI PMC

Tan C. A., Hehir M. J., Roberts M. F. (1997). Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from PubMed DOI

Testerink C., Dekker H. L., Lim Z. Y., Johns M. K., Holmes A. B., Koster C. G., et al. (2004). Isolation and identification of phosphatidic acid targets from plants. PubMed DOI

Vaultier M. N., Cantrel C., Vergnolle C., Justin A. M., Demandre C., Benhassaine-Kesri G., et al. (2006). Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in PubMed DOI

Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. DOI

Wang L., Guo Y., Jia L., Chu H., Zhou S., Chen K., et al. (2014). Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in PubMed DOI PMC

Welti R., Li W. Q., Li M. Y., Sang Y. M., Biesiada H., Zhou H. E., et al. (2002). Profiling membrane lipids in plant stress responses - Role of phospholipase D alpha in freezing-induced lipid changes in PubMed DOI

Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in PubMed DOI

Xuan Y., Zhou S., Wang L., Cheng Y., Zhao L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in PubMed DOI PMC

Zheng S. Z., Liu Y. L., Li B., Shang Z. L., Zhou R. G., Sun D. Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...