Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26581502
PubMed Central
PMC4631941
DOI
10.3389/fpls.2015.00928
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, diacylglycerol, heat stress, non-specific phospholipase C, phospholipids,
- Publikační typ
- časopisecké články MeSH
The Arabidopsis non-specific phospholipase C (NPC) protein family is encoded by the genes NPC1 - NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat.
ERL Inserm U1157 UMR7203 Faculté de Medecine Pierre et Marie Curie Paris France
Institute of Experimental Botany The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Alonso J. M. (2003). Genome-wide insertional mutagenesis of PubMed DOI
Andersson M. X., Larsson K. E., Tjellström H., Liljenberg C., Sandelius A. S. (2005). Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. PubMed DOI
Arnon D. I. (1949). Copper enzymes in isolated chloroplasts - polyphenoloxidase in PubMed DOI PMC
Bolte S., Talbot C., Boutte Y., Catrice O., Read N. D., Satiat-Jeunemaitre B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. PubMed DOI
Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in PubMed DOI
Clarke S. M., Mur L. A. J., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in PubMed DOI
Dettmer J., Hong-Hermesdorf A., Stierhof Y. D., Schumacher K. (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in PubMed DOI PMC
Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. PubMed DOI
Dong W., Lv H., Xia G., Wang M. (2012). Does diacylglycerol serve as a signaling molecule in plants? PubMed DOI PMC
Falcone D. L., Ogas J. P., Somerville C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of PubMed DOI PMC
Gao K., Liu Y.-L., Li B., Zhou R.-G., Sun D.-Y., Zheng S.-Z. (2014). PubMed DOI
Gaude N., Nakamura Y., Scheible W. R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of PubMed DOI
Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., et al. (2003). The PubMed DOI
Geldner N., Dénervaud-Tendon V., Hyman D. L., Mayer U., Stierhof Y. D., Chory J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. PubMed DOI PMC
Grebe M., Xu J., Möbius W., Ueda T., Nakano A., Geuze H. J., et al. (2003). PubMed DOI
Higashi Y., Okazaki Y., Myouga F., Shinozaki K., Saito K. (2015). Landscape of the lipidome and transcriptome under heat stress in PubMed DOI PMC
Hong S. W., Vierling E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. PubMed DOI
Horváth I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., et al. (2012). Heat shock response in photosynthetic organisms: membrane and lipid connections. PubMed DOI
Hugly S., Kunst L., Browse J., Somerville C. (1989). Enhanced thermal tolerance of photosyntesis and altered chloroplast ultrastructure Iin a mutant of PubMed DOI PMC
Kocourková D., Krčková Z., Pejchar P., Veselková Š., Valentová O., Wimalasekera R., et al. (2011). The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of PubMed DOI PMC
Kojo K. H., Fujiwara M. T., Itoh R. D. (2009). Involvement of AtMinE1 in plastid morphogenesis in various tissues of PubMed DOI
Lam S. K., Cai Y., Tse Y. C., Wang J., Law A. H. Y., Pimpl P., et al. (2009). BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. PubMed DOI
Larkindale J., Huang B. R. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. DOI
Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in PubMed DOI PMC
Larkindale J., Mishkind M., Vierling E. (2005). “Plant responses to high temperature,” in DOI
Liu H. C., Liao H. T., Charng Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in PubMed DOI
Malínská K., Jelínková A., Petrášek J. (2014). The use of FM dyes to analyze plant endocytosis. PubMed DOI
Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. PubMed DOI
Mishkind M., Vermeer J. E. M., Darwish E., Munnik T. (2009). Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. PubMed DOI
Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K. (2000). Trienoic fatty acids and plant tolerance of high temperature. PubMed DOI
Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. PubMed DOI
Nakamura Y. (2014). “NPC: nonspecific phospholipase Cs in plant functions,” in DOI
Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in PubMed DOI
Park J., Gu Y., Lee Y., Yang Z. B. (2004). Phosphatidic acid induces leaf cell death in PubMed DOI PMC
Pejchar P., Martinec J. (2015). Aluminium ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties. PubMed DOI PMC
Pejchar P., Potocký M., Krčková Z., Brouzdová J., Daněk M., Martinec J. (2015). Non-specific phospholipase C4 mediates response to aluminum toxicity in PubMed DOI PMC
Pejchar P., Potocký M., Novotná Z., Veselková Š, Kocourková D., Valentová O., et al. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. PubMed DOI
Pejchar P., Scherer G. F. E., Martinec J. (2013). Assaying nonspecific phospholipase C activity. PubMed DOI
Peters C., Kim S.-C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in PubMed DOI
Peters C., Li M., Narasimhan R., Roth M., Welti R., Wang X. M. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in PubMed DOI PMC
Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. PubMed DOI
Qu A.-L., Ding Y.-F., Jiang Q., Zhu C. (2013). Molecular mechanisms of the plant heat stress response. PubMed DOI
Rainteau D., Humbert L., Delage E., Vergnolle C., Cantrel C., Maubert M.-A., et al. (2012). Acyl chains of phospholipase D transphosphatidylation products in PubMed DOI PMC
Reddy V. S., Rao D. K. V., Rajasekharan R. (2010). Functional characterization of lysophosphatidic acid phosphatase from PubMed DOI
Ruelland E., Zachowski A. (2010). How plants sense temperature. DOI
Saidi Y., Peter M., Finka A., Cicekli C., Vigh L., Goloubinoff P. (2010). Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. PubMed DOI PMC
Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., et al. (2010). Auxins reverse plant male sterility caused by high temperatures. PubMed DOI PMC
Scherer G. F. E., Paul R. U., Holk A., Martinec J. (2002). Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. PubMed DOI
Schramm F., Larkindale J., Kiehlmann E., Ganguli A., Englich G., Vierling E., et al. (2008). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of PubMed DOI
Singh A., Kanwar P., Pandey A., Tyagi A. K., Sopory S. K., Kapoor S., et al. (2013). Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PubMed DOI PMC
Sun W. N., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. PubMed DOI
Suzuki N., Sejima H., Tam R., Schlauch K., Mittler R. (2011). Identification of the MBF1 heat-response regulon of PubMed DOI PMC
Tan C. A., Hehir M. J., Roberts M. F. (1997). Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from PubMed DOI
Testerink C., Dekker H. L., Lim Z. Y., Johns M. K., Holmes A. B., Koster C. G., et al. (2004). Isolation and identification of phosphatidic acid targets from plants. PubMed DOI
Vaultier M. N., Cantrel C., Vergnolle C., Justin A. M., Demandre C., Benhassaine-Kesri G., et al. (2006). Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in PubMed DOI
Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. DOI
Wang L., Guo Y., Jia L., Chu H., Zhou S., Chen K., et al. (2014). Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in PubMed DOI PMC
Welti R., Li W. Q., Li M. Y., Sang Y. M., Biesiada H., Zhou H. E., et al. (2002). Profiling membrane lipids in plant stress responses - Role of phospholipase D alpha in freezing-induced lipid changes in PubMed DOI
Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in PubMed DOI
Xuan Y., Zhou S., Wang L., Cheng Y., Zhao L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in PubMed DOI PMC
Zheng S. Z., Liu Y. L., Li B., Shang Z. L., Zhou R. G., Sun D. Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of PubMed DOI
DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants