Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress

. 2015 ; 6 () : 928. [epub] 20151104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26581502

The Arabidopsis non-specific phospholipase C (NPC) protein family is encoded by the genes NPC1 - NPC6. It has been shown that NPC4 and NPC5 possess phospholipase C activity; NPC3 has lysophosphatidic acid phosphatase activity. NPC3, 4 and 5 play roles in the responses to hormones and abiotic stresses. NPC1, 2 and 6 has not been studied functionally yet. We found that Arabidopsis NPC1 expressed in Escherichia coli possesses phospholipase C activity in vitro. This protein was able to hydrolyse phosphatidylcholine to diacylglycerol. NPC1-green fluorescent protein was localized to secretory pathway compartments in Arabidopsis roots. In the knock out T-DNA insertion line NPC1 (npc1) basal thermotolerance was impaired compared with wild-type (WT); npc1 exhibited significant decreases in survival rate and chlorophyll content at the seventh day after heat stress (HS). Conversely, plants overexpressing NPC1 (NPC1-OE) were more resistant to HS compared with WT. These findings suggest that NPC1 is involved in the plant response to heat.

Zobrazit více v PubMed

Alonso J. M. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 653–657. 10.1126/science.1086391 PubMed DOI

Andersson M. X., Larsson K. E., Tjellström H., Liljenberg C., Sandelius A. S. (2005). Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280 27578–27586. 10.1074/jbc.M503273200 PubMed DOI

Arnon D. I. (1949). Copper enzymes in isolated chloroplasts - polyphenoloxidase in Beta vulgaris. Plant Physiol. 24 1–15. 10.1104/pp.24.1.1 PubMed DOI PMC

Bolte S., Talbot C., Boutte Y., Catrice O., Read N. D., Satiat-Jeunemaitre B. (2004). FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Microsc. 214 159–173. 10.1111/j.0022-2720.2004.01348.x PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI

Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182 175–187. 10.1111/j.1469-8137.2008.02735.x PubMed DOI

Clarke S. M., Mur L. A. J., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 38 432–447. 10.1111/j.1365-313X.2004.02054.x PubMed DOI

Dettmer J., Hong-Hermesdorf A., Stierhof Y. D., Schumacher K. (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18 715–730. 10.1105/tpc.105.037978 PubMed DOI PMC

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 231 52–61. 10.1016/j.plantsci.2014.11.005 PubMed DOI

Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI

Dong W., Lv H., Xia G., Wang M. (2012). Does diacylglycerol serve as a signaling molecule in plants? Plant Signal. Behav. 7 472–475. 10.4161/psb.19644 PubMed DOI PMC

Falcone D. L., Ogas J. P., Somerville C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4:17 10.1186/1471-2229-4-17 PubMed DOI PMC

Gao K., Liu Y.-L., Li B., Zhou R.-G., Sun D.-Y., Zheng S.-Z. (2014). Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol. 55 1873–1883. 10.1093/pcp/pcu116 PubMed DOI

Gaude N., Nakamura Y., Scheible W. R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56 28–39. 10.1111/j.1365-313X.2008.03582.x PubMed DOI

Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., et al. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112 219–230. 10.1016/S0092-8674(03)00003-5 PubMed DOI

Geldner N., Dénervaud-Tendon V., Hyman D. L., Mayer U., Stierhof Y. D., Chory J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59 169–178. 10.1111/j.1365-313X.2009.03851.x PubMed DOI PMC

Grebe M., Xu J., Möbius W., Ueda T., Nakano A., Geuze H. J., et al. (2003). Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13 1378–1387. 10.1016/S0960-9822(03)00538-4 PubMed DOI

Higashi Y., Okazaki Y., Myouga F., Shinozaki K., Saito K. (2015). Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci. Rep. 5:10533 10.1038/srep10533 PubMed DOI PMC

Hong S. W., Vierling E. (2001). Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 27 25–35. 10.1046/j.1365-313x.2001.01066.x PubMed DOI

Horváth I., Glatz A., Nakamoto H., Mishkind M. L., Munnik T., Saidi Y., et al. (2012). Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog. Lipid Res. 51 208–220. 10.1016/j.plipres.2012.02.002 PubMed DOI

Hugly S., Kunst L., Browse J., Somerville C. (1989). Enhanced thermal tolerance of photosyntesis and altered chloroplast ultrastructure Iin a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol. 90 1134–1142. 10.1104/pp.90.3.1134 PubMed DOI PMC

Kocourková D., Krčková Z., Pejchar P., Veselková Š., Valentová O., Wimalasekera R., et al. (2011). The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J. Exp. Bot. 62 3753–3763. 10.1093/jxb/err039 PubMed DOI PMC

Kojo K. H., Fujiwara M. T., Itoh R. D. (2009). Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 73 2632–2639. 10.1271/bbb.90473 PubMed DOI

Lam S. K., Cai Y., Tse Y. C., Wang J., Law A. H. Y., Pimpl P., et al. (2009). BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. Plant J. 60 865–881. 10.1111/j.1365-313X.2009.04007.x PubMed DOI

Larkindale J., Huang B. R. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul. 47 17–28. 10.1007/s10725-005-1536-z DOI

Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128 682–695. 10.1104/pp.010320 PubMed DOI PMC

Larkindale J., Mishkind M., Vierling E. (2005). “Plant responses to high temperature,” in Plant Abiotic Stress eds Jenks M. A., Hasegawa P. M. (Oxford: Blackwell Publishing; ) 100–144. 10.1002/9780470988503.ch5 DOI

Liu H. C., Liao H. T., Charng Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34 738–751. 10.1111/j.1365-3040.2011.02278.x PubMed DOI

Malínská K., Jelínková A., Petrášek J. (2014). The use of FM dyes to analyze plant endocytosis. Methods Mol. Biol. 1209 1–11. 10.1007/978-1-4939-1420-3_1 PubMed DOI

Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54 265–306. 10.1146/annurev.arplant.54.031902.134748 PubMed DOI

Mishkind M., Vermeer J. E. M., Darwish E., Munnik T. (2009). Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J. 60 10–21. 10.1111/j.1365-313X.2009.03933.x PubMed DOI

Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science 287 476–479. 10.1126/science.287.5452.476 PubMed DOI

Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104 34–41. 10.1263/jbb.104.34 PubMed DOI

Nakamura Y. (2014). “NPC: nonspecific phospholipase Cs in plant functions,” in Phospholipases in Plant Signaling ed. Wang X. (Berlin: Springer; ) 55–67. 10.1007/978-3-642-42011-5_3 DOI

Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280 7469–7476. 10.1074/jbc.M408799200 PubMed DOI

Park J., Gu Y., Lee Y., Yang Z. B. (2004). Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 134 129–136. 10.1104/pp.103.031393 PubMed DOI PMC

Pejchar P., Martinec J. (2015). Aluminium ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties. Plant Signal. Behav. 10:e1031938 10.1080/15592324.2015.1031938 PubMed DOI PMC

Pejchar P., Potocký M., Krčková Z., Brouzdová J., Daněk M., Martinec J. (2015). Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana. Front. Plant Sci. 6:66 10.3389/fpls.2015.00066 PubMed DOI PMC

Pejchar P., Potocký M., Novotná Z., Veselková Š, Kocourková D., Valentová O., et al. (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol. 188 150–160. 10.1111/j.1469-8137.2010.03349.x PubMed DOI

Pejchar P., Scherer G. F. E., Martinec J. (2013). Assaying nonspecific phospholipase C activity. Methods Mol. Biol. 1009 193–203. 10.1007/978-1-62703-401-2_18 PubMed DOI

Peters C., Kim S.-C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 37 2002–2013. 10.1111/pce.12334 PubMed DOI

Peters C., Li M., Narasimhan R., Roth M., Welti R., Wang X. M. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22 2642–2659. 10.1105/tpc.109.071720 PubMed DOI PMC

Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog. Lipid Res. 52 62–79. 10.1016/j.plipres.2012.09.001 PubMed DOI

Qu A.-L., Ding Y.-F., Jiang Q., Zhu C. (2013). Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432 203–207. 10.1016/j.bbrc.2013.01.104 PubMed DOI

Rainteau D., Humbert L., Delage E., Vergnolle C., Cantrel C., Maubert M.-A., et al. (2012). Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLoS ONE 7:e41985 10.1371/journal.pone.0041985 PubMed DOI PMC

Reddy V. S., Rao D. K. V., Rajasekharan R. (2010). Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim. Biophys. Acta 1801 455–461. 10.1016/j.bbalip.2009.12.005 PubMed DOI

Ruelland E., Zachowski A. (2010). How plants sense temperature. Environ. Exp. Bot. 69 225–232. 10.1016/j.envexpbot.2010.05.011 DOI

Saidi Y., Peter M., Finka A., Cicekli C., Vigh L., Goloubinoff P. (2010). Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signal. Behav. 5 1530–1533. 10.4161/psb.5.12.13163 PubMed DOI PMC

Sakata T., Oshino T., Miura S., Tomabechi M., Tsunaga Y., Higashitani N., et al. (2010). Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. U.S.A. 107 8569–8574. 10.1073/pnas.1000869107 PubMed DOI PMC

Scherer G. F. E., Paul R. U., Holk A., Martinec J. (2002). Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem. Biophys. Res. Commun. 293 766–770. 10.1016/S0006-291X(02)00292-9 PubMed DOI

Schramm F., Larkindale J., Kiehlmann E., Ganguli A., Englich G., Vierling E., et al. (2008). A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53 264–274. 10.1111/j.1365-313X.2007.03334.x PubMed DOI

Singh A., Kanwar P., Pandey A., Tyagi A. K., Sopory S. K., Kapoor S., et al. (2013). Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE 8:e62494 10.1371/journal.pone.0062494 PubMed DOI PMC

Sun W. N., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577 1–9. 10.1016/S0167-4781(02)00417-7 PubMed DOI

Suzuki N., Sejima H., Tam R., Schlauch K., Mittler R. (2011). Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J. 66 844–851. 10.1111/j.1365-313X.2011.04550.x PubMed DOI PMC

Tan C. A., Hehir M. J., Roberts M. F. (1997). Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from Bacillus cereus. Protein Expr. Purif. 10 365–372. 10.1006/prep.1997.0756 PubMed DOI

Testerink C., Dekker H. L., Lim Z. Y., Johns M. K., Holmes A. B., Koster C. G., et al. (2004). Isolation and identification of phosphatidic acid targets from plants. Plant J. 39 527–536. 10.1111/j.1365-313X.2004.02152.x PubMed DOI

Vaultier M. N., Cantrel C., Vergnolle C., Justin A. M., Demandre C., Benhassaine-Kesri G., et al. (2006). Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett. 580 4218–4223. 10.1016/j.febslet.2006.06.083 PubMed DOI

Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61 199–223. 10.1016/j.envexpbot.2007.05.011 DOI

Wang L., Guo Y., Jia L., Chu H., Zhou S., Chen K., et al. (2014). Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiol. 164 2184–2196. 10.1104/pp.113.229369 PubMed DOI PMC

Welti R., Li W. Q., Li M. Y., Sang Y. M., Biesiada H., Zhou H. E., et al. (2002). Profiling membrane lipids in plant stress responses - Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277 31994–32002. 10.1074/jbc.M205375200 PubMed DOI

Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in Arabidopsis thaliana. Mol. Plant 3 610–625. 10.1093/mp/ssq005 PubMed DOI

Xuan Y., Zhou S., Wang L., Cheng Y., Zhao L. (2010). Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol. 153 1895–1906. 10.1104/pp.110.160424 PubMed DOI PMC

Zheng S. Z., Liu Y. L., Li B., Shang Z. L., Zhou R. G., Sun D. Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69 689–700. 10.1111/j.1365-313X.2011.04823.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...