Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties

. 2015 ; 10 (6) : e1031938.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26024014

The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.

Zobrazit více v PubMed

Panda SK, Baluška F, Matsumoto H. Aluminum stress signaling in plants. Plant Signal Behav 2009; 4:592-7; PMID:19820334; http://dx.doi.org/10.4161/psb.4.7.8903 PubMed DOI PMC

Boscolo PRS, Menossi M, Jorge RA. Aluminum-induced oxidative stress in maize. Phytochemistry 2003; 62:181-9; PMID:12482454; http://dx.doi.org/10.1016/S0031-9422(02)00491-0 PubMed DOI

Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 2000; 200:1-46; PMID:10965465; http://dx.doi.org/10.1016/S0074-7696(00)00001-2 PubMed DOI

Rengel Z, Zhang WH. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 2003; 159:295-314; http://dx.doi.org/10.1046/j.1469-8137.2003.00821.x PubMed DOI

Tian Q-Y, Sun D-H, Zhao M-G, Zhang W-H. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 2007; 174:322-31; PMID:17388895; http://dx.doi.org/10.1111/j.1469-8137.2007.02005.x PubMed DOI

Schwarzerová K, Zelenková S, Nick P, Opatrný Z. Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol 2002; 43:207-16; PMID:11867700; http://dx.doi.org/10.1093/pcp/pcf028 PubMed DOI

Sivaguru M, Baluška F, Volkmann D, Felle HH, Horst WJ. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 1999; 119:1073-82; PMID:10069846; http://dx.doi.org/10.1104/pp.119.3.1073 PubMed DOI PMC

Sivaguru M, Pike S, Gassmann W, Baskin TI. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane:Evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 2003; 44:667-75; PMID:12881494; http://dx.doi.org/10.1093/pcp/pcg094 PubMed DOI

Illéš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovečka M. Aluminium toxicity in plants:internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Bot 2006; 57:4201-13; PMID:17085753; http://dx.doi.org/10.1093/jxb/erl197 PubMed DOI

Munnik T, ed. Lipid Signaling in Plants. Berlin:Springer, 2010

Wang X, ed. Phospholipases in Plant Signaling. Berlin:Springer-Verlag, 2014

Jones DL, Kochian LV. Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 1997; 400:51-7; PMID:9000512; http://dx.doi.org/10.1016/S0014-5793(96)01319-1 PubMed DOI

Pejchar P, Pleskot R, Schwarzerová K, Martinec J, Valentová O, Novotná Z. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner. Cell Biol Int 2008; 32:554-6; PMID:18164219; http://dx.doi.org/10.1016/j.cellbi.2007.11.008 PubMed DOI

Zhao J, Wang C, Bedair M, Welti R, Sumner LW, Baxter I, Wang X. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS One 2011; 6:e28086; PMID:22163277; http://dx.doi.org/10.1371/journal.pone.0028086 PubMed DOI PMC

Jones DL, Kochian LV. Aluminium inhibition of the inositol 1,4,5-trisphosphate signal transduction pathway in wheat roots:A role in aluminium toxicity? Plant Cell 1995; 7:1913-22; PMID:12242363; http://dx.doi.org/10.1105/tpc.7.11.1913 PubMed DOI PMC

Martínez-Estévez M, Racagni-Di  , Palma G, Muñoz-Sánchez JA, Brito-Argáez L, Loyola-Vargas VM, Hernández-Sotomayor SMT. Aluminium differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells. J Plant Physiol 2003; 160:1297-303; PMID:14658381; http://dx.doi.org/10.1078/0176-1617-01168 PubMed DOI

Ramos-Díaz A, Brito-Argáez L, Munnik T, Hernández-Sotomayor S. Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. Planta 2007; 225:393-401; PMID:16821040; http://dx.doi.org/10.1007/s00425-006-0348-3 PubMed DOI

Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 2005; 280:7469-76; PMID:15618226; http://dx.doi.org/10.1074/jbc.M408799200 PubMed DOI

Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS. Phosphate-limited oat. the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 2005; 280:27578-86; PMID:15927962; http://dx.doi.org/10.1074/jbc.M503273200 PubMed DOI

Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 2008; 56:28-39; PMID:18564386; http://dx.doi.org/10.1111/j.1365-313X.2008.03582.x PubMed DOI

Tjellström H, Andersson MX, Larsson KL, Sandelius AS. Membrane phospholipids as a phosphate reserve:the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 2008; 31:1388-98; PMID:18643953; http://dx.doi.org/10.1111/j.1365-3040.2008.01851.x PubMed DOI

Scherer GFE, Paul RU, Holk A, Martinec J. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 2002; 293:766-70; PMID:12054536; http://dx.doi.org/10.1016/S0006-291X(02)00292-9 PubMed DOI

Peters C, Li MY, Narasimhan R, Roth M, Welti R, Wang XM. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 2010; 22:2642-59; PMID:20699393; http://dx.doi.org/10.1105/tpc.109.071720 PubMed DOI PMC

Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GFE. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in Arabidopsis thaliana. Mol Plant 2010; 3:610-25; PMID:20507939; http://dx.doi.org/10.1093/mp/ssq005 PubMed DOI

Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GFE, Martinec J. The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 2011; 62:3753-63; PMID:21525137; http://dx.doi.org/10.1093/jxb/err039 PubMed DOI PMC

Peters C, Kim S-C, Devaiah S, Li M, Wang X. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 2014; 37:2002-13; PMID:24689655; http://dx.doi.org/10.1111/pce.12334 PubMed DOI

Pejchar P, Potocký M, Novotná Z, Veselková Š, Kocourková D, Valentová O, Schwarzerová K, Martinec J. Aluminium ions inhibit formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol 2010; 188:150-60; PMID:20629955; http://dx.doi.org/10.1111/j.1469-8137.2010.03349.x PubMed DOI

Pejchar P, Potocký M, Krčková Z, Brouzdová J, Daněk M, Martinec J. Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana. Front Plant Sci 2015; 6:66; PMID:25763003; http://dx.doi.org/10.3389/fpls.2015.00066 PubMed DOI PMC

Wissemeier AH, Horst WJ. Effect of calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.). J Plant Physiol 1995; 145:470-6; http://dx.doi.org/10.1016/S0176-1617(11)81773-6 DOI

Krtková J, Havelková L, Křepelová A, Fišer R, Vosolsobě S, Novotná Z, Martinec J, Schwarzerová K. Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. Plant Physiol Biochem 2012; 60:88-97; PMID:22922108; http://dx.doi.org/10.1016/j.plaphy.2012.07.030 PubMed DOI

Pejchar P, Scherer GFE, Martinec J. Assaying nonspecific phospholipase C activity. Methods Mol Biol 2013; 1009:193-203; PMID:23681535; http://dx.doi.org/10.1007/978-1-62703-401-2_18 PubMed DOI

Verstraeten SV, Villaverde MS, Oteiza PI. Al3+-mediated changes on membrane fluidity affects the activity of PI-PLC but not of PLC. Chem Phys Lipids 2003; 122:159-63; PMID:12598047; http://dx.doi.org/10.1016/S0009-3084(02)00192-5 PubMed DOI

Verstraeten SV, Oteiza PI. Al3+-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys 2002; 408:263-71; PMID:12464280; http://dx.doi.org/10.1016/S0003-9861(02)00557-X PubMed DOI

Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2013; 52:62-79; PMID:23089468; http://dx.doi.org/10.1016/j.plipres.2012.09.001 PubMed DOI

Miège C, Maréchal É. 1,2-sn-Diacylglycerol in plant cells:Product, substrate and regulator. Plant Physiol Biochem 1999; 37:795-808; PMID:10580280; http://dx.doi.org/10.1016/S0981-9428(99)00118-7 PubMed DOI

Dong W, Lv H, Xia G, Wang M. Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 2012; 7:1-4; PMID:22301955; http://dx.doi.org/10.4161/psb.7.1.18574 PubMed DOI PMC

Haucke V, Di Paolo G. Lipids and lipid modifications in the regulation of membrane. Curr Opin Cell Biol 2007; 19:426-35; PMID:17651957; http://dx.doi.org/10.1016/j.ceb.2007.06.003 PubMed DOI PMC

Carrasco S, Mérida I. Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 2007; 32:27-36; PMID:17157506; http://dx.doi.org/10.1016/j.tibs.2006.11.004 PubMed DOI

Alwarawrah M, Dai J, Huang J. Modification of lipid bilayer structure by diacylglycerol:a comparative study of diacylglycerol and cholesterol. J Chem Theory Comput 2012; 8:749-58; PMID:22389636; http://dx.doi.org/10.1021/ct200790q PubMed DOI PMC

Bennett WFD, Tieleman DP. Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes. J Lipid Res 2012; 53:421-9; PMID:22246847; http://dx.doi.org/10.1194/jlr.M022491 PubMed DOI PMC

Shen H, Hou N, Schlicht M, Wan Y, Mancuso S, Baluška F. Aluminium toxicity targets PIN2 in Arabidopsis root apices:effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 2008; 53:2480-7; http://dx.doi.org/10.1007/s11434-008-0332-3 DOI

Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 2014; 26:2889-904; PMID:25052716; http://dx.doi.org/10.1105/tpc.114.127993 PubMed DOI PMC

Wu D, Shen H, Yokawa K, Baluška F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 2014; 65:5305-15; PMID:25053643; http://dx.doi.org/10.1093/jxb/eru292 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace