Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25763003
PubMed Central
PMC4329606
DOI
10.3389/fpls.2015.00066
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, aluminum toxicity, diacylglycerol, non-specific phospholipase C, plasma membrane, pollen tube, signaling, tobacco,
- Publikační typ
- časopisecké články MeSH
Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity, and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using β-glucuronidase assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.
Zobrazit více v PubMed
Andersson M. X., Larsson K. E., Tjellström H., Liljenberg C., Sandelius A. S. (2005). Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. PubMed DOI
Bargmann B. O. R., Laxalt A. M., Ter Riet B., Schouten E., van Leeuwen W., Dekker H. L., et al. (2006). LePLDβ1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. PubMed DOI
Bargmann B. O. R., Laxalt A. M., Ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. PubMed DOI PMC
Boscolo P. R. S., Menossi M., Jorge R. A. (2003). Aluminum-induced oxidative stress in maize. PubMed DOI
Carrasco S., Mérida I. (2007). Diacylglycerol, when simplicity becomes complex. PubMed DOI
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for PubMed DOI
Dong W., Lv H., Xia G., Wang M. (2012). Does diacylglycerol serve as a signaling molecule in plants? PubMed DOI PMC
Gaude N., Nakamura Y., Scheible W. R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of PubMed DOI
Haucke V., Di Paolo G. (2007). Lipids and lipid modifications in the regulation of membrane. PubMed DOI PMC
Illéš P., Schlicht M., Pavlovkin J., Lichtscheidl I., Baluška F., Ovečka M. (2006). Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in PubMed DOI
Jefferson R. A., Kavanagh T. A., Bevan M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. PubMed PMC
Johansson O. N., Fahlberg P., Karimi E., Nilsson A. K., Ellerström M., Andersson M. X. (2014). Redundancy among phospholipase D isoforms in resistance triggered by recognition of the PubMed DOI PMC
Jones D. L., Kochian L. V. (1995). Aluminium inhibition of the inositol 145-trisphosphate signal transduction pathway in wheat roots: a role in aluminium toxicity? PubMed DOI PMC
Jones D. L., Kochian L. V. (1997). Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. PubMed DOI
Klahre U., Becker C., Schmitt A. C., Kost B. (2006). Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. PubMed DOI
Kocourková D., Krčková Z., Pejchar P., Veselková Š., Valentová O., Wimalasekera R., et al. (2011). The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of PubMed DOI PMC
Kost B., Spielhofer P., Chua N.-H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. PubMed DOI
Krtková J., Havelková L., Křepelová A., Fišer R., Vosolsobě S., Novotná Z., et al. (2012). Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in PubMed DOI
Martínez-Estévez M., Racagni-Di Palma G., Muñoz-Sánchez J. A., Brito-Argáez L., Loyola-Vargas V. M., Hernández-Sotomayor S. M. T. (2003). Aluminium differentially modifies lipid metabolism from the phosphoinositide pathway in PubMed DOI
Matsumoto H. (2000). Cell biology of aluminum toxicity and tolerance in higher plants. PubMed DOI
Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. PubMed DOI
Munnik T. (ed.). (2010). DOI
Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. PubMed DOI
Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in PubMed DOI
Panda S. K., Baluška F., Matsumoto H. (2009). Aluminum stress signaling in plants. PubMed DOI PMC
Pejchar P., Pleskot R., Schwarzerová K., Martinec J., Valentová O., Novotná Z. (2008). Aluminum ions inhibit phospholipase D in a microtubule-dependent manner. PubMed DOI
Pejchar P., Potocký M., Novotná Z., Veselková Š., Kocourková D., Valentová O., et al. (2010). Aluminium ions inhibit formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. PubMed DOI
Pejchar P., Scherer G. F. E., Martinec J. (2013). Assaying nonspecific phospholipase C activity. PubMed DOI
Peters C., Kim S.-C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in PubMed DOI
Peters C., Li M. Y., Narasimhan R., Roth M., Welti R., Wang X. M. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in PubMed DOI PMC
Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. (2012). Turnover of phosphatidic acid through distinct signalling pathways affects multiple aspects of tobacco pollen tube tip growth. PubMed DOI PMC
Pokotylo I., Kolesnikov Y., Kravets V., Zachowski A., Ruelland E. (2014). Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. PubMed DOI
Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. PubMed DOI
Potocký M., Pleskot R., Pejchar P., Vitale N., Kost B., Žárský V. (2014). Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. PubMed DOI
Ramos-Díaz A., Brito-Argáez L., Munnik T., Hernández-Sotomayor S. (2007). Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. PubMed DOI
Reddy V. S., Rao D. K. V., Rajasekharan R. (2010). Functional characterization of lysophosphatidic acid phosphatase from PubMed DOI
Rengel Z., Zhang W. H. (2003). Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. PubMed DOI
Rietz S., Dermendjiev G., Oppermann E., Tafesse F. G., Effendi Y., Holk A., et al. (2010). Roles of PubMed DOI
Ruíz-Herrera L.-F., López-Bucio J. (2013). Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling in DOI
Scherer G. F. E., Paul R. U., Holk A., Martinec J. (2002). Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. PubMed DOI
Schwarzerová K., Zelenková S., Nick P., Opatrný Z. (2002). Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. PubMed DOI
Shen H., Hou N., Schlicht M., Wan Y., Mancuso S., Baluška F. (2008). Aluminium toxicity targets PIN2 in DOI
Sivaguru M., Baluška F., Volkmann D., Felle H. H., Horst W. J. (1999). Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. PubMed DOI PMC
Sivaguru M., Pike S., Gassmann W., Baskin T. I. (2003). Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. PubMed DOI
Tian Q.-Y., Sun D.-H., Zhao M.-G., Zhang W.-H. (2007). Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in PubMed DOI
Tjellström H., Andersson M. X., Larsson K. L., Sandelius A. S. (2008). Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. PubMed DOI
Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. (1991). Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. PubMed DOI
Wang C., Zien C. A., Afitlhile M., Welti R., Hildebrand D. F., Wang X. (2000). Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in PubMed DOI PMC
Wang X. (ed.). (2014). DOI
Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in PubMed DOI
Wissemeier A. H., Horst W. J. (1995). Effect of calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.). DOI
Yang Z. B., Geng X., He C., Zhang F., Wang R., Horst W. J., et al. (2014). TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in PubMed DOI PMC
Zhao J., Wang C., Bedair M., Welti R. W., Sumner L., Baxter I., et al. (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in PubMed DOI PMC
DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants