Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana

. 2015 ; 6 () : 66. [epub] 20150216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25763003

Aluminum ions (Al) have been recognized as a major toxic factor for crop production in acidic soils. The first indication of the Al toxicity in plants is the cessation of root growth, but the mechanism of root growth inhibition is largely unknown. Here we examined the impact of Al on the expression, activity, and function of the non-specific phospholipase C4 (NPC4), a plasma membrane-bound isoform of NPC, a member of the plant phospholipase family, in Arabidopsis thaliana. We observed a lower expression of NPC4 using β-glucuronidase assay and a decreased formation of labeled diacylglycerol, product of NPC activity, using fluorescently labeled phosphatidylcholine as a phospholipase substrate in Arabidopsis WT seedlings treated with AlCl3 for 2 h. The effect on in situ NPC activity persisted for longer Al treatment periods (8, 14 h). Interestingly, in seedlings overexpressing NPC4, the Al-mediated NPC-inhibiting effect was alleviated at 14 h. However, in vitro activity and localization of NPC4 were not affected by Al, thus excluding direct inhibition by Al ions or possible translocation of NPC4 as the mechanisms involved in NPC-inhibiting effect. Furthermore, the growth of tobacco pollen tubes rapidly arrested by Al was partially rescued by the overexpression of AtNPC4 while Arabidopsis npc4 knockout lines were found to be more sensitive to Al stress during long-term exposure of Al at low phosphate conditions. Our observations suggest that NPC4 plays a role in both early and long-term responses to Al stress.

Zobrazit více v PubMed

Andersson M. X., Larsson K. E., Tjellström H., Liljenberg C., Sandelius A. S. (2005). Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280 27578–27586 10.1074/jbc.M503273200 PubMed DOI

Bargmann B. O. R., Laxalt A. M., Ter Riet B., Schouten E., van Leeuwen W., Dekker H. L., et al. (2006). LePLDβ1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. Plant J. 45 358–368 10.1111/j.1365-313X.2005.02631.x PubMed DOI

Bargmann B. O. R., Laxalt A. M., Ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50 78–89 10.1093/pcp/pcn173 PubMed DOI PMC

Boscolo P. R. S., Menossi M., Jorge R. A. (2003). Aluminum-induced oxidative stress in maize. Phytochemistry 62 181–189 10.1016/S0031-9422(02)00491-0 PubMed DOI

Carrasco S., Mérida I. (2007). Diacylglycerol, when simplicity becomes complex. Trends Biochem. Sci. 32 27–36 10.1016/j.tibs.2006.11.004 PubMed DOI

Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 735–743 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Dong W., Lv H., Xia G., Wang M. (2012). Does diacylglycerol serve as a signaling molecule in plants? Plant Signal. Behav. 7 1–4 10.4161/psb.19644 PubMed DOI PMC

Gaude N., Nakamura Y., Scheible W. R., Ohta H., Dormann P. (2008). Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56 28–39 10.1111/j.1365-313X.2008.03582.x PubMed DOI

Haucke V., Di Paolo G. (2007). Lipids and lipid modifications in the regulation of membrane. Curr. Opin. Cell Biol. 19 426–435 10.1016/j.ceb.2007.06.003 PubMed DOI PMC

Illéš P., Schlicht M., Pavlovkin J., Lichtscheidl I., Baluška F., Ovečka M. (2006). Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J. Exp. Bot. 57 4201–4213 10.1093/jxb/erl197 PubMed DOI

Jefferson R. A., Kavanagh T. A., Bevan M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6 3901–3907. PubMed PMC

Johansson O. N., Fahlberg P., Karimi E., Nilsson A. K., Ellerström M., Andersson M. X. (2014). Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front. Plant Sci. 5:639 10.3389/fpls.2014.00639 PubMed DOI PMC

Jones D. L., Kochian L. V. (1995). Aluminium inhibition of the inositol 145-trisphosphate signal transduction pathway in wheat roots: a role in aluminium toxicity? Plant Cell 7 1913–1922 10.1105/tpc.7.11.1913 PubMed DOI PMC

Jones D. L., Kochian L. V. (1997). Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett. 400 51–57 10.1016/S0014-5793(96)01319-1 PubMed DOI

Klahre U., Becker C., Schmitt A. C., Kost B. (2006). Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 46 1018–1031 10.1111/j.1365-313X.2006.02757.x PubMed DOI

Kocourková D., Krčková Z., Pejchar P., Veselková Š., Valentová O., Wimalasekera R., et al. (2011). The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J. Exp. Bot. 62 3753–3763 10.1093/jxb/err039 PubMed DOI PMC

Kost B., Spielhofer P., Chua N.-H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16 393–401 10.1046/j.1365-313x.1998.00304.x PubMed DOI

Krtková J., Havelková L., Křepelová A., Fišer R., Vosolsobě S., Novotná Z., et al. (2012). Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. Plant Physiol. Biochem. 60 88–97 10.1016/j.plaphy.2012.07.030 PubMed DOI

Martínez-Estévez M., Racagni-Di Palma G., Muñoz-Sánchez J. A., Brito-Argáez L., Loyola-Vargas V. M., Hernández-Sotomayor S. M. T. (2003). Aluminium differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells. J. Plant Physiol. 160 1297–1303 10.1078/0176-1617-1168 PubMed DOI

Matsumoto H. (2000). Cell biology of aluminum toxicity and tolerance in higher plants. Int. Rev. Cytol. 200 1–46 10.1016/S0074-7696(00)00001-2 PubMed DOI

Meijer H. J. G., Munnik T. (2003). Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54 265–306 10.1146/annurev.arplant.54.031902.134748 PubMed DOI

Munnik T. (ed.). (2010). Lipid Signaling in Plants. Berlin: Springer. 10.1007/978-3-642-03873-0 DOI

Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., et al. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 104 34–41 10.1263/jbb.104.34 PubMed DOI

Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. (2005). A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280 7469–7476 10.1074/jbc.M408799200 PubMed DOI

Panda S. K., Baluška F., Matsumoto H. (2009). Aluminum stress signaling in plants. Plant Signal. Behav. 4 592–597 10.4161/psb.4.7.8903 PubMed DOI PMC

Pejchar P., Pleskot R., Schwarzerová K., Martinec J., Valentová O., Novotná Z. (2008). Aluminum ions inhibit phospholipase D in a microtubule-dependent manner. Cell Biol. Int. 32 554–556 10.1016/j.cellbi.2007.11.008 PubMed DOI

Pejchar P., Potocký M., Novotná Z., Veselková Š., Kocourková D., Valentová O., et al. (2010). Aluminium ions inhibit formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol. 188 150–160 10.1111/j.1469-8137.2010.03349.x PubMed DOI

Pejchar P., Scherer G. F. E., Martinec J. (2013). Assaying nonspecific phospholipase C activity. Methods Mol. Biol. 1009 193–203 10.1007/978-1-62703-401-2_18 PubMed DOI

Peters C., Kim S.-C., Devaiah S., Li M., Wang X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 37 2002–2013 10.1111/pce.12334 PubMed DOI

Peters C., Li M. Y., Narasimhan R., Roth M., Welti R., Wang X. M. (2010). Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22 2642–2659 10.1105/tpc.109.071720 PubMed DOI PMC

Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I. K., Wolters-Arts M., Marc J., et al. (2012). Turnover of phosphatidic acid through distinct signalling pathways affects multiple aspects of tobacco pollen tube tip growth. Front. Plant Sci. 3:54 10.3389/fpls.2012.00054 PubMed DOI PMC

Pokotylo I., Kolesnikov Y., Kravets V., Zachowski A., Ruelland E. (2014). Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96 144–157 10.1016/j.biochi.2013.07.004 PubMed DOI

Pokotylo I., Pejchar P., Potocký M., Kocourková D., Krčková Z., Ruelland E., et al. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog. Lipid Res. 52 62–79 10.1016/j.plipres.2012.09.001 PubMed DOI

Potocký M., Pleskot R., Pejchar P., Vitale N., Kost B., Žárský V. (2014). Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 203 483–494 10.1111/nph.12814 PubMed DOI

Ramos-Díaz A., Brito-Argáez L., Munnik T., Hernández-Sotomayor S. (2007). Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. Planta 225 393–401 10.1007/s00425-006-0348-3 PubMed DOI

Reddy V. S., Rao D. K. V., Rajasekharan R. (2010). Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim. Biophys. Acta 1801 455–461 10.1016/j.bbalip.2009.12.005 PubMed DOI

Rengel Z., Zhang W. H. (2003). Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol. 159 295–314 10.1046/j.1469-8137.2003.00821.x PubMed DOI

Rietz S., Dermendjiev G., Oppermann E., Tafesse F. G., Effendi Y., Holk A., et al. (2010). Roles of Arabidopsis patatin-related phospholipases A in root development are related to auxin responses and phosphate deficiency. Mol. Plant 3 524–538 10.1093/mp/ssp109 PubMed DOI

Ruíz-Herrera L.-F., López-Bucio J. (2013). Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling in Arabidopsis seedlings. Plant Soil 371 593–609 10.1007/s11104-013-1722-0 DOI

Scherer G. F. E., Paul R. U., Holk A., Martinec J. (2002). Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem. Biophys. Res. Commun. 293 766–770 10.1016/S0006-291X(02)00292-9 PubMed DOI

Schwarzerová K., Zelenková S., Nick P., Opatrný Z. (2002). Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol. 43 207–216 10.1093/pcp/pcf028 PubMed DOI

Shen H., Hou N., Schlicht M., Wan Y., Mancuso S., Baluška F. (2008). Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin. Sci. Bull. 53 2480–2487 10.1007/s11434-008-0332-3 DOI

Sivaguru M., Baluška F., Volkmann D., Felle H. H., Horst W. J. (1999). Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol. 119 1073–1082 10.1104/pp.119.3.1073 PubMed DOI PMC

Sivaguru M., Pike S., Gassmann W., Baskin T. I. (2003). Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol. 44 667–675 10.1093/pcp/pcg094 PubMed DOI

Tian Q.-Y., Sun D.-H., Zhao M.-G., Zhang W.-H. (2007). Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol. 174 322–331 10.1111/j.1469-8137.2007.02005.x PubMed DOI

Tjellström H., Andersson M. X., Larsson K. L., Sandelius A. S. (2008). Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ. 31 1388–1398 10.1111/j.1365-3040.2008.01851.x PubMed DOI

Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. (1991). Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5 496–507 10.1101/gad.5.3.496 PubMed DOI

Wang C., Zien C. A., Afitlhile M., Welti R., Hildebrand D. F., Wang X. (2000). Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12 2237–2246 10.1105/tpc.12.11.2237 PubMed DOI PMC

Wang X. (ed.). (2014). Phospholipases in Plant Signaling. Berlin: Springer-Verlag. 10.1007/978-3-642-42011-5 DOI

Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G. F. E. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in Arabidopsis thaliana. Mol. Plant 3 610–625 10.1093/mp/ssq005 PubMed DOI

Wissemeier A. H., Horst W. J. (1995). Effect of calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.). J. Plant Physiol. 145 470–476 10.1016/S0176-1617(11)81773-6 DOI

Yang Z. B., Geng X., He C., Zhang F., Wang R., Horst W. J., et al. (2014). TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26 2889–2904 10.1105/tpc.114.127993 PubMed DOI PMC

Zhao J., Wang C., Bedair M., Welti R. W., Sumner L., Baxter I., et al. (2011). Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana. PLoS ONE 6:e28086 10.1371/journal.pone.0028086 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace