Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
22639652
PubMed Central
PMC3355619
DOI
10.3389/fpls.2012.00054
Knihovny.cz E-resources
- Keywords
- diacylglycerol kinase, lipid phosphate phosphatase, phosphatidic acid, phospholipase D, pollen tube, signaling, tip growth, tobacco,
- Publication type
- Journal Article MeSH
Phosphatidic acid (PA) is an important intermediate in membrane lipid metabolism that acts as a key component of signaling networks, regulating the spatio-temporal dynamics of the endomembrane system and the cytoskeleton. Using tobacco pollen tubes as a model, we addressed the signaling effects of PA by probing the functions of three most relevant enzymes that regulate the production and degradation of PA, namely, phospholipases D (PLD), diacylglycerol kinases (DGKs), and lipid phosphate phosphatases (LPPs). Phylogenetic analysis indicated a highly dynamic evolution of all three lipid-modifying enzymes in land plants, with many clade-specific duplications or losses and massive diversification of the C2-PLD family. In silico transcriptomic survey revealed increased levels of expression of all three PA-regulatory genes in pollen development (particularly the DGKs). Using specific inhibitors we were able to distinguish the contributions of PLDs, DGKs, and LPPs into PA-regulated processes. Thus, suppressing PA production by inhibiting either PLD or DGK activity compromised membrane trafficking except early endocytosis, disrupted tip-localized deposition of cell wall material, especially pectins, and inhibited pollen tube growth. Conversely, suppressing PA degradation by inhibiting LPP activity using any of three different inhibitors significantly stimulated pollen tube growth, and similar effect was achieved by suppressing the expression of tobacco pollen LPP4 using antisense knock-down. Interestingly, inhibiting specifically DGK changed vacuolar dynamics and the morphology of pollen tubes, whereas inhibiting specifically PLD disrupted the actin cytoskeleton. Overall, our results demonstrate the critical importance of all three types of enzymes involved in PA production and degradation, with strikingly different roles of PA produced by the PLD and DGK pathways, in pollen tube growth.
See more in PubMed
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–340210.1093/nar/25.17.3389 PubMed DOI PMC
Arisz S. A., Munnik T. (2011). The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid. J. Lipid Res. 52, 2012–202010.1194/jlr.M016873 PubMed DOI PMC
Arisz S. A., Testerink C., Munnik T. (2009). Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta 1791, 869–875 PubMed
Bargmann B. O. R., Munnik T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9, 515–52210.1016/j.pbi.2006.07.011 PubMed DOI
Camacho L., Malhó R. (2003). Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J. Exp. Bot. 54, 83–9210.1093/jxb/54.380.83 PubMed DOI
Derksen J., Rutten T., Lichtscheidl I. K., Dewin A. H. N., Pierson E. S., Rongen G. (1995). Quantitative-analysis of the distribution of organelles in tobacco pollen tubes – implications for exocytosis and endocytosis. Protoplasma 188, 267–27610.1007/BF01280379 DOI
Donkor J., Sariahmetoglu M., Dewald J., Brindley D. N., Reue K. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282, 3450–345710.1074/jbc.M610745200 PubMed DOI
Dowd P. E., Coursol S., Skirpan A. L., Kao T., Gilroy S. (2006). Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18, 1438–145310.1105/tpc.106.041582 PubMed DOI PMC
Eliáš M., Drdová E., Žiak D., Bavlnka B., Hála M., Cvrcková F., Soukupova H., Žárský V. (2003). The exocyst complex in plants. Cell Biol. Int. 27, 199–20110.1016/S1065-6995(02)00349-9 PubMed DOI
Eliáš M., Potocký M., Cvrčková F., Žárský V. (2002). Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3, 2.10.1186/1471-2164-3-2 PubMed DOI PMC
Ella K. M., Meier K. E., Kumar A., Zhang Y., Meier G. P. (1997). Utilization of alcohols by plant and mammalian phospholipase D. Biochem. Mol. Biol. Int. 41, 715–724 PubMed
Foissner I., Lichtscheidl I. K., Wasteneys G. O. (1996). Actin-based vesicle dynamics and exocytosis during wound wall formation in characean internodal cells. Cell Motil. Cytoskeleton 35, 35–4810.1002/(SICI)1097-0169(1996)35:1<35::AID-CM3>3.0.CO;2-H PubMed DOI
Furneisen J. M., Carman G. M. (2000). Enzymological properties of the LPP1-encoded lipid phosphatase from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1484, 71–82 PubMed
Geitmann A., Steer M. (2006). “The architecture and properties of the pollen tube cell wall,” in The Pollen Tube, ed. Malhó R. (Berlin: Springer; ), 177–200
Gómez-Merino F. C., Arana-Ceballos F. A., Trejo-Téllez L. I., Skirycz A., Brearley C. A., Dörmann P., Mueller-Roeber B. (2005). Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration: the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development. J. Biol. Chem. 280, 34888–3489910.1074/jbc.M506859200 PubMed DOI
Gómez-Merino F. C., Brearley C. A., Ornatowska M., Abdel-Haliem M. E. F., Zanor M., Mueller-Roeber B. (2004). AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression. J. Biol. Chem. 279, 8230–824110.1074/jbc.M312187200 PubMed DOI
Grobei M. A., Qeli E., Brunner E., Rehrauer H., Zhang R., Roschitzki B., Basler K., Ahrens C. H., Grossniklaus U. (2009). Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19, 1786–180010.1101/gr.089060.108 PubMed DOI PMC
Grunt M., Žárský V., Cvrčková F. (2008). Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol. 8, 115.10.1186/1471-2148-8-115 PubMed DOI PMC
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–70410.1080/10635150390235520 PubMed DOI
Helling D., Possart A., Cottier S., Klahre U., Kost B. (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18, 3519–353410.1105/tpc.106.047373 PubMed DOI PMC
Ischebeck T., Stenzel I., Heilmann I. (2008). Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20, 3312–333010.1105/tpc.108.059568 PubMed DOI PMC
Katoh K., Toh H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–29810.1093/bib/bbn013 PubMed DOI
Kawasaki T., Kobayashi T., Ueyama T., Shirai Y., Saito N. (2008). Regulation of clathrin-dependent endocytosis by diacylglycerol kinase delta: importance of kinase activity and binding to AP2alpha. Biochem. J. 409, 471–47910.1042/BJ20070755 PubMed DOI
Kooijman E. E., Chupin V., de Kruijff B., Burger K. N. J. (2003). Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–17410.1034/j.1600-0854.2003.00086.x PubMed DOI
Kooijman E. E., Chupin V., Fuller N. L., Kozlov M. M., de Kruijff B., Burger K. N. J., Rand P. R. (2005). Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44, 2097–210210.1021/bi0518794 PubMed DOI
Kooijman E. E., Testerink C. (2010). “Phosphatidic acid: an electrostatic/hydrogen-bond switch?” in Lipid Signaling in Plants, ed. Munnik T. (Berlin: Springer; ), 203–222
Kost B., Spielhofer P., Chua N. H. (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 16, 393–40110.1046/j.1365-313x.1998.00304.x PubMed DOI
Kroeger J. H., Daher F. B., Grant M., Geitmann A. (2009). Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys. J. 97, 1822–183110.1016/j.bpj.2009.07.038 PubMed DOI PMC
Langhans M., Robinson D. G. (2007). 1-Butanol targets the Golgi apparatus in tobacco BY-2 cells, but in a different way to Brefeldin A. J. Exp. Bot. 58, 3439–344710.1093/jxb/erm194 PubMed DOI
Lee Y., Bak G., Choi Y., Chuang W., Cho H., Lee Y. (2008). Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol. 147, 624–63510.1104/pp.108.121590 PubMed DOI PMC
Li G., Xue H. (2007). Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19, 281–29510.1105/tpc.106.049965 PubMed DOI PMC
Lovy-Wheeler A., Cárdenas L., Kunkel J. G., Hepler P. K. (2007). Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil. Cytoskeleton 64, 217–23210.1002/cm.20181 PubMed DOI
Lovy-Wheeler A., Wilsen K. L., Baskin T. I., Hepler P. K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95–10410.1007/s00425-004-1423-2 PubMed DOI
Malhó R., Liu Q., Monteiro D., Rato C., Camacho L., Dinis A. (2006). Signalling pathways in pollen germination and tube growth. Protoplasma 228, 21–3010.1007/s00709-006-0162-6 PubMed DOI
Martin T. F. (1998). Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14, 231–26410.1146/annurev.cellbio.14.1.231 PubMed DOI
McDermott M., Wakelam M. J. O., Morris A. J. (2004). Phospholipase D. Biochem. Cell Biol. 82, 225–25310.1139/o03-079 PubMed DOI
Meier K. E., Gause K. C., Wisehart-Johnson A. E., Gore A. C., Finley E. L., Jones L. G., Bradshaw C. D., McNair A. F., Ella K. M. (1998). Effects of propranolol on phosphatidate phosphohydrolase and mitogen-activated protein kinase activities in A7r5 vascular smooth muscle cells. Cell. Signal. 10, 415–42610.1016/S0898-6568(97)00140-X PubMed DOI
Mérida I., Avila-Flores A., Merino E. (2008). Diacylglycerol kinases: at the hub of cell signalling. Biochem. J. 409, 1–1810.1042/BJ20071674 PubMed DOI
Monteiro D., Castanho Coelho P., Rodrigues C., Camacho L., Quader H., Malhó R. (2005). Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma 226, 31–3810.1007/s00709-005-0102-x PubMed DOI
Moscatelli A., Ciampolini F., Rodighiero S., Onelli E., Cresti M., Santo N., Idilli A. (2007). Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J. Cell. Sci. 120, 3804–381910.1242/jcs.012138 PubMed DOI
Moutinho A., Camacho L., Haley A., Pais M., Trewavas A., Malhó R. (2001). Antisense perturbation of protein function in living pollen tubes. Sex. Plant Reprod. 14, 101–10410.1007/s004970100086 DOI
Nakamura Y., Tsuchiya M., Ohta H. (2007). Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J. Biol. Chem. 282, 29013–2902110.1074/jbc.M704385200 PubMed DOI
Nakamura Y., Koizumi R., Shui G., Shimojima M., Wenk M. R., Ito T., Ohta H. (2009). Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc. Natl. Acad. Sci. U.S.A. 106, 20978–2098310.1073/pnas.0902230106 PubMed DOI PMC
Nakamura Y., Ohta H. (2010). “Phosphatidic acid phosphatases in seed plants,” in Lipid Signaling in Plants, ed. Munnik T. (Berlin: Springer; ), 131–141
Ohashi Y., Oka A., Rodrigues-Pousada R., Possenti M., Ruberti I., Morelli G., Aoyama T. (2003). Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300, 1427–143010.1126/science.1083695 PubMed DOI
Ovečka M., Baluška F., Lichtscheidl I. (2008). Non-invasive microscopy of tip-growing root hairs as a tool for study of dynamic and cytoskeleton-based vesicle trafficking. Cell Biol. Int. 32, 549–55310.1016/j.cellbi.2007.11.007 PubMed DOI
Ovečka M., Lang I., Baluška F., Ismail A., Illeš P., Lichtscheidl I. K. (2005). Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226, 39–5410.1007/s00709-005-0103-9 PubMed DOI
Pan Y., Wang X., Ma L., Sun D. (2005). Characterization of phosphatidylinositol-specific phospholipase C (PI-PLC) from Lilium daviddi pollen. Plant Cell Physiol. 46, 1657–166510.1093/pcp/pci181 PubMed DOI
Parton R. M., Fischer-Parton S., Watahiki M. K., Trewavas A. J. (2001). Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J. Cell Sci. 114, 2685–2695 PubMed
Pleskot R., Potocký M., Pejchar P., Linek J., Bezvoda R., Martinec J., Valentová O., Novotná Z., Žárský V. (2010). Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J. 62, 494–50710.1111/j.1365-313X.2010.04168.x PubMed DOI
Potocký M., Eliáš M., Profotová B., Novotná Z., Valentová O., Žárský V. (2003). Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217, 122–130 PubMed
Potocký M., Jones M. A., Bezvoda R., Smirnoff N., Žárský V. (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 174, 742–75110.1111/j.1469-8137.2007.02042.x PubMed DOI
Riebeling C., Morris A. J., Shields D. (2009). Phospholipase D in the Golgi apparatus. Biochim. Biophys. Acta 1791, 876–880 PubMed PMC
Rincón E., Santos T., Avila-Flores A., Albar J. P., Lalioti V., Lei C., Hong W., Mérida I. (2007). Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: new diacylglycerol kinase roles in endocytic recycling. Mol. Cell. Proteomics 6, 1073–1087 PubMed
Ronquist F., Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–157410.1093/bioinformatics/btg180 PubMed DOI
Ruelland E., Cantrel C., Gawer M., Kader J., Zachowski A. (2002). Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 130, 999–100710.1104/pp.006080 PubMed DOI PMC
Šamaj J., Ovečka M., Hlavačka A., Lecourieux F., Meskiene I., Lichtscheidl I., Lenart P., Salaj J., Volkmann D., Bögre L., Baluška H., Hirt H. (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–330610.1093/emboj/cdf349 PubMed DOI PMC
Sun C., Höglund A., Olsson H., Mangelsen E., Jansson C. (2005). Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant J. 44, 128–13810.1111/j.1365-313X.2005.02515.x PubMed DOI
Testerink C., Munnik T. (2011). Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62, 2349–236110.1093/jxb/err079 PubMed DOI
van Schooten B., Testerink C., Munnik T. (2006). Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim. Biophys. Acta 1761, 151–159 PubMed
Vicogne J., Vollenweider D., Smith J. R., Huang P., Frohman M. A., Pessin J. E. (2006). Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl. Acad. Sci. U.S.A. 103, 14761–1476610.1073/pnas.0606881103 PubMed DOI PMC
Wang X., Teng Y., Wang Q., Li X., Sheng X., Zheng M., Samaj J., Baluška F., Lin J. (2006). Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol. 141, 1591–160310.1104/pp.105.070490 PubMed DOI PMC
Wei L. Q., Xu W. Y., Deng Z. Y., Su Z., Xue Y., Wang T. (2010). Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11, 338.10.1186/1471-2164-11-338 PubMed DOI PMC
Winship L. J., Obermeyer G., Geitmann A., Hepler P. K. (2010). Under pressure, cell walls set the pace. Trends Plant Sci. 15, 363–36910.1016/j.tplants.2010.04.005 PubMed DOI PMC
Yamamoto A., DeWald D. B., Boronenkov I. V., Anderson R. A., Emr S. D., Koshland D. (1995). Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol. Biol. Cell 6, 525–539 PubMed PMC
Žárský V., Potocký M. (2010). Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst. Biochem. Soc. Trans. 38, 723–72810.1042/BST0380723 PubMed DOI
Zeniou-Meyer M., Zabari N., Ashery U., Chasserot-Golaz S., Haeberlé A., Demais V., Bailly Y., Gottfried I., Nakanishi H., Neiman A. M., Du G., Frohman M. A., Bader M., Vitale N. (2007). Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J. Biol. Chem. 282, 21746–2175710.1074/jbc.M702968200 PubMed DOI
Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. (2009). Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21, 2357–237710.1105/tpc.108.061457 PubMed DOI PMC
Zonia L. (2010). Spatial and temporal integration of signalling networks regulating pollen tube growth. J. Exp. Bot. 61, 1939–195710.1093/jxb/erq073 PubMed DOI
Zonia L., Munnik T. (2004). Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134, 813–82310.1104/pp.103.029454 PubMed DOI PMC
Zonia L., Munnik T. (2008). Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J. Exp. Bot. 59, 861–87310.1093/jxb/ern007 PubMed DOI
DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit
Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants
Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana
Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana
When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules
Phosphoglycerolipids are master players in plant hormone signal transduction
Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life