Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36909415
PubMed Central
PMC9995887
DOI
10.3389/fpls.2023.1118670
Knihovny.cz E-zdroje
- Klíčová slova
- PLA2-like, modelling, phylogeny, plant, pollen, sPLA2,
- Publikační typ
- časopisecké články MeSH
Plant secretory phospholipase A2 (sPLA2) is a family of lipolytic enzymes involved in the sn-2 hydrolysis of phospholipid carboxyester bonds, characterized by the presence of a conserved PA2c domain. PLA2 produces free fatty acids and lysophospholipids, which regulate several physiological functions, including lipid metabolism, plant growth and development, signal transduction, and response to various environmental stresses. In the present work, we have performed a comparative analysis of PA2c domain-containing genes across plants, focusing on gene distribution, phylogenetic analysis, tissue-specific expression, and homology modeling. Our data revealed the widespread occurrence of multiple sPLA2 in most land plants and documented single sPLA2 in multiple algal groups, indicating an ancestral origin of sPLA2. We described a novel PA2c-containing gene family present in all plant lineages and lacking secretory peptide, which we termed PLA2-like. Phylogenetic analysis revealed two independent clades in canonical sPLA2 genes referred to as α and β clades, whereas PLA2-like genes clustered independently as a third clade. Further, we have explored clade-specific gene expressions showing that while all three clades were expressed in vegetative and reproductive tissues, only sPLA2-β and PLA2-like members were expressed in the pollen and pollen tube. To get insight into the conservation of the gene regulatory network of sPLA2 and PLA2-like genes, we have analyzed the occurrence of various cis-acting promoter elements across the plant kingdom. The comparative 3D structure analysis revealed conserved and unique features within the PA2c domain for the three clades. Overall, this study will help to understand the evolutionary significance of the PA2c family and lay the foundation for future sPLA2 and PLA2-like characterization in plants.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abrams Z. B., Johnson T. S., Huang K., Payne P. R. O., Coombes K. (2019). A protocol to evaluate RNA sequencing normalization methods. BMC Bioinf. 20, 679. doi: 10.1186/s12859-019-3247-x PubMed DOI PMC
Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., et al. . (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science 373 (6557), 871–876. doi: 10.1126/science.abj8754 PubMed DOI PMC
Bahn S. C., Lee H. Y., Kim H. J., Ryu S. B., Shin J. S. (2003). Characterization of arabidopsis secretory phospholipase A2-gamma cDNA and its enzymatic properties. FEBS Lett. 553 (1-2), 113–118. doi: 10.1016/S0014-5793(03)00982-7 PubMed DOI
Balsinde J., Balboa M. ,. A. (2005). Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell. Signal. 17, 1052–1062. doi: 10.1016/j.cellsig.2005.03.002 PubMed DOI
Beisson F., Koo A. J., Ruuska S., Schwender J., Pollard M., Thelen J. J., et al. . (2003). Arabidopsis genes involved in acyl lipid metabolism. a 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 132 (2), 681–697. doi: 10.1104/pp.103.022988 PubMed DOI PMC
Bosch M., Cheung A. Y., Hepler P. K. (2005). Pectin Methylesterase, a Regulator of Pollen Tube Growth. Plant Physiol. 138, 1334–1346. doi: 10.1104/pp.105.059865 PubMed DOI PMC
Chapman K. D. (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci. 3 (11), 419–426. doi: 10.1016/S1360-1385(98)01326-0 DOI
Chen G., Greer M. S., Weselake R. J. (2013). Plant phospholipase a: advances in molecular biology, biochemistry, and cellular function. Biomol. concepts 4 (5), 527–532. doi: 10.1515/bmc-2013-0011 PubMed DOI
Creelman R. A., Mullet J. E. (1997). Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9 (7), 1211–1223. doi: 10.1105/tpc.9.7.1211 PubMed DOI PMC
Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a sequence logo generator. Genome Res. 14 (6), 1188–1190. doi: 10.1101/gr.849004 PubMed DOI PMC
Dhondt S., Geoffroy P., Stelmach B. A., Legrand M., Heitz T. (2000). Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23 (4), 431–440. doi: 10.1046/j.1365-313x.2000.00802.x PubMed DOI
Dijkstra B. W., Kalk K. H., Hol W. G., Drenth J. (1981). Structure of bovine pancreatic phospholipase A2 at 1.7 Å resolution. J. Mol. Biol. 147 (1), 97–123. doi: 10.1016/0022-2836(81)90081-4 PubMed DOI
Ellinger D., Stingl N., Kubigsteltig I. I., Bals T., Juenger M., Pollmann S., et al. . (2010). DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: Redundant lipases contribute to jasmonate formation. Plant Physiol. 153 (1), 114–127. doi: 10.1104/pp.110.155093 PubMed DOI PMC
Froidure S., Canonne J., Daniel X., Jauneau A., Brière C., Roby D., et al. . (2010). AtsPLA2-alpha nuclear relocalization by the arabidopsis transcription factor AtMYB30 leads to repression of the plant defence response. P. Natl. Acad. Sci. U.S.A. 107 (34), 15281–15286. doi: 10.1073/pnas.1009056107 PubMed DOI PMC
Fujikawa R., Fujikawa Y., Iijima N., Esaka M. (2005). Molecular cloning, expression, and characterization of secretory phospholipase A2 in tobacco. Lipids 40 (9), 901–908. doi: 10.1007/s11745-005-1450-9 PubMed DOI
Fujikawa Y., Fujikawa Y., Iijima N., Esaka M. (2012). Characterization of secretory phospholipase A2 with phospholipase A1 activity in tobacco, Nicotiana tabacum (L.). Lipids 47 (3), 303–312. doi: 10.1007/s11745-011-3632-3 PubMed DOI
Gupta P., Dash P. K. (2017). Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum l.) provide insight into its structure and function. Sci. Rep. 7 (1), 11080. doi: 10.1038/s41598-017-10969-9 PubMed DOI PMC
Gupta P., Saini R., Dash P. K. (2017). Origin and evolution of group XI secretory phospholipase A2 from flax (Linum usitatissimum) based on phylogenetic analysis of conserved domains. 3 Biotech. 7 (3), 1–10. doi: 10.1007/s13205-017-0790-x PubMed DOI PMC
Guy J. E., Ståhl U., Lindqvist Y. (2009). Crystal structure of a class XIB phospholipase A2 (PLA2): rice (Oryza sativa) isoform-2 pla2 and an octanoate complex. J. Biol. Chem. 284 (29), 19371–19379. doi: 10.1074/jbc.M109.008466 PubMed DOI PMC
Han F., Peng Y., Xu L., Xiao P. (2014). Identification, characterization, and utilization of single copy genes in 29 angiosperm genomes. BMC Genomics 15 (1), 504. doi: 10.1186/1471-2164-15-504 PubMed DOI PMC
Holland D. R., Clancy L. L., Muchmore S. W., Ryde T. J., Einspahr H. M., Finzel B. C., et al. . (1990). The crystal structure of a lysine 49 phospholipase A2 from the venom of the cottonmouth snake at 2.0-a resolution. J. Biol. Chem. 265 (29), 17649–17656. doi: 10.2210/pdb1ppa/pdb PubMed DOI
Hyun Y., Choi S., Hwang H. J., Yu J., Nam S. J., Ko J., et al. . (2008). Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev. Cell 14 (2), 183–192. doi: 10.1016/j.devcel.2007.11.010 PubMed DOI
Ishiguro S., Kawai-Oda A., Ueda J., Nishida I., Okada K. (2001). The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis . Plant Cell 13 (10), 2191–2209. doi: 10.1105/tpc.010192 PubMed DOI PMC
Jabeen T., Singh N., Singh R. K., Jasti J., Sharma S., Kaur P., et al. (2006). Crystal structure of a heterodimer of phospholipase A2 from Naja naja sagittifera at 2.3 A resolution reveals the presence of a new PLA2-like protein with a novel cys 32-Cys 49 disulphide bridge with a bound sugar at the substrate-binding site. Proteins 62, 329–337. doi: 10.1002/prot.20708 PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. . (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596 (7873), 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Jung J., Kumar K., Lee H. Y., Park Y. I., Cho H. T., Ryu S. B. (2012). Translocation of phospholipase A2α to apoplasts is modulated by developmental stages and bacterial infection in arabidopsis. Front. Plant Sci. 3. doi: 10.3389/fpls.2012.00126 PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 (4), 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Kato T., Morita M. T., Fukaki H., Yamauchi Y., Uehara M., Niihama M., et al. . (2002). SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of arabidopsis. Plant Cell 14 (1), 33–46. doi: 10.1105/tpc.010215 PubMed DOI PMC
Kim J. Y., Chung Y. S., Ok S. H., Lee S. G., Chung W. I., Kim I. Y., et al. . (1999). Characterization of the full-length sequences of phospholipase A2 induced during flower development. Biochim. Biophys. Acta 1489 (2-3), 389–392. doi: 10.1016/s0167-4781(99)00193-1 PubMed DOI
Kim H. J., Ok S. H., Bahn S. C., Jang J., Oh S. A., Park S. K., et al. . (2011). Endoplasmic reticulum- and golgi-localized phospholipase A2 plays critical roles in arabidopsis pollen development and germination. Plant Cell 23 (1), 94–110. doi: 10.1105/tpc.110.074799 PubMed DOI PMC
Kondrashov F. A. (2012). Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. Biol. Sci. 279 (1749), 5048–5057. doi: 10.1098/rspb.2012.1108 PubMed DOI PMC
La Camera S., Balagué C., Göbel C., Geoffroy P., Legrand M., Feussner I., et al. . (2009). The arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol. Plant Microbe Interact. 22 (4), 469–481. doi: 10.1094/MPMI-22-4-0469 PubMed DOI
La Camera S., Geoffroy P., Samaha H., Ndiaye A., Rahim G., Legrand M., et al. . (2005). A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in. Arabidopsis. Plant J. 44 (5), 810–825. doi: 10.1111/j.1365-313X.2005.02578.x PubMed DOI
Laureano G., Figueiredo J., Cavaco A. R., Duarte B., Caçador I., Malhó R., et al. . (2018). The interplay between membrane lipids and phospholipase a family members in grapevine resistance against. Plasmopara viticola. Sci. Rep. 8 (1), 1–15. doi: 10.1038/s41598-018-32559-z PubMed DOI PMC
Laxalt A. M., Munnik T. (2002). Phospholipid signalling in plant defence. Curr. Opin. Plant Biol. 5 (4), 332–338. doi: 10.1016/s1369-5266(02)00268-6 PubMed DOI
Lee H. Y., Bahn S. C., Kang Y. M., Lee K. H., Kim H. J., Noh E. K., et al. . (2003). Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in arabidopsis. Plant Cell 15 (9), 1990–2002. doi: 10.1105/tpc.014423 PubMed DOI PMC
Lee H. Y., Bahn S. C., Shin J. S., Hwang I., Back K., Doelling J. H., et al. . (2005). Multiple forms of secretory phospholipase A2 in plants. Prog. Lipid Res. 44 (1), 52–67. doi: 10.1016/j.plipres.2004.10.002 PubMed DOI
Lee O. R., Kim S. J., Kim H. J., Hong J. K., Ryu S. B., Lee S. H., et al. . (2010). Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the arabidopsis root. Plant Cell 22 (6), 1812–1825. doi: 10.1105/tpc.110.074211 PubMed DOI PMC
Lee S., Suh S., Kim S., Crain R. C., Kwak M. J., Nam H. G., et al. . (1997). Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J. 12 (3), 547–556. doi: 10.1046/j.1365-313x.1997.00547.x DOI
Liao H.-L., Burns J. K. (2010). Light controls phospholipase A2α and β gene expression in citrus sinensis. J. Exp. Bot. 61 (9), 2469–2478. doi: 10.1093/jxb/erq083 PubMed DOI PMC
Li M., Bahn S. C., Fan C., Li J., Phan T., Ortiz M., et al. . (2013). Patatin-related phospholipase pPLAIIIδ increases seed oil content with long-chain fatty acids in arabidopsis. Plant Physiol. 162 (1), 39–51. doi: 10.1104/pp.113.216994 PubMed DOI PMC
Li M., Bahn S. C., Guo L., Musgrave W., Berg H., Welti R., et al. . (2011). Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in arabidopsis. Plant Cell 23 (3), 1107–1123. doi: 10.1105/tpc.110.081240 PubMed DOI PMC
Lo M., Taylor C., Wang L., Nowack L., Wang T. W., Thompson J. (2004). Characterization of an ultraviolet b-induced lipase in arabidopsis. Plant Physiol. 135 (2), 947–958. doi: 10.1104/pp.103.036376 PubMed DOI PMC
Mansfeld J. (2009). Plant phospholipases A2: perspectives on biotechnological applications. Biotechnol. Lett. 31 (9), 1373–1380. doi: 10.1007/s10529-009-0034-1 PubMed DOI
Mariani M. E., Fidelio G. D. (2019). Secretory phospholipases A2 in plants. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00861 PubMed DOI PMC
Ma J., Wang S., Zhu X., Sun G., Chang G., Li L., et al. . (2022). Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant 15 (5), 857–871. doi: 10.1016/j.molp.2022.02.001 PubMed DOI
Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., von Haeseler A., et al. . (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37 (5), 1530–1534. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Mueller L. A., Solow T. H., Taylor N., Skwarecki B., Buels R., Binns J., et al. . (2005). The SOL genomics network: a comparative resource for solanaceae biology and beyond. Plant Physiol. 138 (3), 1310–1317. doi: 10.1104/pp.105.060707 PubMed DOI PMC
Myburg A. A., Grattapaglia D., Tuskan G. A., Hellsten U., Hayes R. D., Grimwood J., et al. . (2014). The genome of eucalyptus grandis. Nature 510 (7505), 356–362. doi: 10.1038/nature13308 PubMed DOI
One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574 (7780), 679–685. doi: 10.1038/s41586-019-1693-2 PubMed DOI PMC
Panchy N., Lehti-Shiu M., Shiu S.-H. (2016). Evolution of gene duplication in plants. Plant Physiol. 171 (4), 2294–2316. doi: 10.1104/pp.16.00523 PubMed DOI PMC
Proost S., Mutwil M. (2018). CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses. Nucleic Acids Res. 46 (W1), W133–W140. doi: 10.1093/nar/gky336 PubMed DOI PMC
Quach N. D., Arnold R. D., Cummings B. S. (2014). Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol. 90 (4), 338–348. doi: 10.1016/j.bcp.2014.05.022 PubMed DOI PMC
Scherer G. F. E. (2002). Secondary messengers and phospholipase A2 in auxin signal transduction. Plant Mol. Biol. 49, 357–372. doi: 10.1023/A:1015290510483 PubMed DOI
Seo Y. S., Kim E. Y., Kim W. T. (2011). The arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability. J. Exp. Bot. 62 (15), 5683–5698. doi: 10.1093/jxb/err250 PubMed DOI PMC
Seo J., Lee H. Y., Choi H., Choi Y., Lee Y., Kim Y. W., et al. . (2008). Phospholipase A2β mediates light-induced stomatal opening in arabidopsis. J. Exp. Bot. 59 (13), 3587–3594. doi: 10.1093/jxb/ern208 PubMed DOI PMC
Serrano N., Pejchar P., Soukupová H., Hubálek M., Potocký M. (2022). Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1028311 PubMed DOI PMC
Sibéril Y., Doireau P., Gantet P. (2001). Plant bZIP G-box binding factors. modular structure and activation mechanisms. Eur. J. Biochem. 268 (22), 5655–5666. doi: 10.1046/j.0014-2956.2001.02552.x PubMed DOI
Singh A., Baranwal V., Shankar A., Kanwar P., Ranjan R., Yadav S., et al. . (2012). Rice phospholipase a superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development. PloS One 7 (2), e30947. doi: 10.1371/journal.pone.0030947 PubMed DOI PMC
Six D. A., Dennis E. A. (2000). The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta 1488 (1-2), 1–19. doi: 10.1016/s1388-1981(00)00105-0 PubMed DOI
Ståhl U., Ek B., Stymne S. (1998). Purification and characterization of a low-molecular-weight phospholipase A2 from developing seeds of Elm1. Plant Physiol. 117 (1), 197–205. doi: 10.1104/pp.117.1.197 PubMed DOI PMC
Ståhl U., Lee M., Sjödahl S., Archer D., Cellini F., Ek B., et al. . (1999). Plant low-molecular-weight phospholipase A2S (PLA2s) are structurally related to the animal secretory PLA2s and are present as a family of isoforms in rice (Oryza sativa). Plant Mol. Biol. 41 (4), 481–490. doi: 10.1023/a:1006323405788 PubMed DOI
Takáč T., Novák D., Šamaj J. (2019). Recent advances in the cellular and developmental biology of phospholipases in plants. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00362 PubMed DOI PMC
Unni S., Huang Y., Hanson R. M., Tobias M., Krishnan S., Li W. W., et al. . (2011). Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32 (7), 1488–1491. doi: 10.1002/jcc.21720 PubMed DOI PMC
Verlotta A., Liberatore M. T., Cattivelli L., Trono D. (2013). Secretory phospholipases A2 in durum wheat (Triticum durum desf.): Gene expression, enzymatic activity, and relation to drought stress adaptation. Int. J. Mol. Sci. 14 (3), 5146–5169. doi: 10.3390/ijms14035146 PubMed DOI PMC
Wang S., Li W., Liu S., Xu J. (2016). RaptorX-property: a web server for protein structure property prediction. Nucleic Acids Res. 44 (W1), W430–W435. doi: 10.1093/nar/gkw306 PubMed DOI PMC
Wang G., Ryu S., Wang X. (2012). Plant phospholipases: An overview. Methods Mol. Biol. 861, 123–137. doi: 10.1007/978-1-61779-600-5_8 PubMed DOI
Wang Y., Zhang W. Z., Song L. F., Zou J. J., Su Z., Wu W. H. (2008). Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in arabidopsis. Plant Physiol. 148 (3), 1201–1211. doi: 10.1104/pp.108.126375 PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. . (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46 (W1), W296–W303. doi: 10.1093/nar/gky427 PubMed DOI PMC
Waterhouse A. M., Procter J. B., Martin D. M., Clamp M., Barton G. J. (2009). Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 (9), 1189–1191. doi: 10.1093/bioinformatics/btp033 PubMed DOI PMC
White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. (1990). Crystal structure of cobra-venom phospholipaseA2 in a complex with a transition-state analogue. Science 250 (4987), 1560–1563. doi: 10.1126/science.2274787 PubMed DOI
Yang W., Devaiah S. P., Pan X., Isaac G., Welti R., Wang X. (2007). AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and arabidopsis resistance to botrytis cinerea. J. Biol. Chem. 282 (25), 18116–18128. doi: 10.1074/jbc.M700405200 PubMed DOI
Yang W. Y., Zheng Y., Bahn S. C., Pan X. Q., Li M. Y., Vu H. S., et al. . (2012). The patatin-containing phospholipase a pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana . Mol. Plant 5 (2), 452–460. doi: 10.1093/mp/ssr118 PubMed DOI PMC
Zhu H., Dupureur C. M., Zhang X., Tsai M. D. (1995). Phospholipase A2 engineering. the roles of disulfide bonds in structure, conformational stability, and catalytic function. Biochemistry 34 (46), 15307–15314. doi: 10.1021/bi00046a040 PubMed DOI