The Impact of Different Drying Methods on the Metabolomic and Lipidomic Profiles of Arthrospira platensis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DEC-6/RADIUM/2022
Gdańsk University of Technology
PubMed
38675566
PubMed Central
PMC11051859
DOI
10.3390/molecules29081747
PII: molecules29081747
Knihovny.cz E-resources
- Keywords
- Arthrospira platensis, HPLC-HRMS/MS, drying, lipidomics, metabolomics, microalgae,
- MeSH
- Lipidomics * methods MeSH
- Lipids analysis MeSH
- Freeze Drying MeSH
- Metabolome MeSH
- Metabolomics * methods MeSH
- Microalgae metabolism chemistry MeSH
- Spirulina * metabolism chemistry MeSH
- Tandem Mass Spectrometry methods MeSH
- Desiccation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipids MeSH
Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.
See more in PubMed
Chojnacka K., Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym. Microb. Technol. 2004;34:461–465. doi: 10.1016/j.enzmictec.2003.12.002. DOI
El-Baky N.A., Rezk N.M.F., Amara A.A. Arthrospira platensis Variants: A Comparative Study Based on C-phycocyanin Gene and Protein, Habitat, and Growth Conditions. J. Mar. Sci. Eng. 2023;11:663. doi: 10.3390/jmse11030663. DOI
Barnett M. Arthrospira platensis: Brief history and description. Curr. Pharm. Biotechnol. 2005;6:373–379. PubMed
Li Y., Aiello G., Bollati C., Bartolomei M., Arnoldi A., Lammi C. Phycobiliproteins from Arthrospira platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients. 2020;12:794. doi: 10.3390/nu12030794. PubMed DOI PMC
Bui H.T.H., Thi Pham T., Thi Thu Nguyen H., Minh Do T., Thi Nga V., Bac N.D., Huyen V.T.B., Le H.M., Tran Q.C. Transformation Chlorophyll a of Spirulina platensis to Chlorin E6 Derivatives and Several Applications. Open Access Maced. J. Med. Sci. 2019;7:4372–4377. doi: 10.3889/oamjms.2019.838. PubMed DOI PMC
Ali S.K., Saleh A.M. Spirulina—An overview. Int. J. Pharm. Pharm. Sci. 2012;4:9–15.
Marzorati S., Schievano A., Idà A., Verotta L. Carotenoids, chlorophylls and phycocyanin from spirulina: Supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2020;22:187–196. doi: 10.1039/C9GC03292D. DOI
Hynstova V., Sterbova D., Klejdus B., Hedbavny J., Huska D., Adam V. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. J. Pharm. Biomed. Anal. 2018;148:108–118. doi: 10.1016/j.jpba.2017.09.018. PubMed DOI
Dos Santos R.R., Corrêa P.S., Dantas F.M.L., Teixeira C.M.L.L. Evaluation of the Co-Production of Total Carotenoids, C-Phycocyanin and Polyhydroxyalkanoates by Arthrospira platensis. Bioresour. Technol. Rep. 2019;7:100226. doi: 10.1016/j.biteb.2019.100226. DOI
Ramadan M.F., Asker M.M.S., Ibrahim Z.K. Functional bioactive compounds and biological activities of Spirulina platensis lipids. CAAS Agric. J. 2008;26:211–222. doi: 10.17221/2567-CJFS. DOI
Bashir S., Sharif M.K., Butt M.S., Shahid M. Functional Properties and Amino Acid Profile of Spirulina Platensis Protein Isolates. Biol. Sci.—PJSIR. 2016;59:12–19. doi: 10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19. DOI
Çelekli A., Özbal B., Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods. 2024;13:725. doi: 10.3390/foods13050725. PubMed DOI PMC
Guo Y., Wu L., Zhu Z., Hou H., Wang Y. Investigation of Peptides Containing Branched-Chain Amino Acids from Arthrospira platensis through a Peptidomics Workflow. Food Bioprocess Technol. 2024;17:516–527. doi: 10.1007/s11947-023-03147-5. DOI
El-Sayed A.E.-K., El-Sheekh M. Outdoor Cultivation of Spirulina platensis for Mass Production. Not. Sci. Biol. 2018;10:38–44. doi: 10.15835/nsb10110177. DOI
Ouedraogo H.G., Savadogo B., Traore A. Storage influence on beta-carotene and alpha-tocopherol contents of solar-dried Spirulina platensis (Spirulina) Afr. J. Food Sci. 2015;9:546–554.
Walker T.H., Drapcho C.M., Chen F. Bioprocessing technology for production of nutraceutical compounds. In: Shi J., editor. Functional Food Ingredients and Nutraceuticals: Processing Technologies. CRC Press; Boca Raton, FL, USA: 2015.
Kharchuk I.A., Rylkova O.A., Beregovaya N.M. State of cyanobacteria Arthrospira platensis and of associated microflora during long-term storage in the state of anhydrobiosis. Microbiology. 2022;91:704–712. doi: 10.1134/S0026261722601786. DOI
Silva N.C., Graton I.S., Duarte C.R., Barrozo M.A.S. Effects of Infrared and Microwave Radiation on the Bioactive Compounds of Microalga Spirulina platensis after Continuous and Intermittent Drying. Molecules. 2023;28:5963. doi: 10.3390/molecules28165963. PubMed DOI PMC
Soni R., Sudhakar K., Rana R.S. Spirulina—From growth to nutritional product: A review. Trends Food Sci. Technol. 2017;69:157–171. doi: 10.1016/j.tifs.2017.09.010. DOI
Oliveira E.G., Duarte J.H., Moraes K., Crexi V.T., Pinto L.A.A. Optimisation of Spirulina platensis convective drying: Evaluation of phycocyanin loss and lipid oxidation. Int. J. Food Sci. Technol. 2010;45:1572–1578. doi: 10.1111/j.1365-2621.2010.02299.x. DOI
Papalia T., Sidari R., Panuccio M.R. Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules. 2019;24:2810. doi: 10.3390/molecules24152810. PubMed DOI PMC
Demarco M., Moraes J.O.d., Ferrari M.C., Neves F.d.F., Laurindo J.B., Tribuzi G. Production of Spirulina (Arthrospira platensis) powder by innovative and traditional drying techniques. J. Food Process Eng. 2022;45:e13919. doi: 10.1111/jfpe.13919. DOI
Beaupeux E., Jayaprakash P., Dokmak A., Edorh J.-M., Gaiani C., Desobry S., Maudhuit A. Electrostatic spray drying: Advantages for thermosensitive actives. Chem. Eng. Res. Des. 2024;203:688–696. doi: 10.1016/j.cherd.2024.02.016. DOI
Guo W., Zeng M., Zhu S., Li S., Qian Y., Wu H. Phycocyanin ameliorates mouse colitis via phycocyanobilin-dependent antioxidant and anti-inflammatory protection of the intestinal epithelial barrier. Food Funct. 2022;13:3294–3307. doi: 10.1039/D1FO02970C. PubMed DOI
Rivera S.M., Christou P., Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014;33:353–372. doi: 10.1002/mas.21390. PubMed DOI
Bijttebier S.K., D’Hondt E., Hermans N., Apers S., Voorspoels S. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: A first step towards identification of unknowns. J. Mass Spectrom. 2013;48:740–754. doi: 10.1002/jms.3203. PubMed DOI
Milenković S.M., Zvezdanović J., Anđelković T., Marković D.Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Adv. Technol. 2012;1:16–24.
Chen K., Ríos J.J., Pérez-Gálvez A., Roca M. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. J. Chromatogr. A. 2015;1406:99–108. doi: 10.1016/j.chroma.2015.05.072. PubMed DOI
Chen K., Ríos J.J., Roca M., Pérez-Gálvez A. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. J. Chromatogr. A. 2015;1412:90–99. doi: 10.1016/j.chroma.2015.08.007. PubMed DOI
Viera I., Roca M., Perez-Galvez A. Mass spectrometry of non-allomerized chlorophylls a and b derivatives from plants. Curr. Org. Chem. 2018;22:842–876. doi: 10.2174/1385272821666170920164836. DOI
Yang Y., Du L., Hosokawa M., Miyashita K. Effect of Spirulina lipids on high-fat and high-sucrose diet induced obesity and hepatic lipid accumulation in C57BL/6J mice. J. Funct. Foods. 2020;65:103741. doi: 10.1016/j.jff.2019.103741. DOI
Neag E., Stupar Z., Varaticeanu C., Senila M., Roman C. Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules. 2022;27:6794. doi: 10.3390/molecules27206794. PubMed DOI PMC
Conde T.A., Neves B.F., Couto D., Melo T., Neves B., Costa M., Silva J., Domingues P., Domingues M.R. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Mar. Drugs. 2021;19:357. doi: 10.3390/md19070357. PubMed DOI PMC
Couto D., Conde T.A., Melo T., Neves B., Costa M., Silva J., Domingues R., Domingues P. The chemodiversity of polar lipidomes of microalgae from different taxa. Algal Res. 2023;70:103006. doi: 10.1016/j.algal.2023.103006. DOI
Xue C., Hu Y., Saito H., Zhang Z., Li Z., Cai Y., Ou C., Lin H., Imbs A.B. Molecular species composition of glycolipids from Spirulina platensis. Food Chem. 2002;77:9–13. doi: 10.1016/S0308-8146(01)00315-6. DOI
da Costa E., Silva J., Mendonça S.H., Abreu M.H., Domingues M.R. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs. 2016;14:101. doi: 10.3390/md14050101. PubMed DOI PMC
Lopes D., Moreira A.S., Rey F., da Costa E., Melo T., Maciel E., Rego A., Abreu M.H., Domingues P., Calado R., et al. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. J. Appl. Phycol. 2019;31:1369–1381. doi: 10.1007/s10811-018-1644-6. DOI
da Costa E., Melo T., Reis M., Domingues P., Calado R., Abreu M.H., Domingues M.R. Polar lipids composition, antioxidant and anti-inflammatory activities of the Atlantic red seaweed Grateloupia turuturu. Mar. Drugs. 2021;19:414. doi: 10.3390/md19080414. PubMed DOI PMC
Alves E., Melo T., Barros M.P., Domingues M.R.M., Domingues P. Lipidomic profiling of the olive (Olea europaea L.) fruit towards its valorisation as a functional food: In-depth identification of triacylglycerols and polar lipids in Portuguese olives. Molecules. 2019;24:2555. doi: 10.3390/molecules24142555. PubMed DOI PMC
da Costa E., Melo T., Moreira A.S., Alves E., Domingues P., Calado R., Abreeu M.H., Domingues M.R. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal Res. 2015;12:388–397. doi: 10.1016/j.algal.2015.09.020. DOI
Liu Y., Chen M., Li Y., Feng X., Chen Y., Lin L. Analysis of lipids in green coffee by ultra-performance liquid chromatography-time-of-flight tandem mass spectrometry. Molecules. 2022;27:5271. doi: 10.3390/molecules27165271. PubMed DOI PMC
Demir B.S., Tükel S.S. Purification and characterization of lipase from Spirulina platensis. J. Mol. Catal. B Enzym. 2010;64:123–128. doi: 10.1016/j.molcatb.2009.09.011. DOI
da Fontoura Prates D., Duarte H., Vendruscolo D.G., Wagner R., Ballus C.A., da Silva Oliveira W., Godoy H.T., Barcia M.T., de Morais M.G., Radmann E.M., et al. Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. Bioresour. Technol. 2020;306:123184. doi: 10.1016/j.biortech.2020.123184. PubMed DOI
Choi A., Kim S.G., Yoon B.D., Oh H.M. Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnol. Bioprocess Eng. 2003;8:368–372. doi: 10.1007/BF02949281. DOI
Zhang P., Chan W., Ang I.L., Wei R., Lam M.M., Lei K.M., Poon T.C. Revisiting fragmentation reactions of protonated α-amino acids by High-Resolution Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced Dissociation. Sci. Rep. 2019;9:6453. doi: 10.1038/s41598-019-42777-8. PubMed DOI PMC
Ma X., Dagan S., Somogyi A., Wysocki V.H., Scaraffia P.Y. Low mass MS/MS fragments of protonated amino acids used for distinction of their 13C-isotopomers in metabolic studies. J. Am. Soc. Mass Spectrom. 2013;24:622–631. doi: 10.1007/s13361-012-0574-9. PubMed DOI PMC
Weimann A., Belling D., Poulsen H.E. Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 2002;30:e7. doi: 10.1093/nar/30.2.e7. PubMed DOI PMC
Srivastava A., Pitesky M.E., Steele P.T., Tobias H.J., Fergenson D.P., Horn J.M., Russell S.C., Czerwieniec G.A., Lebrilla C.B., Gard E.E., et al. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in Matrix-Free Laser Desorption/Ionization Bioaerosol Mass Spectrometry. Anal. Chem. 2005;77:3315–3323. doi: 10.1021/ac048298p. PubMed DOI
Schram B.L., Kroes H.H. Structure of phycocyanobilin. Eur. J. Biochem. 1971;19:581–594. doi: 10.1111/j.1432-1033.1971.tb01352.x. PubMed DOI
Kumar D., Dhar D.W., Pabbi S., Kumar N., Walia S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540) Indian J. Plant Physiol. 2014;19:184–188. doi: 10.1007/s40502-014-0094-7. PubMed DOI PMC
Choi W.Y., Lee H.Y. Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Appl. Sci. 2018;8:1662. doi: 10.3390/app8091662. DOI
Abalde J., Betancourt L., Torres E., Cid A., Barwell C. Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci. 1998;136:109–120. doi: 10.1016/S0168-9452(98)00113-7. DOI
Güroy B., Karadal O., Mantoğlu S., Cebeci O.I. Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege J. Fish. Aquatic. Sci. 2017;34:129–132.
Wilkinson I.V.L., Castro-Falcón G., Roda-Serrat M.C., Purdy T.N., Straetener J., Brauny M.M., Maier L., Brötz-Oesterhelt H., Christensen L.P., Sieber S.A., et al. The cyanobacterial “nutraceutical” phycocyanobilin inhibits cysteine protease legumain. ChemBioChem. 2023;24:e202200455. doi: 10.1002/cbic.202200455. PubMed DOI
Roda-Serrat M.C., Christensen K.V., El-Houri R.B., Frette X., Christensen L.P. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring. Food Chem. 2018;240:655–661. doi: 10.1016/j.foodchem.2017.07.149. PubMed DOI
Kamo T., Eki T., Hirose Y. Pressurized liquid extraction of a phycocyanobilin chromophore and its reconstitution with a cyanobacteriochrome photosensor for efficient isotopic labeling. Plant Cell Physiol. 2021;62:334–347. doi: 10.1093/pcp/pcaa164. PubMed DOI PMC
Souza C.S., Daood H.G., Duah S.A., Vinogradov S., Palotás G., Neményi A., Helyes L., Pék Z. Stability of carotenoids, carotenoid esters, tocopherols and capsaicinoids in new chili pepper hybrids during natural and thermal drying. LWT. 2022;163:113520. doi: 10.1016/j.lwt.2022.113520. DOI
Stramarkou M., Papadaki S., Kyriakopoulou K., Tzovenis I., Chronis M., Krokida M. Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J. Aquat. Food Prod. 2021;30:498–516. doi: 10.1080/10498850.2021.1900969. DOI
Pénicaud C., Achir N., Dhuique-Mayer C., Dornier M., Bohuon P. Degradation of β-carotene during fruit and vegetable processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits. 2011;66:417–440. doi: 10.1051/fruits/2011058. DOI
Marx M., Stuparic M., Schieber A., Carle R. Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chem. 2003;83:609–617. doi: 10.1016/S0308-8146(03)00255-3. DOI
Nouri E., Abbasi H., Rahimi E. Effects of processing on stability of water-and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. Qual. Assur. Saf. Crops Foods. 2018;10:335–349. doi: 10.3920/QAS2018.1304. DOI
Ritchie R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica. 2008;46:115–126. doi: 10.1007/s11099-008-0019-7. DOI
Hu X., Tanaka A., Tanaka R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods. 2013;9:19. doi: 10.1186/1746-4811-9-19. PubMed DOI PMC
Bórquez R., Melo D., Saavedra C. Microwave–vacuum drying of strawberries with automatic temperature control. Food Bioprocess Technol. 2015;8:266–276. doi: 10.1007/s11947-014-1400-0. DOI
Roca M., Chen K., Perez-Galvez A. Chlorophylls. In: Carle R., Schweiggert R., editors. Handbook on Natural Pigments in Food and Beverages. Elsevier; New York, NY, USA: 2016. pp. 125–158.
Balduyck L., Dejonghe C., Goos P., Jooken E., Muylaert K., Foubert I. Inhibition of lipolytic reactions during wet storage of T-Isochrysis lutea biomass by heat treatment. Algal Res. 2019;38:101388. doi: 10.1016/j.algal.2018.101388. DOI
Balduyck L., Stock T., Bijttebier S., Bruneel C., Jacobs G., Voorspoels S., Muylaert K., Foubert I. Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. Algal Res. 2017;25:516–524. doi: 10.1016/j.algal.2017.06.013. DOI
Machado L., Carvalho G., Pereira R.N. Effects of innovative processing methods on microalgae cell wall: Prospects towards digestibility of protein-rich biomass. Biomass. 2022;2:80–102. doi: 10.3390/biomass2020006. DOI
Hashiro S., Fujiuchi K., Sugimori D., Yasueda H. A novel galactolipase from a green microalga Chlorella kessleri: Purification, characterization, molecular cloning, and heterologous expression. Appl. Microbiol. Biotechnol. 2018;102:1711–1723. doi: 10.1007/s00253-017-8713-7. PubMed DOI PMC
Piotrowski D., Lenart A., Borkowska O. Temperature changes during vacuum drying of defrosted and osmotically dehydrated strawberries. Pol. J. Food Nutr. Sci. 2007;57:141–146.
Saddhe A.A., Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. Front. Plant Sci. 2023;14:1118670. doi: 10.3389/fpls.2023.1118670. PubMed DOI PMC
Vega-Galvez A., Uribe E., Pasten A., Camus J., Rojas M., Garcia V., Araya M., Valenzuela-Barra G., Zambrano A., Goñi M.G. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods. 2023;12:3311. doi: 10.3390/foods12173311. PubMed DOI PMC
Yang R.L., Li Q., Hu Q.P. Physicochemical properties, microstructures, nutritional components, and free amino acids of Pleurotus eryngii as affected by different drying methods. Sci. Rep. 2020;10:121. doi: 10.1038/s41598-019-56901-1. PubMed DOI PMC
Zarrouk C. Ph.D. Thesis. University of Paris; Paris, France: 1966. Contribution a L’etude D’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthese de Spirulina Maxima (Setchell et Gardner) Geitler.