• This record comes from PubMed

The Impact of Different Drying Methods on the Metabolomic and Lipidomic Profiles of Arthrospira platensis

. 2024 Apr 12 ; 29 (8) : . [epub] 20240412

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
DEC-6/RADIUM/2022 Gdańsk University of Technology

Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.

See more in PubMed

Chojnacka K., Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym. Microb. Technol. 2004;34:461–465. doi: 10.1016/j.enzmictec.2003.12.002. DOI

El-Baky N.A., Rezk N.M.F., Amara A.A. Arthrospira platensis Variants: A Comparative Study Based on C-phycocyanin Gene and Protein, Habitat, and Growth Conditions. J. Mar. Sci. Eng. 2023;11:663. doi: 10.3390/jmse11030663. DOI

Barnett M. Arthrospira platensis: Brief history and description. Curr. Pharm. Biotechnol. 2005;6:373–379. PubMed

Li Y., Aiello G., Bollati C., Bartolomei M., Arnoldi A., Lammi C. Phycobiliproteins from Arthrospira platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients. 2020;12:794. doi: 10.3390/nu12030794. PubMed DOI PMC

Bui H.T.H., Thi Pham T., Thi Thu Nguyen H., Minh Do T., Thi Nga V., Bac N.D., Huyen V.T.B., Le H.M., Tran Q.C. Transformation Chlorophyll a of Spirulina platensis to Chlorin E6 Derivatives and Several Applications. Open Access Maced. J. Med. Sci. 2019;7:4372–4377. doi: 10.3889/oamjms.2019.838. PubMed DOI PMC

Ali S.K., Saleh A.M. Spirulina—An overview. Int. J. Pharm. Pharm. Sci. 2012;4:9–15.

Marzorati S., Schievano A., Idà A., Verotta L. Carotenoids, chlorophylls and phycocyanin from spirulina: Supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2020;22:187–196. doi: 10.1039/C9GC03292D. DOI

Hynstova V., Sterbova D., Klejdus B., Hedbavny J., Huska D., Adam V. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. J. Pharm. Biomed. Anal. 2018;148:108–118. doi: 10.1016/j.jpba.2017.09.018. PubMed DOI

Dos Santos R.R., Corrêa P.S., Dantas F.M.L., Teixeira C.M.L.L. Evaluation of the Co-Production of Total Carotenoids, C-Phycocyanin and Polyhydroxyalkanoates by Arthrospira platensis. Bioresour. Technol. Rep. 2019;7:100226. doi: 10.1016/j.biteb.2019.100226. DOI

Ramadan M.F., Asker M.M.S., Ibrahim Z.K. Functional bioactive compounds and biological activities of Spirulina platensis lipids. CAAS Agric. J. 2008;26:211–222. doi: 10.17221/2567-CJFS. DOI

Bashir S., Sharif M.K., Butt M.S., Shahid M. Functional Properties and Amino Acid Profile of Spirulina Platensis Protein Isolates. Biol. Sci.—PJSIR. 2016;59:12–19. doi: 10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19. DOI

Çelekli A., Özbal B., Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods. 2024;13:725. doi: 10.3390/foods13050725. PubMed DOI PMC

Guo Y., Wu L., Zhu Z., Hou H., Wang Y. Investigation of Peptides Containing Branched-Chain Amino Acids from Arthrospira platensis through a Peptidomics Workflow. Food Bioprocess Technol. 2024;17:516–527. doi: 10.1007/s11947-023-03147-5. DOI

El-Sayed A.E.-K., El-Sheekh M. Outdoor Cultivation of Spirulina platensis for Mass Production. Not. Sci. Biol. 2018;10:38–44. doi: 10.15835/nsb10110177. DOI

Ouedraogo H.G., Savadogo B., Traore A. Storage influence on beta-carotene and alpha-tocopherol contents of solar-dried Spirulina platensis (Spirulina) Afr. J. Food Sci. 2015;9:546–554.

Walker T.H., Drapcho C.M., Chen F. Bioprocessing technology for production of nutraceutical compounds. In: Shi J., editor. Functional Food Ingredients and Nutraceuticals: Processing Technologies. CRC Press; Boca Raton, FL, USA: 2015.

Kharchuk I.A., Rylkova O.A., Beregovaya N.M. State of cyanobacteria Arthrospira platensis and of associated microflora during long-term storage in the state of anhydrobiosis. Microbiology. 2022;91:704–712. doi: 10.1134/S0026261722601786. DOI

Silva N.C., Graton I.S., Duarte C.R., Barrozo M.A.S. Effects of Infrared and Microwave Radiation on the Bioactive Compounds of Microalga Spirulina platensis after Continuous and Intermittent Drying. Molecules. 2023;28:5963. doi: 10.3390/molecules28165963. PubMed DOI PMC

Soni R., Sudhakar K., Rana R.S. Spirulina—From growth to nutritional product: A review. Trends Food Sci. Technol. 2017;69:157–171. doi: 10.1016/j.tifs.2017.09.010. DOI

Oliveira E.G., Duarte J.H., Moraes K., Crexi V.T., Pinto L.A.A. Optimisation of Spirulina platensis convective drying: Evaluation of phycocyanin loss and lipid oxidation. Int. J. Food Sci. Technol. 2010;45:1572–1578. doi: 10.1111/j.1365-2621.2010.02299.x. DOI

Papalia T., Sidari R., Panuccio M.R. Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules. 2019;24:2810. doi: 10.3390/molecules24152810. PubMed DOI PMC

Demarco M., Moraes J.O.d., Ferrari M.C., Neves F.d.F., Laurindo J.B., Tribuzi G. Production of Spirulina (Arthrospira platensis) powder by innovative and traditional drying techniques. J. Food Process Eng. 2022;45:e13919. doi: 10.1111/jfpe.13919. DOI

Beaupeux E., Jayaprakash P., Dokmak A., Edorh J.-M., Gaiani C., Desobry S., Maudhuit A. Electrostatic spray drying: Advantages for thermosensitive actives. Chem. Eng. Res. Des. 2024;203:688–696. doi: 10.1016/j.cherd.2024.02.016. DOI

Guo W., Zeng M., Zhu S., Li S., Qian Y., Wu H. Phycocyanin ameliorates mouse colitis via phycocyanobilin-dependent antioxidant and anti-inflammatory protection of the intestinal epithelial barrier. Food Funct. 2022;13:3294–3307. doi: 10.1039/D1FO02970C. PubMed DOI

Rivera S.M., Christou P., Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014;33:353–372. doi: 10.1002/mas.21390. PubMed DOI

Bijttebier S.K., D’Hondt E., Hermans N., Apers S., Voorspoels S. Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: A first step towards identification of unknowns. J. Mass Spectrom. 2013;48:740–754. doi: 10.1002/jms.3203. PubMed DOI

Milenković S.M., Zvezdanović J., Anđelković T., Marković D.Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Adv. Technol. 2012;1:16–24.

Chen K., Ríos J.J., Pérez-Gálvez A., Roca M. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (I) Phytylated derivatives. J. Chromatogr. A. 2015;1406:99–108. doi: 10.1016/j.chroma.2015.05.072. PubMed DOI

Chen K., Ríos J.J., Roca M., Pérez-Gálvez A. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives. (II) Dephytylated derivatives. J. Chromatogr. A. 2015;1412:90–99. doi: 10.1016/j.chroma.2015.08.007. PubMed DOI

Viera I., Roca M., Perez-Galvez A. Mass spectrometry of non-allomerized chlorophylls a and b derivatives from plants. Curr. Org. Chem. 2018;22:842–876. doi: 10.2174/1385272821666170920164836. DOI

Yang Y., Du L., Hosokawa M., Miyashita K. Effect of Spirulina lipids on high-fat and high-sucrose diet induced obesity and hepatic lipid accumulation in C57BL/6J mice. J. Funct. Foods. 2020;65:103741. doi: 10.1016/j.jff.2019.103741. DOI

Neag E., Stupar Z., Varaticeanu C., Senila M., Roman C. Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules. 2022;27:6794. doi: 10.3390/molecules27206794. PubMed DOI PMC

Conde T.A., Neves B.F., Couto D., Melo T., Neves B., Costa M., Silva J., Domingues P., Domingues M.R. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Mar. Drugs. 2021;19:357. doi: 10.3390/md19070357. PubMed DOI PMC

Couto D., Conde T.A., Melo T., Neves B., Costa M., Silva J., Domingues R., Domingues P. The chemodiversity of polar lipidomes of microalgae from different taxa. Algal Res. 2023;70:103006. doi: 10.1016/j.algal.2023.103006. DOI

Xue C., Hu Y., Saito H., Zhang Z., Li Z., Cai Y., Ou C., Lin H., Imbs A.B. Molecular species composition of glycolipids from Spirulina platensis. Food Chem. 2002;77:9–13. doi: 10.1016/S0308-8146(01)00315-6. DOI

da Costa E., Silva J., Mendonça S.H., Abreu M.H., Domingues M.R. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs. 2016;14:101. doi: 10.3390/md14050101. PubMed DOI PMC

Lopes D., Moreira A.S., Rey F., da Costa E., Melo T., Maciel E., Rego A., Abreu M.H., Domingues P., Calado R., et al. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. J. Appl. Phycol. 2019;31:1369–1381. doi: 10.1007/s10811-018-1644-6. DOI

da Costa E., Melo T., Reis M., Domingues P., Calado R., Abreu M.H., Domingues M.R. Polar lipids composition, antioxidant and anti-inflammatory activities of the Atlantic red seaweed Grateloupia turuturu. Mar. Drugs. 2021;19:414. doi: 10.3390/md19080414. PubMed DOI PMC

Alves E., Melo T., Barros M.P., Domingues M.R.M., Domingues P. Lipidomic profiling of the olive (Olea europaea L.) fruit towards its valorisation as a functional food: In-depth identification of triacylglycerols and polar lipids in Portuguese olives. Molecules. 2019;24:2555. doi: 10.3390/molecules24142555. PubMed DOI PMC

da Costa E., Melo T., Moreira A.S., Alves E., Domingues P., Calado R., Abreeu M.H., Domingues M.R. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal Res. 2015;12:388–397. doi: 10.1016/j.algal.2015.09.020. DOI

Liu Y., Chen M., Li Y., Feng X., Chen Y., Lin L. Analysis of lipids in green coffee by ultra-performance liquid chromatography-time-of-flight tandem mass spectrometry. Molecules. 2022;27:5271. doi: 10.3390/molecules27165271. PubMed DOI PMC

Demir B.S., Tükel S.S. Purification and characterization of lipase from Spirulina platensis. J. Mol. Catal. B Enzym. 2010;64:123–128. doi: 10.1016/j.molcatb.2009.09.011. DOI

da Fontoura Prates D., Duarte H., Vendruscolo D.G., Wagner R., Ballus C.A., da Silva Oliveira W., Godoy H.T., Barcia M.T., de Morais M.G., Radmann E.M., et al. Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. Bioresour. Technol. 2020;306:123184. doi: 10.1016/j.biortech.2020.123184. PubMed DOI

Choi A., Kim S.G., Yoon B.D., Oh H.M. Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnol. Bioprocess Eng. 2003;8:368–372. doi: 10.1007/BF02949281. DOI

Zhang P., Chan W., Ang I.L., Wei R., Lam M.M., Lei K.M., Poon T.C. Revisiting fragmentation reactions of protonated α-amino acids by High-Resolution Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced Dissociation. Sci. Rep. 2019;9:6453. doi: 10.1038/s41598-019-42777-8. PubMed DOI PMC

Ma X., Dagan S., Somogyi A., Wysocki V.H., Scaraffia P.Y. Low mass MS/MS fragments of protonated amino acids used for distinction of their 13C-isotopomers in metabolic studies. J. Am. Soc. Mass Spectrom. 2013;24:622–631. doi: 10.1007/s13361-012-0574-9. PubMed DOI PMC

Weimann A., Belling D., Poulsen H.E. Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 2002;30:e7. doi: 10.1093/nar/30.2.e7. PubMed DOI PMC

Srivastava A., Pitesky M.E., Steele P.T., Tobias H.J., Fergenson D.P., Horn J.M., Russell S.C., Czerwieniec G.A., Lebrilla C.B., Gard E.E., et al. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in Matrix-Free Laser Desorption/Ionization Bioaerosol Mass Spectrometry. Anal. Chem. 2005;77:3315–3323. doi: 10.1021/ac048298p. PubMed DOI

Schram B.L., Kroes H.H. Structure of phycocyanobilin. Eur. J. Biochem. 1971;19:581–594. doi: 10.1111/j.1432-1033.1971.tb01352.x. PubMed DOI

Kumar D., Dhar D.W., Pabbi S., Kumar N., Walia S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540) Indian J. Plant Physiol. 2014;19:184–188. doi: 10.1007/s40502-014-0094-7. PubMed DOI PMC

Choi W.Y., Lee H.Y. Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Appl. Sci. 2018;8:1662. doi: 10.3390/app8091662. DOI

Abalde J., Betancourt L., Torres E., Cid A., Barwell C. Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Sci. 1998;136:109–120. doi: 10.1016/S0168-9452(98)00113-7. DOI

Güroy B., Karadal O., Mantoğlu S., Cebeci O.I. Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege J. Fish. Aquatic. Sci. 2017;34:129–132.

Wilkinson I.V.L., Castro-Falcón G., Roda-Serrat M.C., Purdy T.N., Straetener J., Brauny M.M., Maier L., Brötz-Oesterhelt H., Christensen L.P., Sieber S.A., et al. The cyanobacterial “nutraceutical” phycocyanobilin inhibits cysteine protease legumain. ChemBioChem. 2023;24:e202200455. doi: 10.1002/cbic.202200455. PubMed DOI

Roda-Serrat M.C., Christensen K.V., El-Houri R.B., Frette X., Christensen L.P. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring. Food Chem. 2018;240:655–661. doi: 10.1016/j.foodchem.2017.07.149. PubMed DOI

Kamo T., Eki T., Hirose Y. Pressurized liquid extraction of a phycocyanobilin chromophore and its reconstitution with a cyanobacteriochrome photosensor for efficient isotopic labeling. Plant Cell Physiol. 2021;62:334–347. doi: 10.1093/pcp/pcaa164. PubMed DOI PMC

Souza C.S., Daood H.G., Duah S.A., Vinogradov S., Palotás G., Neményi A., Helyes L., Pék Z. Stability of carotenoids, carotenoid esters, tocopherols and capsaicinoids in new chili pepper hybrids during natural and thermal drying. LWT. 2022;163:113520. doi: 10.1016/j.lwt.2022.113520. DOI

Stramarkou M., Papadaki S., Kyriakopoulou K., Tzovenis I., Chronis M., Krokida M. Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J. Aquat. Food Prod. 2021;30:498–516. doi: 10.1080/10498850.2021.1900969. DOI

Pénicaud C., Achir N., Dhuique-Mayer C., Dornier M., Bohuon P. Degradation of β-carotene during fruit and vegetable processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits. 2011;66:417–440. doi: 10.1051/fruits/2011058. DOI

Marx M., Stuparic M., Schieber A., Carle R. Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chem. 2003;83:609–617. doi: 10.1016/S0308-8146(03)00255-3. DOI

Nouri E., Abbasi H., Rahimi E. Effects of processing on stability of water-and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. Qual. Assur. Saf. Crops Foods. 2018;10:335–349. doi: 10.3920/QAS2018.1304. DOI

Ritchie R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica. 2008;46:115–126. doi: 10.1007/s11099-008-0019-7. DOI

Hu X., Tanaka A., Tanaka R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods. 2013;9:19. doi: 10.1186/1746-4811-9-19. PubMed DOI PMC

Bórquez R., Melo D., Saavedra C. Microwave–vacuum drying of strawberries with automatic temperature control. Food Bioprocess Technol. 2015;8:266–276. doi: 10.1007/s11947-014-1400-0. DOI

Roca M., Chen K., Perez-Galvez A. Chlorophylls. In: Carle R., Schweiggert R., editors. Handbook on Natural Pigments in Food and Beverages. Elsevier; New York, NY, USA: 2016. pp. 125–158.

Balduyck L., Dejonghe C., Goos P., Jooken E., Muylaert K., Foubert I. Inhibition of lipolytic reactions during wet storage of T-Isochrysis lutea biomass by heat treatment. Algal Res. 2019;38:101388. doi: 10.1016/j.algal.2018.101388. DOI

Balduyck L., Stock T., Bijttebier S., Bruneel C., Jacobs G., Voorspoels S., Muylaert K., Foubert I. Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage. Algal Res. 2017;25:516–524. doi: 10.1016/j.algal.2017.06.013. DOI

Machado L., Carvalho G., Pereira R.N. Effects of innovative processing methods on microalgae cell wall: Prospects towards digestibility of protein-rich biomass. Biomass. 2022;2:80–102. doi: 10.3390/biomass2020006. DOI

Hashiro S., Fujiuchi K., Sugimori D., Yasueda H. A novel galactolipase from a green microalga Chlorella kessleri: Purification, characterization, molecular cloning, and heterologous expression. Appl. Microbiol. Biotechnol. 2018;102:1711–1723. doi: 10.1007/s00253-017-8713-7. PubMed DOI PMC

Piotrowski D., Lenart A., Borkowska O. Temperature changes during vacuum drying of defrosted and osmotically dehydrated strawberries. Pol. J. Food Nutr. Sci. 2007;57:141–146.

Saddhe A.A., Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. Front. Plant Sci. 2023;14:1118670. doi: 10.3389/fpls.2023.1118670. PubMed DOI PMC

Vega-Galvez A., Uribe E., Pasten A., Camus J., Rojas M., Garcia V., Araya M., Valenzuela-Barra G., Zambrano A., Goñi M.G. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods. 2023;12:3311. doi: 10.3390/foods12173311. PubMed DOI PMC

Yang R.L., Li Q., Hu Q.P. Physicochemical properties, microstructures, nutritional components, and free amino acids of Pleurotus eryngii as affected by different drying methods. Sci. Rep. 2020;10:121. doi: 10.1038/s41598-019-56901-1. PubMed DOI PMC

Zarrouk C. Ph.D. Thesis. University of Paris; Paris, France: 1966. Contribution a L’etude D’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthese de Spirulina Maxima (Setchell et Gardner) Geitler.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...