Mechanical circulatory support in cardiogenic shock and post-myocardial infarction mechanical complications
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print
Typ dokumentu časopisecké články
PubMed
35317392
PubMed Central
PMC8915426
DOI
10.11909/j.issn.1671-5411.2022.02.004
PII: jgc-19-2-130
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Despite advanced therapies, the mortality of patients with myocardial infarction (MI) complicated by cardiogenic shock (CS) remains around 50%. Mechanical complications of MI are rare nowadays but associated with high mortality in patients who present with CS. Different treatment strategies and mechanical circulatory support (MCS) devices have been increasingly used to improve the grim prognosis of refractory CS. This article discusses current evidence regarding the use of MCS in MI complicated by CS, ventricular septal rupture, free wall rupture and acute mitral regurgitation. Device selection should be tailored according to the cause and severity of CS. Early MCS initiation and multidisciplinary team cooperation is mandatory for good results. MCS associated bleeding remains a major complication and an obstacle to better outcomes. Ongoing prospective randomized trials will improve current knowledge regarding MCS indications, timing, and patient selection in the coming years.
Zobrazit více v PubMed
Ostadal P, Rokyta R, Kruger A, et al Extra corporeal membrane oxygenation in the therapy of cardiogenic shock (ECMO-CS): rationale and design of the multicenter randomized trial. Eur J Heart Fail. 2017;19:124–127. doi: 10.1002/ejhf.857. PubMed DOI
Baran DA, Grines CL, Bailey S, et al SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv. 2019;94:29–37. doi: 10.1002/ccd.28329. PubMed DOI
Harjola VP, Lassus J, Sionis A, et al Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail. 2015;17:501–509. doi: 10.1002/ejhf.260. PubMed DOI
Aissaoui N, Puymirat E, Delmas C, et al Trends in cardiogenic shock complicating acute myocardial infarction. Eur J Heart Fail. 2020;22:664–672. doi: 10.1002/ejhf.1750. PubMed DOI
Rob D, Špunda R, Lindner J, et al A rationale for early extracorporeal membrane oxygenation in patients with postinfarction ventricular septal rupture complicated by cardiogenic shock. Eur J Heart Fail. 2017;19:97–103. doi: 10.1002/ejhf.852. PubMed DOI
Thiele H, Akin I, Sandri M, et al PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377:2419–2432. doi: 10.1056/NEJMoa1710261. PubMed DOI
Thiele H, Ohman EM, de Waha-Thiele S, et al Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40:2671–2683. doi: 10.1093/eurheartj/ehz363. PubMed DOI
De Backer D, Biston P, Devriendt J, et al Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–789. doi: 10.1056/NEJMoa0907118. PubMed DOI
Levy B, Buzon J, Kimmoun A Inotropes and vasopressors use in cardiogenic shock: when, which and how much? Curr Opin Crit Care. 2019;25:384–390. doi: 10.1097/MCC.0000000000000632. PubMed DOI
Marik PE, Weinmann M Optimizing fluid therapy in shock. Curr Opin Crit Care. 2019;25:246–251. doi: 10.1097/MCC.0000000000000604. PubMed DOI
Schmidt M, Bailey M, Kelly J, et al Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:1256–1266. doi: 10.1007/s00134-014-3360-2. PubMed DOI PMC
Staudacher DL, Gold W, Biever PM, et al Early fluid resuscitation and volume therapy in venoarterial extracorporeal membrane oxygenation. J Crit Care. 2017;37:130–135. doi: 10.1016/j.jcrc.2016.09.017. PubMed DOI
Masip J Noninvasive ventilation in acute heart failure. Curr Heart Fail Rep. 2019;16:89–97. doi: 10.1007/s11897-019-00429-y. PubMed DOI
Thiagarajan RR, Barbaro RP, Rycus PT, et al Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:60–67. doi: 10.1097/MAT.0000000000000475. PubMed DOI
Combes A, Price S, Slutsky AS, et al Temporary circulatory support for cardiogenic shock. Lancet. 2020;396:199–212. doi: 10.1016/S0140-6736(20)31047-3. PubMed DOI
Ibanez B, James S, Agewall S, et al 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393. PubMed DOI
O’Gara PT, Kushner FG, Ascheim DD, et al 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61:e78–e140. doi: 10.1016/j.jacc.2012.11.019. PubMed DOI
Thiele H, Zeymer U, Neumann FJ, et al Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet. 2013;382:1638–1645. doi: 10.1016/S0140-6736(13)61783-3. PubMed DOI
Thiele H, Zeymer U, Thelemann N, et al Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II trial. Circulation. 2019;139:395–403. doi: 10.1161/CIRCULATIONAHA.118.038201. PubMed DOI
Ouweneel DM, Eriksen E, Sjauw KD, et al Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017;69:278–287. doi: 10.1016/j.jacc.2016.10.022. PubMed DOI
Basir MB, Kapur NK, Patel K, et al Improved outcomes associated with the use of shock protocols: updates from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv. 2019;93:1173–1183. doi: 10.1002/ccd.28307. PubMed DOI
Udesen NJ, Møller JE, Lindholm MG, et al Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am Heart J. 2019;214:60–68. doi: 10.1016/j.ahj.2019.04.019. PubMed DOI
Ouweneel DM, Schotborgh JV, Limpens J, et al Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1922–1934. doi: 10.1007/s00134-016-4536-8. PubMed DOI PMC
Brunner S, Guenther SPW, Lackermair K, et al Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol. 2019;73:2355–2357. doi: 10.1016/j.jacc.2019.02.044. PubMed DOI
Thiele H, Freund A, Gimenez MR, et al Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock: design and rationale of the ECLS-SHOCK trial. Am Heart J. 2021;234:1–11. doi: 10.1016/j.ahj.2021.01.002. PubMed DOI
Banning AS, Adriaenssens T, Berry C, et al Veno-arterial extracorporeal membrane oxygenation (ECMO) in patients with cardiogenic shock: rationale and design of the randomised, multicentre, open-label EURO SHOCK trial. EuroIntervention. 2021;16:e1227–e1236. doi: 10.4244/EIJ-D-20-01076. PubMed DOI PMC
Russo JJ, Aleksova N, Pitcher I, et al Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73:654–662. doi: 10.1016/j.jacc.2018.10.085. PubMed DOI
Schrage B, Burkhoff D, Rübsamen N, et al Unloading of the left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock. JACC Heart Fail. 2018;6:1035–1043. doi: 10.1016/j.jchf.2018.09.009. PubMed DOI
Pappalardo F, Schulte C, Pieri M, et al Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock . Eur J Heart Fail. 2017;19:404–412. doi: 10.1002/ejhf.668. PubMed DOI
Menon V, Webb JG, Hillis LD, et al Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries in cardiogenic shocK? J Am Coll Cardiol. 2000;36:1110–1116. doi: 10.1016/s0735-1097(00)00878-0. PubMed DOI
La Torre MW, Centofanti P, Attisani M, et al Posterior ventricular septal defect in presence of cardiogenic shock: early implantation of the Impella recover LP 5.0 as a bridge to surgery. Tex Heart Inst J. 2011;38:42–49. doi: 10.1016/j.rmed.2010.11.017. PubMed DOI PMC
Ancona MB, Regazzoli D, Mangieri A, et al Post-infarct ventricular septal rupture: early Impella implantation to delay surgery and reduce surgical risk. Cardiovasc Interv Ther. 2017;32:381–385. doi: 10.1007/s12928-016-0428-7. PubMed DOI
Pahuja M, Schrage B, Westermann D, et al Hemodynamic effects of mechanical circulatory support devices in ventricular septal defect. Circ Heart Fail. 2019;12:e005981. doi: 10.1161/CIRCHEARTFAILURE.119.005981. PubMed DOI
Pahuja M, Singh M, Patel A, et al Utilization of mechanical circulatory support devices in chordae tendinae and papillary muscle rupture complicating ST-elevation myocardial infarction: insights from Nationwide Inpatient Sample. J Am Coll Cardiol. 2018;71:A219. doi: 10.1016/S0735-1097(18)30760-5. DOI
Jalil B, El-Kersh K, Frizzell J, et al Impella percutaneous left ventricular assist device for severe acute ischaemic mitral regurgitation as a bridge to surgery. BMJ Case Rep. 2017;2017:bcr2017219749. doi: 10.1136/bcr-2017-219749. PubMed DOI PMC
Ekanem E, Gattani R, Bakhshi H, et al Combined venoarterial ECMO and Impella-CP circulatory support for cardiogenic shock due to papillary muscle rupture. JACC Case Rep. 2020;2:2169–2172. doi: 10.1016/j.jaccas.2020.08.007. PubMed DOI PMC
Vandenbriele C, Balthazar T, Wilson J, et al Left heart Impella-device to bridge acute mitral regurgitation to MitraClip-procedure: a novel implementation of percutaneous mechanical circulatory support. Eur Heart J. 2020;41:ehaa946. doi: 10.1093/ehjci/ehaa946.1849. DOI
Formica F, Mariani S, Singh G, et al Postinfarction left ventricular free wall rupture: a 17-year single-centre experience. Eur J Cardiothorac Surg. 2018;53:150–156. doi: 10.1093/ejcts/ezx271. PubMed DOI
Abedi-Valugerdi G, Gabrielsen A, Fux T, et al Management of left ventricular rupture after myocardial infarction solely with ECMO. Circ Heart Fail. 2012;5:e65–e67. doi: 10.1161/CIRCHEARTFAILURE.111.965764. PubMed DOI
Nasir A, Gouda M, Khan A, et al Is it ever possible to treat left ventricular free wall rupture conservatively? Interact Cardiovasc Thorac Surg. 2014;19:488–493. doi: 10.1093/icvts/ivu140. PubMed DOI
Kacer J, Lindovska M, Surovcik R, et al Refractory cardiogenic shock due to extensive anterior STEMI with covered left ventricular free wall rupture treated with awake VA-ECMO and LVAD as a double bridge to heart transplantation-collaboration of three cardiac centres. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:681–687. doi: 10.5507/bp.2015.044. PubMed DOI
Ishikawa N, Hirofuji A, Kunioka S, et al Impella CP for treatment of left ventricular free-wall rupture after myocardial infarction: report of a case. J Surg Case Rep. 2020;2020:rjaa263. doi: 10.1093/jscr/rjaa263. PubMed DOI PMC