Secretion of Phospholipase Dδ Functions as a Regulatory Mechanism in Plant Innate Immunity

. 2019 Dec ; 31 (12) : 3015-3032. [epub] 20191009

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31597687

Plant phospholipase Ds (PLDs), essential regulators of phospholipid signaling, function in multiple signal transduction cascades; however, the mechanisms regulating PLDs in response to pathogens remain unclear. Here, we found that Arabidopsis (Arabidopsis thaliana) PLDδ accumulated in cells at the entry sites of the barley powdery mildew fungus, Blumeria graminis f. sp hordei Using fluorescence recovery after photobleaching and single-molecule analysis, we observed higher PLDδ density in the plasma membrane after chitin treatment; PLDδ also underwent rapid exocytosis. Fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy showed that the interaction between PLDδ and the microdomain marker AtREMORIN1.3 (AtREM1.3) increased in response to chitin, indicating that exocytosis facilitates rapid, efficient sorting of PLDδ into microdomains upon pathogen stimulus. We further unveiled a trade-off between brefeldin A (BFA)-resistant and -sensitive pathways in secretion of PLDδ under diverse conditions. Upon pathogen attack, PLDδ secretion involved syntaxin-associated VAMP721/722-mediated exocytosis sensitive to BFA. Analysis of phosphatidic acid (PA), hydrogen peroxide, and jasmonic acid (JA) levels and expression of related genes indicated that the relocalization of PLDδ is crucial for its activation to produce PA and initiate reactive oxygen species and JA signaling pathways. Together, our findings revealed that the translocation of PLDδ to papillae is modulated by exocytosis, thus triggering PA-mediated signaling in plant innate immunity.plantcell;31/12/3015/FX1F1fx1.

Komentář v

PubMed

Zobrazit více v PubMed

Abdelkafi S., Abousalham A. (2011). The substrate specificities of sunflower and soybean phospholipases D using transphosphatidylation reaction. Lipids Health Dis. 10: 196. PubMed PMC

An Q., Hückelhoven R., Kogel K.H., van Bel A.J. (2006). Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell. Microbiol. 8: 1009–1019. PubMed

Assaad F.F., Qiu J.L., Youngs H., Ehrhardt D., Zimmerli L., Kalde M., Wanner G., Peck S.C., Edwards H., Ramonell K., Somerville C.R., Thordal-Christensen H. (2004). The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15: 5118–5129. PubMed PMC

Bargmann B.O., Munnik T. (2006). The role of phospholipase D in plant stress responses. Curr. Opin. Plant Biol. 9: 515–522. PubMed

Beck M., Zhou J., Faulkner C., MacLean D., Robatzek S. (2012). Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24: 4205–4219. PubMed PMC

Bhat R.A., Miklis M., Schmelzer E., Schulze-Lefert P., Panstruga R. (2005). Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. USA 102: 3135–3140. PubMed PMC

Bozkurt T.O., Richardson A., Dagdas Y.F., Mongrand S., Kamoun S., Raffaele S. (2014). The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol. 165: 1005–1018. PubMed PMC

Clay N.K., Adio A.M., Denoux C., Jander G., Ausubel F.M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323: 95–101. PubMed PMC

Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Hückelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973–977. PubMed

Cui Y., Yu M., Yao X., Xing J., Lin J., Li X. (2018). Single-particle tracking for the quantification of membrane protein dynamics in living plant cells. Mol. Plant 11: 1315–1327. PubMed

Cui Y., Zhang X., Yu M., Zhu Y., Xing J., Lin J. (2019). Techniques for detecting protein-protein interactions in living cells: Principles, limitations, and recent progress. Sci. China Life Sci. 62: 619–632. PubMed

Demir F., Horntrich C., Blachutzik J.O., Scherzer S., Reinders Y., Kierszniowska S., Schulze W.X., Harms G.S., Hedrich R., Geiger D., Kreuzer I. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc. Natl. Acad. Sci. USA 110: 8296–8301. PubMed PMC

Ding Y., Robinson D.G., Jiang L. (2014). Unconventional protein secretion (UPS) pathways in plants. Curr. Opin. Cell Biol. 29: 107–115. PubMed

Espenel C., Margeat E., Dosset P., Arduise C., Le Grimellec C., Royer C.A., Boucheix C., Rubinstein E., Milhiet P.E. (2008). Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182: 765–776. PubMed PMC

Fan L., Hao H., Xue Y., Zhang L., Song K., Ding Z., Botella M.A., Wang H., Lin J. (2013). Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140: 3826–3837. PubMed

Fujiwara M., Hamada S., Hiratsuka M., Fukao Y., Kawasaki T., Shimamoto K. (2009). Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. Plant Cell Physiol. 50: 1191–1200. PubMed PMC

Gardiner J.C., Harper J.D., Weerakoon N.D., Collings D.A., Ritchie S., Gilroy S., Cyr R.J., Marc J. (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13: 2143–2158. PubMed PMC

Goulian M., Simon S.M. (2000). Tracking single proteins within cells. Biophys J 79: 2188–2198. PubMed PMC

Guo L., Devaiah S.P., Narasimhan R., Pan X., Zhang Y., Zhang W., Wang X. (2012). Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24: 2200–2212. PubMed PMC

Hong Y., Zhao J., Guo L., Kim S.C., Deng X., Wang G., Zhang G., Li M., Wang X. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62: 55–74. PubMed

Jarsch I.K., Konrad S.S.A., Stratil T.F., Urbanus S.L., Szymanski W., Braun P., Braun K.H., Ott T. (2014). Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell 26: 1698–1711. PubMed PMC

Jia Y., Tao F., Li W. (2013). Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 8: e65687. PubMed PMC

Kachroo A., Kachroo P. (2009). Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47: 153–176. PubMed

Katagiri T., Takahashi S., Shinozaki K. (2001). Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 26: 595–605. PubMed

Keinath N.F., Kierszniowska S., Lorek J., Bourdais G., Kessler S.A., Shimosato-Asano H., Grossniklaus U., Schulze W.X., Robatzek S., Panstruga R. (2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285: 39140–39149. PubMed PMC

Kleine-Vehn J., Dhonukshe P., Swarup R., Bennett M., Friml J. (2006). Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18: 3171–3181. PubMed PMC

Konopka C.A., Backues S.K., Bednarek S.Y. (2008). Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20: 1363–1380. PubMed PMC

Kwon C., Bednarek P., Schulze-Lefert P. (2008a). Secretory pathways in plant immune responses. Plant Physiol. 147: 1575–1583. PubMed PMC

Kwon C., et al. (2008b). Co-option of a default secretory pathway for plant immune responses. Nature 451: 835–840. PubMed

Laxalt A.M., Munnik T. (2002). Phospholipid signalling in plant defence. Curr. Opin. Plant Biol. 5: 332–338. PubMed

Li R., Liu P., Wan Y., Chen T., Wang Q., Mettbach U., Baluska F., Samaj J., Fang X., Lucas W.J., Lin J. (2012). A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24: 2105–2122. PubMed PMC

Li W., Li M., Zhang W., Welti R., Wang X. (2004). The plasma membrane-bound phospholipase Ddelta enhances freezing tolerance in Arabidopsis thaliana. Nat. Biotechnol. 22: 427–433. PubMed

Li X., Wang X., Yang Y., Li R., He Q., Fang X., Luu D.T., Maurel C., Lin J. (2011). Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23: 3780–3797. PubMed PMC

Lipka U., Fuchs R., Lipka V. (2008). Arabidopsis non-host resistance to powdery mildews. Curr. Opin. Plant Biol. 11: 404–411. PubMed

Lipka V., et al. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310: 1180–1183. PubMed

Liu Y., Su Y., Wang X. (2013). Phosphatidic acid-mediated signaling. Adv. Exp. Med. Biol. 991: 159–176. PubMed

Luo N., Yan A., Yang Z. (2016). Measuring exocytosis rate using corrected fluorescence recovery after photoconversion. Traffic 17: 554–564. PubMed PMC

Martínez-García J.F., Monte E., Quail P.H. (1999). A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 20: 251–257. PubMed

Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312: 264–266. PubMed

Nielsen M.E., Feechan A., Böhlenius H., Ueda T., Thordal-Christensen H. (2012). Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc. Natl. Acad. Sci. USA 109: 11443–11448. PubMed PMC

Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., Šamaj J. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 9: 371. PubMed PMC

Pinosa F., Buhot N., Kwaaitaal M., Fahlberg P., Thordal-Christensen H., Ellerström M., Andersson M.X. (2013). Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol. 163: 896–906. PubMed PMC

Pleskot R., Li J., Zárský V., Potocký M., Staiger C.J. (2013). Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci. 18: 496–504. PubMed

Rentel M.C., Lecourieux D., Ouaked F., Usher S.L., Petersen L., Okamoto H., Knight H., Peck S.C., Grierson C.S., Hirt H., Knight M.R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427: 858–861. PubMed

Rizzo M.A., Shome K., Watkins S.C., Romero G. (2000). The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J. Biol. Chem. 275: 23911–23918. PubMed

Saxton M.J. (1997). Single-particle tracking: the distribution of diffusion coefficients. Biophy J 72: 1744–1753. PubMed PMC

Serino G., Deng X.W. (2007). Protein coimmunoprecipitation in Arabidopsis. CSH Protoc. 2007: pdb prot4683. PubMed

Shahollari B., Varma A., Oelmüller R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J. Plant Physiol. 162: 945–958. PubMed

Stanislas T., Bouyssie D., Rossignol M., Vesa S., Fromentin J., Morel J., Pichereaux C., Monsarrat B., Simon-Plas F. (2009). Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol. Cell. Proteomics 8: 2186–2198. PubMed PMC

Stein M., Dittgen J., Sánchez-Rodríguez C., Hou B.H., Molina A., Schulze-Lefert P., Lipka V., Somerville S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18: 731–746. PubMed PMC

Surpin M., Raikhel N. (2004). Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5: 100–109. PubMed

Takáč T., Novák D., Šamaj J. (2019). Recent advances in the cellular and developmental biology of phospholipases in plants. Front. Plant Sci. 10: 362. PubMed PMC

Testerink C., Munnik T. (2011). Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62: 2349–2361. PubMed

Underwood W., Somerville S.C. (2013). Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter. Proc. Natl. Acad. Sci. USA 110: 12492–12497. PubMed PMC

Wang C., Wang X. (2001). A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol. 127: 1102–1112. PubMed PMC

Wang L., Li H., Lv X., Chen T., Li R., Xue Y., Jiang J., Jin B., Baluška F., Šamaj J., Wang X., Lin J. (2015a). Spatiotemporal dynamics of the BRI1 receptor and its regulation by membrane microdomains in living Arabidopsis cells. Mol. Plant 8: 1334–1349. PubMed

Wang L., Xue Y., Xing J., Song K., Lin J. (2018). Exploring the spatiotemporal organization of membrane proteins in living plant cells. Annu. Rev. Plant Biol. 69: 525–551. PubMed

Wang Q., Zhao Y., Luo W., Li R., He Q., Fang X., Michele R.D., Ast C., von Wirén N., Lin J. (2013). Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc. Natl. Acad. Sci. USA 110: 13204–13209. PubMed PMC

Wang X., Chapman K.D. (2013). Lipid signaling in plants. Front. Plant Sci. 4: 216. PubMed PMC

Wang X., Devaiah S.P., Zhang W., Welti R. (2006). Signaling functions of phosphatidic acid. Prog. Lipid Res. 45: 250–278. PubMed

Wang X., Li X., Deng X., Luu D.T., Maurel C., Lin J. (2015b). Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells. Nat. Protoc. 10: 2054–2063. PubMed

Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.E., Rajashekar C.B., Williams T.D., Wang X. (2002). Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 277: 31994–32002. PubMed

Wu W.Q., Zhu X., Song C.P. (2019). Single-molecule technique: A revolutionary approach to exploring fundamental questions in plant science. New Phytol. 223: 508–510. PubMed

Wu Y., Eghbali M., Ou J., Lu R., Toro L., Stefani E. (2010). Quantitative determination of spatial protein-protein correlations in fluorescence confocal microscopy. Biophys. J. 98: 493–504. PubMed PMC

Xiao Z., Ma X., Jiang Y., Zhao Z., Lai B., Liao J., Yue J., Fang X. (2008). Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J. Phys. Chem. B 112: 4140–4145. PubMed

Xue Y., et al. (2018). Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol. Plant 11: 846–859. PubMed

Young S.A., Wang X., Leach J.E. (1996). Changes in the plasma membrane distribution of rice phospholipase D during resistant interactions with Xanthomonas oryzae pv oryzae. Plant Cell 8: 1079–1090. PubMed PMC

Yun H.S., Kwon C. (2017). Vesicle trafficking in plant immunity. Curr Opin Plant Biol 40: 34–42. PubMed

Zhang L., Xing J., Lin J. (2019). At the intersection of exocytosis and endocytosis in plants. New Phytol.. PubMed

Zhang L., Zhang H., Liu P., Hao H., Jin J.B., Lin J. (2011). Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6: e26129. PubMed PMC

Zhang Q., Berkey R., Blakeslee J.J., Lin J., Ma X., King H., Liddle A., Guo L., Munnik T., Wang X., Xiao S. (2018). Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. J. Exp. Bot. 69: 3675–3688. PubMed PMC

Zhang W., Wang C., Qin C., Wood T., Olafsdottir G., Welti R., Wang X. (2003). The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15: 2285–2295. PubMed PMC

Zinchuk V., Wu Y., Grossenbacher-Zinchuk O. (2013). Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies. Sci. Rep. 3: 1365. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace