Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles

. 2020 ; 11 () : 1199. [epub] 20200812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32903478

PURPOSE: Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). MATERIALS AND METHODS: Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. RESULTS: Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. CONCLUSIONS: The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.

Zobrazit více v PubMed

Abernathy L. M., Fountain M. D., Rothstein S. E., David J. M., Yunker C. K., Rakowski J., et al. (2015). Soy Isoflavones Promote Radioprotection of Normal Lung Tissue by Inhibition of Radiation-Induced Activation of Macrophages and Neutrophils. J. Thoracic Oncol. 10 (12), 1703–1712. 10.1097/JTO.0000000000000677 PubMed DOI PMC

Albeiroti S., Soroosh A., de la Motte C. A. (2015). Hyaluronan’s Role in Fibrosis: A Pathogenic Factor or a Passive Player? BioMed. Res. Int. 2015, 790203. 10.1155/2015/790203 PubMed DOI PMC

Anscher M. S., Kong F.-M., Andrews K., Clough R., Marks L. B., Bentel G., et al. (1998). Plasma transforming growth factor β1 as a predictor of radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 41 (5), 1029–1035. 10.1016/S0360-3016(98)00154-0 PubMed DOI

Atkinson J. J., Senior R. M. (2003). Matrix metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol. 28 (1), 12–24. 10.1165/rcmb.2002-0166TR PubMed DOI

Avenoso A., Bruschetta G D., Ascola A., Scuruchi M., Mandraffino G., Saitta A., et al. (2020). Hyaluronan Fragmentation During Inflammatory Pathologies: A Signal that Empowers Tissue Damage. Mini Rev. Med. Chem. 20 (1), 54–65. 10.2174/1389557519666190906115619 PubMed DOI

Bensadoun E. S., Burke A. K., Hogg J. C., Roberts C. R. (1996). Proteoglycan deposition in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 154 (6), 1819–1828. 10.1164/ajrccm.154.6.8970376 PubMed DOI

Bray B. A., Sampson P. M., Osman M., Giandomenico A., Turino G. M. (1991). Early changes in lung tissue hyaluronan (hyaluronic acid) and hyaluronidase in bleomycin-induced alveolitis in hamsters. Am. Rev. Respir. Dis. 143 (2), 284–288. 10.1164/ajrccm/143.2.284 PubMed DOI

Cantor J. O. (2007). Potential therapeutic applications of hyaluronan in the lung. Int. J. Chron. Obstruct. Pulmon. Dis. 2 (3), 283–288. PubMed PMC

Carpenter M., Epperly M. W., Agarwal A., Nie S., Hricisak L., Niu Y., et al. (2005). Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther. 12 (8), 685–693. 10.1038/sj.gt.3302468 PubMed DOI

Chiang C.-S., Liu W.-C., Jung S.-M., Chen F.-H., Wu C.-R., McBride W. H., et al. (2005). Compartmental responses after thoracic irradiation of mice: strain differences. Int. J. Radiat. Oncol. Biol. Phys. 62 (3), 862–871. 10.1016/j.ijrobp.2005.02.037 PubMed DOI

Choi K. Y., Min K. H., Na J. H., Choi K., Kim K., Park J. H., et al. (2009). Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 19 (24), 4102–4107. 10.1039/b900456d DOI

Choi K. Y., Chung H., Min K. H., Yoon H. Y., Kim K., Park J. H., et al. (2010). Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 31 (1), 106–114. 10.1016/j.biomaterials.2009.09.030 PubMed DOI

Choi S.-H., Hong Z.-Y., Nam J.-K., Lee H.-J., Jang J., Yoo R. J., et al. (2015). A Hypoxia-Induced Vascular Endothelial-to-Mesenchymal Transition in Development of Radiation-Induced Pulmonary Fibrosis. Clin. Cancer Res. 21 (16), 3716–3726. 10.1158/1078-0432.CCR-14-3193 PubMed DOI

Collum S. D., Molina J. G., Hanmandlu A., Bi W., Pedroza M., Mertens T. C. J., et al. (2019). Adenosine and hyaluronan promote lung fibrosis and pulmonary hypertension in combined pulmonary fibrosis and emphysema. Dis. Model Mech. 12 (5), 1–12. 10.1242/dmm.038711 PubMed DOI PMC

Colon J., Herrera L., Smith J., Patil S., Komanski C., Kupelian P., et al. (2009). Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 5 (2), 225–231. 10.1016/j.nano.2008.10.003 PubMed DOI

Cosentino D., Piro F. (2018). Hyaluronic acid for treatment of the radiation therapy side effects: a systematic review. Eur. Rev. Med. Pharmacol. Sci. 22 (21), 7562–7572. 10.26355/eurrev_201811_16298 PubMed DOI

Cyphert J. M., Trempus C. S., Garantziotis S. (2015). Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int. J. Cell Biol. 2015, 563818. 10.1155/2015/563818 PubMed DOI PMC

Dentener M. A., Vernooy J. H. J., Hendriks S., Wouters E. F. M. (2005). Enhanced levels of hyaluronan in lungs of patients with COPD: relationship with lung function and local inflammation. Thorax 60 (2), 114–119. 10.1136/thx.2003.020842 PubMed DOI PMC

Dicker K. T., Gurski L. A., Pradhan-Bhatt S., Witt R. L., Farach-Carson M. C., Jia X. (2014). Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomaterialia. 10 (4), 1558–1570. 10.1016/j.actbio.2013.12.019 PubMed DOI PMC

Fallacara A., Baldini E., Manfredini S., Vertuani S. (2018). Hyaluronic Acid in the Third Millennium. Polymers. 10 (7), 701. 10.3390/polym10070701 PubMed DOI PMC

Farhood B., Aliasgharzadeh A., Amini P., Rezaeyan A., Tavassoli A., Motevaseli E., et al. (2019). Mitigation of Radiation-Induced Lung Pneumonitis and Fibrosis Using Metformin and Melatonin: A Histopathological Study. Medicina. 55 (8), 417. 10.3390/medicina55080417 PubMed DOI PMC

Finkelstein J. N., Johnston C. J., Baggs R., Rubin P. (1994). Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 28 (3), 621–631. 10.1016/0360-3016(94)90187-2 PubMed DOI

Gennari A., de la Rosa J. M. R., Hohn E., Pelliccia M., Lallana E., Donno R., et al. (2019). The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency. Beilstein J. Nanotechnol. 10 (1), 2594–2608. 10.3762/bjnano.10.250 PubMed DOI PMC

Ghatak S., Markwald R. R., Hascall V. C., Dowling W., Lottes R. G., Baatz J. E., et al. (2017). Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J. Biol. Chem. 292 (25), 10465–10489. 10.1074/jbc.M116.752451 PubMed DOI PMC

Giuranno L., Ient J., De Ruysscher D., Vooijs M. A. (2019). Radiation-Induced Lung Injury (RILI). Front. Oncol. 9, 877. 10.3389/fonc.2019.00877 PubMed DOI PMC

Grommes J., Soehnlein O. (2011). Contribution of Neutrophils to Acute Lung Injury. Mol. Med. 17 (3–4), 293–307. 10.2119/molmed.2010.00138 PubMed DOI PMC

Haddadi G. H., Rezaeyan A., Mosleh-Shirazi M. A., Hosseinzadeh M., Fardid R., Najafi M., et al. (2017). Hesperidin as Radioprotector against Radiation-induced Lung Damage in Rat: A Histopathological Study. J. Med. Phys. 42 (1), 25–32. 10.4103/jmp.JMP_119_16 PubMed DOI PMC

Haiping Z., Takayama K., Uchino J., Harada A., Adachi Y., Kura S., et al. (2006). Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-beta type II receptor gene. Cancer Gene Ther. 13 (9), 864–872. 10.1038/sj.cgt.7700959 PubMed DOI

Håkansson L., Venge P. (1985). The combined action of hyaluronic acid and fibronectin stimulates neutrophil migration. J. Immunol. 135 (4), 2735–2739. PubMed

Hanania A. N., Mainwaring W., Ghebre Y. T., Hanania N. A., Ludwig M. (2019). Radiation-Induced Lung Injury: Assessment and Management. Chest. 156 (1), 150–162. 10.1016/j.chest.2019.03.033 PubMed DOI PMC

Huang G., Huang H. (2018). Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J. Controlled Release. 278, 122–126. 10.1016/j.jconrel.2018.04.015 PubMed DOI

Hussain S., Ji Z., Taylor A. J., DeGraff L. M., George M., Tucker C. J., et al. (2016). Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury. ACS Nano. 10 (8), 7675–7688. 10.1021/acsnano.6b03013 PubMed DOI PMC

Jackson I. L., Vujaskovic Z., Down J. D. (2010). Revisiting Strain-Related Differences in Radiation Sensitivity of the Mouse Lung: Recognizing and Avoiding the Confounding Effects of Pleural Effusions. Radiat. Res. 173 (1), 10–20. 10.1667/RR1911.1 PubMed DOI PMC

Jang S. S., Kim H. G., Lee J. S., Han J. M., Park H. J., Huh G. J., et al. (2013). Melatonin reduces X-ray radiation-induced lung injury in mice by modulating oxidative stress and cytokine expression. Int. J. Radiat. Biol. 89 (2), 97–105. 10.3109/09553002.2013.734943 PubMed DOI

Jang S. S., Kim H. G., Han J. M., Lee J. S., Choi M. K., Huh G. J., et al. (2015). Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother. Res. 29 (2), 201–209. 10.1002/ptr.5223 PubMed DOI

Jeannot V., Gauche C., Mazzaferro S., Couvet M., Vanwonterghem L., Henry M., et al. (2018). Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer. J. Control Release. 10 275, 117–128. 10.1016/j.jconrel.2018.02.024 PubMed DOI

Jiang D., Liang J., Fan J., Yu S., Chen S., Luo Y., et al. (2005). Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11 (11), 1173–1179. 10.1038/nm1315 PubMed DOI

Jin H., Yoo Y., Kim Y., Kim Y., Cho J., Lee Y.-S. (2020). Radiation-Induced Lung Fibrosis: Preclinical Animal Models and Therapeutic Strategies. Cancers 12 (6), 1561. 10.3390/cancers12061561 PubMed DOI PMC

Johnson P., Arif A. A., Lee-Sayer S. S. M., Dong Y. (2018). Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front. Immunol. 9, 2787. 10.3389/fimmu.2018.02787 PubMed DOI PMC

Johnson C. G., Stober V. P., Cyphert-Daly J. M., Trempus C. S., Flake G. P., Cali V., et al. (2018). High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. Am. J. Physiology-Lung Cell. Mol. Physiol. 315 (5), L787–L798. 10.1152/ajplung.00009.2018 PubMed DOI PMC

Johnston C. J., Williams J. P., Elder A., Hernady E., Finkelstein J. N. (2004). Inflammatory cell recruitment following thoracic irradiation. Exp. Lung Res. 30 (5), 369–382. 10.1080/01902140490438915 PubMed DOI

Khodamoradi E., Hoseini-Ghahfarokhi M., Amini P., Motevaseli E., Shabeeb D., AE M., et al. (2020). Targets for protection and mitigation of radiation injury. Cell Mol. Life Sci. 77, 3129–3159.  10.1007/s00018-020-03479-x PubMed DOI PMC

Kim J. K., Srinivasan P., Kim J. H., Choi J., Park H. J., Byun M. W., et al. (2008). Structural and antioxidant properties of gamma irradiated hyaluronic acid. Food Chem. 109 (4), 763–770. 10.1016/j.foodchem.2008.01.038 PubMed DOI

Kuehl C., Zhang T., Kaminskas L. M., Porter C. J. H., Davies N. M., Forrest L., et al. (2016). Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation. Mol. Pharmaceutics 13 (6), 1904–1914. 10.1021/acs.molpharmaceut.6b00069 PubMed DOI PMC

Lamas A., Marshburn J., Stober V. P., Donaldson S. H., Garantziotis S. (2016). Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease. Respirat. Res. 17 (1), 123. 10.1186/s12931-016-0442-4 PubMed DOI PMC

Lauer M. E., Dweik R. A., Garantziotis S., Aronica M. A. (2015). The Rise and Fall of Hyaluronan in Respiratory Diseases. Int. J. Cell Biol. 2015, e712507. 10.1155/2015/712507 PubMed DOI PMC

Lee J. C., Krochak R., Blouin A., Kanterakis S., Chatterjee S., Arguiri E., et al. (2009). Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol. Ther. 8 (1), 47–53. 10.4161/cbt.8.1.7092 PubMed DOI PMC

Li Y., Rahmanian M., Widström C., Lepperdinger G., Frost G. I., Heldin P. (2000). Irradiation-induced expression of hyaluronan (HA) synthase 2 and hyaluronidase 2 genes in rat lung tissue accompanies active turnover of HA and induction of types I and III collagen gene expression. Am. J. Respir. Cell Mol. Biol. 23 (3), 411–418. 10.1165/ajrcmb.23.3.4102 PubMed DOI

Li L., Qi L., Liang Z., Song W., Liu Y., Wang Y., et al. (2015). Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int. J. Mol. Med. 36 (1), 113–122. 10.3892/ijmm.2015.2222 PubMed DOI PMC

Liang J., Jiang D., Griffith J., Yu S., Fan J., Zhao X., et al. (2007). CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J. Immunol. 178 (4), 2469–2475. 10.4049/jimmunol.178.4.2469 PubMed DOI

Liang J., Jiang D., Jung Y., Xie T., Ingram J., Church T., et al. (2011). Role of hyaluronan and hyaluronan-binding proteins in human asthma. J. Allergy Clin. Immunol. 128 (2), 403–411.e3. 10.1016/j.jaci.2011.04.006 PubMed DOI PMC

Lierova A., Jelicova M., Nemcova M., Proksova M., Pejchal J., Zarybnicka L., et al. (2018). Cytokines and radiation-induced pulmonary injuries. J. Radiat. Res. 59 (6), 709–753. 10.1093/jrr/rry067 PubMed DOI PMC

Liguori V., Guillemin C., Pesce G. F., Mirimanoff R. O., Bernier J. (1997). Double-blind, randomized clinical study comparing hyaluronic acid cream to placebo in patients treated with radiotherapy. Radiother. Oncol. 42 (2), 155–161. 10.1016/S0167-8140(96)01882-8 PubMed DOI

Liu Y.-Y., Lee C.-H., Dedaj R., Zhao H., Mrabat H., Sheidlin A., et al. (2008). High-molecular-weight hyaluronan-a possible new treatment for sepsis-induced lung injury: a preclinical study in mechanically ventilated rats. Crit. Care 12 (4), R102. 10.1186/cc6982 PubMed DOI PMC

Mahmood J., Jelveh S., Calveley V., Zaidi A., Doctrow S. R., Hill R. P. (2011). Mitigation of radiation-induced lung injury by genistein and EUK-207. Int. J. Radiat. Biol. 87 (8), 889–901. 10.3109/09553002.2011.583315 PubMed DOI PMC

Mattheolabakis G., Milane L., Singh A., Amiji M. M. (2015). Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J. Drug Target 23 (7–8), 605–618. 10.3109/1061186X.2015.1052072 PubMed DOI

McDonald B., McAvoy E. F., Lam F., Gill V., de la Motte C., Savani R. C., et al. (2008). Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J. Exp. Med. 205 (4), 915–927. 10.1084/jem.20071765 PubMed DOI PMC

Meran S., Luo D. D., Simpson R., Martin J., Wells A., Steadman R., et al. (2011). Hyaluronan Facilitates Transforming Growth Factor-β1-dependent Proliferation via CD44 and Epidermal Growth Factor Receptor Interaction. J. Biol. Chem. 286 (20), 17618–17630. 10.1074/jbc.M111.226563 PubMed DOI PMC

Meyer K., Palmer J. W. (1934). The Polysaccharide of the Vitreous Humor. J. Biol. Chem. 107 (3), 629–634.

Mun G.-I., Kim S., Choi E., Kim C. S., Lee Y.-S. (2018). Pharmacology of natural radioprotectors. Arch. Pharm. Res. 41 (11), 1033–1050. 10.1007/s12272-018-1083-6 PubMed DOI PMC

Nilsson K., Bjermer L., Hellström S., Henriksson R., Hällgren R. (1990). A Mast Cell Secretogogue, Compound 48/80, Prevents the Accumulation of Hyaluronan in Lung Tissue Injured by Ionizing Irradiation. Am. J. Respir. Cell Mol. Biol. 2 (2), 199–205. 10.1165/ajrcmb/2.2.199 PubMed DOI

Österreicher J., Pejchal J., Škopek J., Mokrý J., Vilasová Z., Psutka J., et al. (2004). Role of type II pneumocytes in pathogenesis of radiation pneumonitis: dose response of radiation-induced lung changes in the transient high vascular permeability period. Exp. Toxicol. Pathol. 56 (3), 181–187. 10.1016/j.etp.2004.08.003 PubMed DOI

Pamujula S., Kishore V., Rider B., Fermin C. D., Graves R. A., Agrawal K. C., et al. (2005). Radioprotection in mice following oral delivery of amifostine nanoparticles. Int. J. Radiat. Biol. 81 (3), 251–257. 10.1080/09553000500103470 PubMed DOI

Park H.-R., Jo S.-K., Jung U. (2017). Thoracic Irradiation Recruit M2 Macrophage into the Lung, Leading to Pneumonitis and Pulmonary Fibrosis. J. Radiat. Prot Res. 42 (4), 177–188. 10.14407/jrpr.2017.42.4.177 DOI

Paun A., Lemay A.-M., Haston C. K. (2010). Gene expression profiling distinguishes radiation-induced fibrosing alveolitis from alveolitis in mice. Radiat. Res. 173 (4), 512–521. 10.1667/RR1798.1 PubMed DOI

Riehl T. E., Foster L., Stenson W. F. (2012). Hyaluronic acid is radioprotective in the intestine through a TLR4 and COX-2-mediated mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 302 (3), G309–G316. 10.1152/ajpgi.00248.2011 PubMed DOI PMC

Rube C. E., Uthe D., Schmid K. W., Richter K. D., Wessel J., Schuck A., et al. (2000). Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 47 (4), 1033–1042. 10.1016/S0360-3016(00)00482-X PubMed DOI

Schaue D., Kachikwu E. L., McBride W. H. (2012). Cytokines in Radiobiological Responses: A Review. Radiat. Res. 178 (6), 505–523. 10.1667/RR3031.1 PubMed DOI PMC

Schoenberg M. D., Brooks R. E., Hall J. J., Schneiderman H. (1951). Effect of x-irradiation on the hyaluronïdasehyaluronic acid system. Arch. Biochem. 30 (2), 333–340. PubMed

Singleton P. A., Lennon F. E. (2011). Acute Lung Injury Regulation by Hyaluronan. J. Allergy Ther. Suppl 4, 1–9. 10.4172/2155-6121.S4-003 PubMed DOI PMC

Straub J. M., New J., Hamilton C. D., Lominska C., Shnayder Y., Thomas S. M. (2015). Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 141 (11), 1985–1994. 10.1007/s00432-015-1974-6 PubMed DOI PMC

Sydlik U., Gallitz I., Albrecht C., Abel J., Krutmann J., Unfried K. (2009). The Compatible Solute Ectoine Protects against Nanoparticle-induced Neutrophilic Lung Inflammation. Am. J. Respir. Crit. Care Med. 180 (1), 29–35. 10.1164/rccm.200812-1911OC PubMed DOI

Teder P., Vandivier R. W., Jiang D., Liang J., Cohn L., Puré E., et al. (2002). Resolution of lung inflammation by CD44. Science. 296 (5565), 155–158. 10.1126/science.1069659 PubMed DOI

Venge P., Pedersen B., Håkansson L., Hällgren R., Lindblad G., Dahl R. (1996). Subcutaneous administration of hyaluronan reduces the number of infectious exacerbations in patients with chronic bronchitis. Am. J. Respir. Crit. Care Med. 153 (1), 312–316. 10.1164/ajrccm.153.1.8542136 PubMed DOI

Webber J., Meran S., Steadman R., Phillips A. (2009). Hyaluronan Orchestrates Transforming Growth Factor-β1-dependent Maintenance of Myofibroblast Phenotype. J. Biol. Chem. 284 (14), 9083–9092. 10.1074/jbc.M806989200 PubMed DOI PMC

Wegrowski J., Lefaix J. L., Lafuma C. (1992). Accumulation of Glycosaminoglycans in Radiation-induced Muscular Fibrosis. Int. J. Radiat. Biol. 61 (5), 685–693. 10.1080/09553009214551501 PubMed DOI

Wirsdörfer F., Jendrossek V. (2016). The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front. Immunol. 7, 591. 10.3389/fimmu.2016.00591 PubMed DOI PMC

Xu C., Shi Q., Zhang L., Zhao H. (2018). High molecular weight hyaluronan attenuates fine particulate matter-induced acute lung injury through inhibition of ROS-ASK1-p38/JNK-mediated epithelial apoptosis. Environ. Toxicol. Pharmacol. 59, 190–198. 10.1016/j.etap.2018.03.020 PubMed DOI

Yoshizaki A., Iwata Y., Komura K., Ogawa F., Hara T., Muroi E., et al. (2008). CD19 Regulates Skin and Lung Fibrosis via Toll-Like Receptor Signaling in a Model of Bleomycin-Induced Scleroderma. Am. J. Pathol. 172 (6), 1650–1663. 10.2353/ajpath.2008.071049 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace