Hyaluronic Acid Nanoparticles with Parameters Required for In Vivo Applications: From Synthesis to Parametrization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38943654
PubMed Central
PMC11323013
DOI
10.1021/acs.biomac.4c00370
Knihovny.cz E-zdroje
- MeSH
- antigeny CD44 metabolismus MeSH
- biokompatibilní materiály chemie chemická syntéza MeSH
- kyselina hyaluronová * chemie MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD44 MeSH
- biokompatibilní materiály MeSH
- kyselina hyaluronová * MeSH
Hyaluronic acid is an excellent biocompatible material for in vivo applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism. A robust and reproducible approach for producing HANPs that meet strict criteria for in vivo applications (e.g., to lung parenchyma) remains challenging. We designed and evaluated four protocols for the preparation of HANPs with those required parameters. The HA molecule was cross-linked by novel combinations of carbodiimide, and four different amine-containing compounds resulted in monodisperse HANPs with a low polydispersity index. By a complex postsynthetic characterization, we confirmed that the prepared HANPs meet the criteria for inhaled therapeutic delivery and other in vivo applications.
Zobrazit více v PubMed
Haleem A.; Javaid M.; Singh R. P.; Rab S.; Suman R. Applications of Nanotechnology in Medical Field: A Brief Review. Global Health J. 2023, 7 (2), 70–77. 10.1016/j.glohj.2023.02.008. DOI
Yasin A.; Ren Y.; Li J.; Sheng Y.; Cao C.; Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 10.10.3389/fbioe.2022.910290. PubMed DOI PMC
Ai J.; Biazar E.; Jafarpour M.; Montazeri M.; Majdi A.; Aminifard S.; Zafari M.; Akbari H. R.; Rad H. G. Nanotoxicology and Nanoparticle Safety in Biomedical Designs. Int. J. Nanomed. 2011, 6, 1117–1127. 10.2147/IJN.S16603. PubMed DOI PMC
Rao N. V.; Rho J. G.; Um W.; Ek P. K.; Nguyen V. Q.; Oh B. H.; Kim W.; Park J. H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020, 12 (10), 931.10.3390/pharmaceutics12100931. PubMed DOI PMC
Nagpal K.; Singh S. K.; Mishra D. N. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chem. Pharm. Bull. 2010, 58 (11), 1423–1430. 10.1248/cpb.58.1423. PubMed DOI
Matalqah S. M.; Aiedeh K.; Mhaidat N. M.; Alzoubi K. H.; Bustanji Y.; Hamad I. Chitosan Nanoparticles as a Novel Drug Delivery System: A Review Article. Curr. Drug Targets 2020, 21 (15), 1613–1624. 10.2174/1389450121666200711172536. PubMed DOI
Rancan F.; Papakostas D.; Hadam S.; Hackbarth S.; Delair T.; Primard C.; Verrier B.; Sterry W.; Blume-Peytavi U.; Vogt A. Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharm. Res. 2009, 26 (8), 2027–2036. 10.1007/s11095-009-9919-x. PubMed DOI
Phạm T. L.; Kim D. W.. Poly(Lactic-Co-Glycolic Acid) Nanomaterial-Based Treatment Options for Pain Management: A review Nanomedicine, 2020.10.2217/nnm-2020-0114. PubMed DOI
Łukasiewicz S.; Mikołajczyk A.; Błasiak E.; Fic E.; Dziedzicka-Wasylewska M. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021, 13 (2), 191.10.3390/pharmaceutics13020191. PubMed DOI PMC
Jana S.; Gandhi A.; Sen K.; Basu S. Natural Polymers and Their Application in Drug Delivery and Biomedical Field. J. PharmaScitech. 2011, 1, 16–27.
Kuo J.-W.; Prestwich G. D. 2.214 - Hyaluronic Acid. Compr. Biomater. 2011, 2, 239–259. 10.1016/B978-0-08-055294-1.00073-8. DOI
Burdick J. A.; Prestwich G. D. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Mater. 2011, 23 (12), H41–H56. 10.1002/adma.201003963. PubMed DOI PMC
Zamboni F.; Wong C. K.; Collins M. N. Hyaluronic Acid Association with Bacterial, Fungal and Viral Infections: Can Hyaluronic Acid Be Used as an Antimicrobial Polymer for Biomedical and Pharmaceutical Applications?. Bioact. Mater. 2023, 19, 458–473. 10.1016/j.bioactmat.2022.04.023. PubMed DOI PMC
Yen J.; Ying H.; Wang H.; Yin L.; Uckun F.; Cheng J. CD44 Mediated Nonviral Gene Delivery into Human Embryonic Stem Cells via Hyaluronic-Acid-Coated Nanoparticles. ACS Biomater. Sci. Eng. 2016, 2 (3), 326–335. 10.1021/acsbiomaterials.5b00393. PubMed DOI
Ashrafizadeh M.; Mirzaei S.; Gholami M. H.; Hashemi F.; Zabolian A.; Raei M.; Hushmandi K.; Zarrabi A.; Voelcker N. H.; Aref A. R.; et al. Hyaluronic Acid-Based Nanoplatforms for Doxorubicin: A Review of Stimuli-Responsive Carriers, Co-Delivery and Resistance Suppression. Carbohydr. Polym. 2021, 272, 118491.10.1016/j.carbpol.2021.118491. PubMed DOI
Prokopović V. Z.; Duschl C.; Volodkin D. Hyaluronic Acid/Poly-l-Lysine Multilayers as Reservoirs for Storage and Release of Small Charged Molecules. Macromol. Biosci. 2015, 15 (10), 1357–1363. 10.1002/mabi.201500093. PubMed DOI
Yu M.; Jambhrunkar S.; Thorn P.; Chen J.; Gu W.; Yu C. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug Delivery to CD44-Overexpressing Cancer Cells. Nanoscale 2013, 5 (1), 178–183. 10.1039/C2NR32145A. PubMed DOI
Liu E.; Zhou Y.; Liu Z.; Li J.; Zhang D.; Chen J.; Cai Z. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer. J. Nanomater. 2015, 2015, e39035810.1155/2015/390358. DOI
Cho H.-J.; Yoon H. Y.; Koo H.; Ko S.-H.; Shim J.-S.; Lee J.-H.; Kim K.; Kwon I. C.; Kim D.-D. Self-Assembled Nanoparticles Based on Hyaluronic Acid-Ceramide (HA-CE) and Pluronic® for Tumor-Targeted Delivery of Docetaxel. Biomaterials 2011, 32 (29), 7181–7190. 10.1016/j.biomaterials.2011.06.028. PubMed DOI
Jeong J. Y.; Hong E.-H.; Lee S. Y.; Lee J.-Y.; Song J.-H.; Ko S.-H.; Shim J.-S.; Choe S.; Kim D.-D.; Ko H.-J.; et al. Boronic Acid-Tethered Amphiphilic Hyaluronic Acid Derivative-Based Nanoassemblies for Tumor Targeting and Penetration. Acta Biomater. 2017, 53, 414–426. 10.1016/j.actbio.2017.02.030. PubMed DOI
Xin D.; Wang Y.; Xiang J. The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and in Vitro Efficiency. Pharm. Res. 2010, 27 (2), 380–389. 10.1007/s11095-009-9997-9. PubMed DOI
Rho J. G.; Han H. S.; Han J. H.; Lee H.; Nguyen V. Q.; Lee W. H.; Kwon S.; Heo S.; Yoon J.; Shin H. H.; et al. Self-Assembled Hyaluronic Acid Nanoparticles: Implications as a Nanomedicine for Treatment of Type 2 Diabetes. J. Controlled Release 2018, 279, 89–98. 10.1016/j.jconrel.2018.04.006. PubMed DOI
Kang L.-J.; Yoon J.; Rho J. G.; Han H. S.; Lee S.; Oh Y. S.; Kim H.; Kim E.; Kim S. J.; Lim Y. T.; et al. Self-Assembled Hyaluronic Acid Nanoparticles for Osteoarthritis Treatment. Biomaterials 2021, 275, 120967.10.1016/j.biomaterials.2021.120967. PubMed DOI
Beldman T. J.; Senders M. L.; Alaarg A.; Pérez-Medina C.; Tang J.; Zhao Y.; Fay F.; Deichmöller J.; Born B.; Desclos E.; et al. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano 2017, 11 (6), 5785–5799. 10.1021/acsnano.7b01385. PubMed DOI PMC
Lierova A.; Kasparova J.; Pejchal J.; Kubelkova K.; Jelicova M.; Palarcik J.; Korecka L.; Bilkova Z.; Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front. Pharmacol. 2020, 11, 11.10.3389/fphar.2020.01199. PubMed DOI PMC
Mohammed M.; Devnarain N.; Elhassan E.; Govender T. Exploring the Applications of Hyaluronic Acid-Based Nanoparticles for Diagnosis and Treatment of Bacterial Infections. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2022, 14 (4), e179910.1002/wnan.1799. PubMed DOI PMC
Liu Y.; Chen D.; Zhang A.; Xiao M.; Li Z.; Luo W.; Pan Y.; Qu W.; Xie S. Composite Inclusion Complexes Containing Hyaluronic Acid/Chitosan Nanosystems for Dual Responsive Enrofloxacin Release. Carbohydr. Polym. 2021, 252, 117162.10.1016/j.carbpol.2020.117162. PubMed DOI
Montanari E.; D’Arrigo G.; Di Meo C.; Virga A.; Coviello T.; Passariello C.; Matricardi P. Chasing Bacteria within the Cells Using Levofloxacin-Loaded Hyaluronic Acid Nanohydrogels. Eur. J. Pharm. Biopharm. 2014, 87 (3), 518–523. 10.1016/j.ejpb.2014.03.003. PubMed DOI
Bayer I. S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25 (11), 2649.10.3390/molecules25112649. PubMed DOI PMC
Choi K. Y.; Saravanakumar G.; Park J. H.; Park K. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer. Colloids Surf., B 2012, 99, 82–94. 10.1016/j.colsurfb.2011.10.029. PubMed DOI PMC
Senbanjo L. T.; Chellaiah M. A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18.10.3389/fcell.2017.00018. PubMed DOI PMC
Lei C.; Liu X.-R.; Chen Q.-B.; Li Y.; Zhou J.-L.; Zhou L.-Y.; Zou T. Hyaluronic Acid and Albumin Based Nanoparticles for Drug Delivery. J. Controlled Release 2021, 331, 416–433. 10.1016/j.jconrel.2021.01.033. PubMed DOI
Curcio M.; Vittorio O.; Bell J. L.; Iemma F.; Nicoletta F. P.; Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials 2022, 12 (16), 2851.10.3390/nano12162851. PubMed DOI PMC
Chaudhry G.-S.; Akim A.; Naveed Zafar M.; Safdar N.; Sung Y. Y.; Muhammad T. S. T. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv. Pharm. Bull 2021, 11 (3), 426–438. 10.34172/apb.2021.050. PubMed DOI PMC
Wang G.; Zhang F.; Tian R.; Zhang L.; Fu G.; Yang L.; Zhu L. Nanotubes-Embedded Indocyanine Green–Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Appl. Mater. Interfaces 2016, 8 (8), 5608–5617. 10.1021/acsami.5b12400. PubMed DOI PMC
Lee C.-S.; Na K. Photochemically Triggered Cytosolic Drug Delivery Using pH-Responsive Hyaluronic Acid Nanoparticles for Light-Induced Cancer Therapy. Biomacromolecules 2014, 15 (11), 4228–4238. 10.1021/bm501258s. PubMed DOI
de la Fuente M.; Seijo B.; Alonso M. J. Novel Hyaluronic Acid-Chitosan Nanoparticles for Ocular Gene Therapy. Invest. Ophthalmol. Visual Sci. 2008, 49 (5), 2016–2024. 10.1167/iovs.07-1077. PubMed DOI
Cai J.; Fu J.; Li R.; Zhang F.; Ling G.; Zhang P. A Potential Carrier for Anti-Tumor Targeted Delivery-Hyaluronic Acid Nanoparticles. Carbohydr. Polym. 2019, 208, 356–364. 10.1016/j.carbpol.2018.12.074. PubMed DOI
Schuster B. S.; Suk J. S.; Woodworth G. F.; Hanes J. Nanoparticle Diffusion in Respiratory Mucus from Humans without Lung Disease. Biomaterials 2013, 34 (13), 3439–3446. 10.1016/j.biomaterials.2013.01.064. PubMed DOI PMC
He S.; Gui J.; Xiong K.; Chen M.; Gao H.; Fu Y. A Roadmap to Pulmonary Delivery Strategies for the Treatment of Infectious Lung Diseases. J. Nanobiotechnol. 2022, 20 (1), 101.10.1186/s12951-022-01307-x. PubMed DOI PMC
Heyder J. Deposition of Inhaled Particles in the Human Respiratory Tract and Consequences for Regional Targeting in Respiratory Drug Delivery. Ann. Am. Thorac. Soc. 2004, 1 (4), 315–320. 10.1513/pats.200409-046TA. PubMed DOI
Bodnár M.; Daróczi L.; Batta G.; Bakó J.; Hartmann J. F.; Borbély J. Preparation and Characterization of Cross-Linked Hyaluronan Nanoparticles. Colloid Polym. Sci. 2009, 287 (8), 991–1000. 10.1007/s00396-009-2061-9. DOI
Hu Z.; Xia X.; Tang L.. Process for Synthesizing Oil and Surfactant-free Hyaluronic Acid Nanoparticles and Microparticles, US 7,601,704 B2; 2009.
Zhong Y.; Zhang J.; Cheng R.; Deng C.; Meng F.; Xie F.; Zhong Z. Reversibly Crosslinked Hyaluronic Acid Nanoparticles for Active Targeting and Intelligent Delivery of Doxorubicin to Drug Resistant CD44+ Human Breast Tumor Xenografts. J. Controlled Release 2015, 205, 144–154. 10.1016/j.jconrel.2015.01.012. PubMed DOI
Nasti A.; Zaki N. M.; de Leonardis P.; Ungphaiboon S.; Sansongsak P.; Rimoli M. G.; Tirelli N. Chitosan/TPP and Chitosan/TPP-Hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharm. Res. 2009, 26 (8), 1918–1930. 10.1007/s11095-009-9908-0. PubMed DOI
Barbault-Foucher S.; Gref R.; Russo P.; Guechot J.; Bochot A. Design of Poly-Epsilon-Caprolactone Nanospheres Coated with Bioadhesive Hyaluronic Acid for Ocular Delivery. J. Controlled Release 2002, 83 (3), 365–375. 10.1016/S0168-3659(02)00207-9. PubMed DOI
Yang X.; Kootala S.; Hilborn J.; A. Ossipov D. Preparation of Hyaluronic Acid Nanoparticles via Hydrophobic Association Assisted Chemical Cross-Linking an Orthogonal Modular Approach. Soft Matter 2011, 7 (16), 7517–7525. 10.1039/C1SM05785E. DOI
Dong X.; Liu C. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates. J. Nanomater. 2010, 2010, e90693610.1155/2010/906936. DOI
Bushra R.; Ahmad M.; Seidi F.; Qurtulen Song J.; Jin Y.; Xiao H. Polysaccharide-Based Nanoassemblies: From Synthesis Methodologies and Industrial Applications to Future Prospects. Adv. Colloid Interface Sci. 2023, 318, 102953.10.1016/j.cis.2023.102953. PubMed DOI
Kašparová J.; Korecká L.; Bílková Z.; Palarčík J.; Lierová A.; Šinkorová Z.; Česlová L. Preparation of Hyaluronan Nanoparticles Using Different Cross-Linking Strategies. Sci. Pap. Univ. Pardubice, Ser. A 2018, 24 (2018), 49–58.
Stetefeld J.; McKenna S. A.; Patel T. R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8 (4), 409–427. 10.1007/s12551-016-0218-6. PubMed DOI PMC
Modena M. M.; Rühle B.; Burg T. P.; Wuttke S. Nanoparticle Characterization: What to Measure?. Adv. Mater. 2019, 31 (32), 1901556.10.1002/adma.201901556. PubMed DOI
Maguire C. M.; Rösslein M.; Wick P.; Prina-Mello A. Characterisation of Particles in Solution – a Perspective on Light Scattering and Comparative Technologies. Sci. Technol. Adv. Mater 2018, 19 (1), 732–745. 10.1080/14686996.2018.1517587. PubMed DOI PMC
Deiss-Yehiely E.; Brucks S. D.; Boehnke N.; Pickering A. J.; Kiessling L. L.; Hammond P. T. Surface Presentation of Hyaluronic Acid Modulates Nanoparticle–Cell Association. Bioconjugate Chem. 2022, 33 (11), 2065–2075. 10.1021/acs.bioconjchem.2c00412. PubMed DOI PMC
Vecchies F.; Sacco P.; Marsich E.; Cinelli G.; Lopez F.; Donati I. Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates. Polymers 2020, 12, 897.10.3390/polym12040897. PubMed DOI PMC
Antunes J. C.; Oliveira J. M.; Reis R. L.; Soria J. M.; Gómez-Ribelles J. L.; Mano J. F. Novel Poly(L-Lactic Acid)/Hyaluronic Acid Macroporous Hybrid Scaffolds: Characterization and Assessment of Cytotoxicity. J. Biomed. Mater. Res., Part A 2010, 94A (3), 856–869. 10.1002/jbm.a.32753. PubMed DOI
Pan N. C.; Pereira H. C. B.; Vasconcelos A. F. D.; Celligoi M. A. P. C. Improvement Production of Hyaluronic Acid by Streptococcus Zooepidemicus in Sugarcane Molasses. Appl. Biochem. Biotechnol. 2017, 182 (1), 276–293. 10.1007/s12010-016-2326-y. PubMed DOI
Thi-Hiep N.; Hoa D. V.; Toi V. V. Injectable in situ crosslinkable hyaluronan-polyvinyl phosphonic acid hydrogels for bone engineering. J. Biomed. Sci. Eng. 2013, 6 (8), 854–862. 10.4236/jbise.2013.68104. DOI
Holubova L.; Korecka L.; Podzimek S.; Moravcova V.; Rotkova J.; Ehlova T.; Velebny V.; Bilkova Z. Enhanced Multiparametric Hyaluronan Degradation for Production of Molar-Mass-Defined Fragments. Carbohydr. Polym. 2014, 112, 271–276. 10.1016/j.carbpol.2014.05.096. PubMed DOI
Chiesa E.; Greco A.; Riva F.; Dorati R.; Conti B.; Modena T.; Genta I. Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics 2021, 13 (10), 1565.10.3390/pharmaceutics13101565. PubMed DOI PMC
Yao H.; Zhang S.; Guo X.; Li Y.; Ren J.; Zhou H.; Du B.; Zhou J. A Traceable Nanoplatform for Enhanced Chemo-Photodynamic Therapy by Reducing Oxygen Consumption. Nanomedicine 2019, 20, 101978.10.1016/j.nano.2019.03.001. PubMed DOI
Liu R.; Xiao W.; Hu C.; Xie R.; Gao H. Theranostic Size-Reducible and No Donor Conjugated Gold Nanocluster Fabricated Hyaluronic Acid Nanoparticle with Optimal Size for Combinational Treatment of Breast Cancer and Lung Metastasis. J. Controlled Release 2018, 278, 127–139. 10.1016/j.jconrel.2018.04.005. PubMed DOI
Shen Y.; Li W. HA/HSA Co-Modified Erlotinib–Albumin Nanoparticles for Lung Cancer Treatment. Drug Des., Dev. Ther. 2018, 12, 2285–2292. 10.2147/DDDT.S169734. PubMed DOI PMC
Sun B.; Deng C.; Meng F.; Zhang J.; Zhong Z. Robust, Active Tumor-Targeting and Fast Bioresponsive Anticancer Nanotherapeutics Based on Natural Endogenous Materials. Acta Biomater. 2016, 45, 223–233. 10.1016/j.actbio.2016.08.048. PubMed DOI
Cho H.-J.; Yoon I.-S.; Yoon H. Y.; Koo H.; Jin Y.-J.; Ko S.-H.; Shim J.-S.; Kim K.; Kwon I. C.; Kim D.-D. Polyethylene Glycol-Conjugated Hyaluronic Acid-Ceramide Self-Assembled Nanoparticles for Targeted Delivery of Doxorubicin. Biomaterials 2012, 33 (4), 1190–1200. 10.1016/j.biomaterials.2011.10.064. PubMed DOI
Salari N.; Mansouri K.; Valipour E.; Abam F.; Jaymand M.; Rasoulpoor S.; Dokaneheifard S.; Mohammadi M. Hyaluronic Acid-Based Drug Nanocarriers as a Novel Drug Delivery System for Cancer Chemotherapy: A Systematic Review. Daru, J. Pharm. Sci. 2021, 29 (2), 439–447. 10.1007/s40199-021-00416-6. PubMed DOI PMC
Chen Z.; Chen J.; Wu L.; Li W.; Chen J.; Cheng H.; Pan J.; Cai B. Hyaluronic Acid-Coated Bovine Serum Albumin Nanoparticles Loaded with Brucine as Selective Nanovectors for Intra-Articular Injection. Int. J. Nanomed. 2013, 3843.10.2147/IJN.S50721. PubMed DOI PMC
Huang D.; Chen Y.-S.; Rupenthal I. D. Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Mol. Pharmaceutics 2017, 14 (2), 533–545. 10.1021/acs.molpharmaceut.6b01029. PubMed DOI