Hyaluronic Acid Nanoparticles with Parameters Required for In Vivo Applications: From Synthesis to Parametrization

. 2024 Aug 12 ; 25 (8) : 4934-4945. [epub] 20240629

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38943654

Hyaluronic acid is an excellent biocompatible material for in vivo applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism. A robust and reproducible approach for producing HANPs that meet strict criteria for in vivo applications (e.g., to lung parenchyma) remains challenging. We designed and evaluated four protocols for the preparation of HANPs with those required parameters. The HA molecule was cross-linked by novel combinations of carbodiimide, and four different amine-containing compounds resulted in monodisperse HANPs with a low polydispersity index. By a complex postsynthetic characterization, we confirmed that the prepared HANPs meet the criteria for inhaled therapeutic delivery and other in vivo applications.

Zobrazit více v PubMed

Haleem A.; Javaid M.; Singh R. P.; Rab S.; Suman R. Applications of Nanotechnology in Medical Field: A Brief Review. Global Health J. 2023, 7 (2), 70–77. 10.1016/j.glohj.2023.02.008. DOI

Yasin A.; Ren Y.; Li J.; Sheng Y.; Cao C.; Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 10.10.3389/fbioe.2022.910290. PubMed DOI PMC

Ai J.; Biazar E.; Jafarpour M.; Montazeri M.; Majdi A.; Aminifard S.; Zafari M.; Akbari H. R.; Rad H. G. Nanotoxicology and Nanoparticle Safety in Biomedical Designs. Int. J. Nanomed. 2011, 6, 1117–1127. 10.2147/IJN.S16603. PubMed DOI PMC

Rao N. V.; Rho J. G.; Um W.; Ek P. K.; Nguyen V. Q.; Oh B. H.; Kim W.; Park J. H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020, 12 (10), 931.10.3390/pharmaceutics12100931. PubMed DOI PMC

Nagpal K.; Singh S. K.; Mishra D. N. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chem. Pharm. Bull. 2010, 58 (11), 1423–1430. 10.1248/cpb.58.1423. PubMed DOI

Matalqah S. M.; Aiedeh K.; Mhaidat N. M.; Alzoubi K. H.; Bustanji Y.; Hamad I. Chitosan Nanoparticles as a Novel Drug Delivery System: A Review Article. Curr. Drug Targets 2020, 21 (15), 1613–1624. 10.2174/1389450121666200711172536. PubMed DOI

Rancan F.; Papakostas D.; Hadam S.; Hackbarth S.; Delair T.; Primard C.; Verrier B.; Sterry W.; Blume-Peytavi U.; Vogt A. Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharm. Res. 2009, 26 (8), 2027–2036. 10.1007/s11095-009-9919-x. PubMed DOI

Phạm T. L.; Kim D. W.. Poly(Lactic-Co-Glycolic Acid) Nanomaterial-Based Treatment Options for Pain Management: A review Nanomedicine, 2020.10.2217/nnm-2020-0114. PubMed DOI

Łukasiewicz S.; Mikołajczyk A.; Błasiak E.; Fic E.; Dziedzicka-Wasylewska M. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021, 13 (2), 191.10.3390/pharmaceutics13020191. PubMed DOI PMC

Jana S.; Gandhi A.; Sen K.; Basu S. Natural Polymers and Their Application in Drug Delivery and Biomedical Field. J. PharmaScitech. 2011, 1, 16–27.

Kuo J.-W.; Prestwich G. D. 2.214 - Hyaluronic Acid. Compr. Biomater. 2011, 2, 239–259. 10.1016/B978-0-08-055294-1.00073-8. DOI

Burdick J. A.; Prestwich G. D. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv. Mater. 2011, 23 (12), H41–H56. 10.1002/adma.201003963. PubMed DOI PMC

Zamboni F.; Wong C. K.; Collins M. N. Hyaluronic Acid Association with Bacterial, Fungal and Viral Infections: Can Hyaluronic Acid Be Used as an Antimicrobial Polymer for Biomedical and Pharmaceutical Applications?. Bioact. Mater. 2023, 19, 458–473. 10.1016/j.bioactmat.2022.04.023. PubMed DOI PMC

Yen J.; Ying H.; Wang H.; Yin L.; Uckun F.; Cheng J. CD44 Mediated Nonviral Gene Delivery into Human Embryonic Stem Cells via Hyaluronic-Acid-Coated Nanoparticles. ACS Biomater. Sci. Eng. 2016, 2 (3), 326–335. 10.1021/acsbiomaterials.5b00393. PubMed DOI

Ashrafizadeh M.; Mirzaei S.; Gholami M. H.; Hashemi F.; Zabolian A.; Raei M.; Hushmandi K.; Zarrabi A.; Voelcker N. H.; Aref A. R.; et al. Hyaluronic Acid-Based Nanoplatforms for Doxorubicin: A Review of Stimuli-Responsive Carriers, Co-Delivery and Resistance Suppression. Carbohydr. Polym. 2021, 272, 118491.10.1016/j.carbpol.2021.118491. PubMed DOI

Prokopović V. Z.; Duschl C.; Volodkin D. Hyaluronic Acid/Poly-l-Lysine Multilayers as Reservoirs for Storage and Release of Small Charged Molecules. Macromol. Biosci. 2015, 15 (10), 1357–1363. 10.1002/mabi.201500093. PubMed DOI

Yu M.; Jambhrunkar S.; Thorn P.; Chen J.; Gu W.; Yu C. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug Delivery to CD44-Overexpressing Cancer Cells. Nanoscale 2013, 5 (1), 178–183. 10.1039/C2NR32145A. PubMed DOI

Liu E.; Zhou Y.; Liu Z.; Li J.; Zhang D.; Chen J.; Cai Z. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer. J. Nanomater. 2015, 2015, e39035810.1155/2015/390358. DOI

Cho H.-J.; Yoon H. Y.; Koo H.; Ko S.-H.; Shim J.-S.; Lee J.-H.; Kim K.; Kwon I. C.; Kim D.-D. Self-Assembled Nanoparticles Based on Hyaluronic Acid-Ceramide (HA-CE) and Pluronic® for Tumor-Targeted Delivery of Docetaxel. Biomaterials 2011, 32 (29), 7181–7190. 10.1016/j.biomaterials.2011.06.028. PubMed DOI

Jeong J. Y.; Hong E.-H.; Lee S. Y.; Lee J.-Y.; Song J.-H.; Ko S.-H.; Shim J.-S.; Choe S.; Kim D.-D.; Ko H.-J.; et al. Boronic Acid-Tethered Amphiphilic Hyaluronic Acid Derivative-Based Nanoassemblies for Tumor Targeting and Penetration. Acta Biomater. 2017, 53, 414–426. 10.1016/j.actbio.2017.02.030. PubMed DOI

Xin D.; Wang Y.; Xiang J. The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and in Vitro Efficiency. Pharm. Res. 2010, 27 (2), 380–389. 10.1007/s11095-009-9997-9. PubMed DOI

Rho J. G.; Han H. S.; Han J. H.; Lee H.; Nguyen V. Q.; Lee W. H.; Kwon S.; Heo S.; Yoon J.; Shin H. H.; et al. Self-Assembled Hyaluronic Acid Nanoparticles: Implications as a Nanomedicine for Treatment of Type 2 Diabetes. J. Controlled Release 2018, 279, 89–98. 10.1016/j.jconrel.2018.04.006. PubMed DOI

Kang L.-J.; Yoon J.; Rho J. G.; Han H. S.; Lee S.; Oh Y. S.; Kim H.; Kim E.; Kim S. J.; Lim Y. T.; et al. Self-Assembled Hyaluronic Acid Nanoparticles for Osteoarthritis Treatment. Biomaterials 2021, 275, 120967.10.1016/j.biomaterials.2021.120967. PubMed DOI

Beldman T. J.; Senders M. L.; Alaarg A.; Pérez-Medina C.; Tang J.; Zhao Y.; Fay F.; Deichmöller J.; Born B.; Desclos E.; et al. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano 2017, 11 (6), 5785–5799. 10.1021/acsnano.7b01385. PubMed DOI PMC

Lierova A.; Kasparova J.; Pejchal J.; Kubelkova K.; Jelicova M.; Palarcik J.; Korecka L.; Bilkova Z.; Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front. Pharmacol. 2020, 11, 11.10.3389/fphar.2020.01199. PubMed DOI PMC

Mohammed M.; Devnarain N.; Elhassan E.; Govender T. Exploring the Applications of Hyaluronic Acid-Based Nanoparticles for Diagnosis and Treatment of Bacterial Infections. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2022, 14 (4), e179910.1002/wnan.1799. PubMed DOI PMC

Liu Y.; Chen D.; Zhang A.; Xiao M.; Li Z.; Luo W.; Pan Y.; Qu W.; Xie S. Composite Inclusion Complexes Containing Hyaluronic Acid/Chitosan Nanosystems for Dual Responsive Enrofloxacin Release. Carbohydr. Polym. 2021, 252, 117162.10.1016/j.carbpol.2020.117162. PubMed DOI

Montanari E.; D’Arrigo G.; Di Meo C.; Virga A.; Coviello T.; Passariello C.; Matricardi P. Chasing Bacteria within the Cells Using Levofloxacin-Loaded Hyaluronic Acid Nanohydrogels. Eur. J. Pharm. Biopharm. 2014, 87 (3), 518–523. 10.1016/j.ejpb.2014.03.003. PubMed DOI

Bayer I. S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25 (11), 2649.10.3390/molecules25112649. PubMed DOI PMC

Choi K. Y.; Saravanakumar G.; Park J. H.; Park K. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer. Colloids Surf., B 2012, 99, 82–94. 10.1016/j.colsurfb.2011.10.029. PubMed DOI PMC

Senbanjo L. T.; Chellaiah M. A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18.10.3389/fcell.2017.00018. PubMed DOI PMC

Lei C.; Liu X.-R.; Chen Q.-B.; Li Y.; Zhou J.-L.; Zhou L.-Y.; Zou T. Hyaluronic Acid and Albumin Based Nanoparticles for Drug Delivery. J. Controlled Release 2021, 331, 416–433. 10.1016/j.jconrel.2021.01.033. PubMed DOI

Curcio M.; Vittorio O.; Bell J. L.; Iemma F.; Nicoletta F. P.; Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. Nanomaterials 2022, 12 (16), 2851.10.3390/nano12162851. PubMed DOI PMC

Chaudhry G.-S.; Akim A.; Naveed Zafar M.; Safdar N.; Sung Y. Y.; Muhammad T. S. T. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv. Pharm. Bull 2021, 11 (3), 426–438. 10.34172/apb.2021.050. PubMed DOI PMC

Wang G.; Zhang F.; Tian R.; Zhang L.; Fu G.; Yang L.; Zhu L. Nanotubes-Embedded Indocyanine Green–Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Appl. Mater. Interfaces 2016, 8 (8), 5608–5617. 10.1021/acsami.5b12400. PubMed DOI PMC

Lee C.-S.; Na K. Photochemically Triggered Cytosolic Drug Delivery Using pH-Responsive Hyaluronic Acid Nanoparticles for Light-Induced Cancer Therapy. Biomacromolecules 2014, 15 (11), 4228–4238. 10.1021/bm501258s. PubMed DOI

de la Fuente M.; Seijo B.; Alonso M. J. Novel Hyaluronic Acid-Chitosan Nanoparticles for Ocular Gene Therapy. Invest. Ophthalmol. Visual Sci. 2008, 49 (5), 2016–2024. 10.1167/iovs.07-1077. PubMed DOI

Cai J.; Fu J.; Li R.; Zhang F.; Ling G.; Zhang P. A Potential Carrier for Anti-Tumor Targeted Delivery-Hyaluronic Acid Nanoparticles. Carbohydr. Polym. 2019, 208, 356–364. 10.1016/j.carbpol.2018.12.074. PubMed DOI

Schuster B. S.; Suk J. S.; Woodworth G. F.; Hanes J. Nanoparticle Diffusion in Respiratory Mucus from Humans without Lung Disease. Biomaterials 2013, 34 (13), 3439–3446. 10.1016/j.biomaterials.2013.01.064. PubMed DOI PMC

He S.; Gui J.; Xiong K.; Chen M.; Gao H.; Fu Y. A Roadmap to Pulmonary Delivery Strategies for the Treatment of Infectious Lung Diseases. J. Nanobiotechnol. 2022, 20 (1), 101.10.1186/s12951-022-01307-x. PubMed DOI PMC

Heyder J. Deposition of Inhaled Particles in the Human Respiratory Tract and Consequences for Regional Targeting in Respiratory Drug Delivery. Ann. Am. Thorac. Soc. 2004, 1 (4), 315–320. 10.1513/pats.200409-046TA. PubMed DOI

Bodnár M.; Daróczi L.; Batta G.; Bakó J.; Hartmann J. F.; Borbély J. Preparation and Characterization of Cross-Linked Hyaluronan Nanoparticles. Colloid Polym. Sci. 2009, 287 (8), 991–1000. 10.1007/s00396-009-2061-9. DOI

Hu Z.; Xia X.; Tang L.. Process for Synthesizing Oil and Surfactant-free Hyaluronic Acid Nanoparticles and Microparticles, US 7,601,704 B2; 2009.

Zhong Y.; Zhang J.; Cheng R.; Deng C.; Meng F.; Xie F.; Zhong Z. Reversibly Crosslinked Hyaluronic Acid Nanoparticles for Active Targeting and Intelligent Delivery of Doxorubicin to Drug Resistant CD44+ Human Breast Tumor Xenografts. J. Controlled Release 2015, 205, 144–154. 10.1016/j.jconrel.2015.01.012. PubMed DOI

Nasti A.; Zaki N. M.; de Leonardis P.; Ungphaiboon S.; Sansongsak P.; Rimoli M. G.; Tirelli N. Chitosan/TPP and Chitosan/TPP-Hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharm. Res. 2009, 26 (8), 1918–1930. 10.1007/s11095-009-9908-0. PubMed DOI

Barbault-Foucher S.; Gref R.; Russo P.; Guechot J.; Bochot A. Design of Poly-Epsilon-Caprolactone Nanospheres Coated with Bioadhesive Hyaluronic Acid for Ocular Delivery. J. Controlled Release 2002, 83 (3), 365–375. 10.1016/S0168-3659(02)00207-9. PubMed DOI

Yang X.; Kootala S.; Hilborn J.; A. Ossipov D. Preparation of Hyaluronic Acid Nanoparticles via Hydrophobic Association Assisted Chemical Cross-Linking an Orthogonal Modular Approach. Soft Matter 2011, 7 (16), 7517–7525. 10.1039/C1SM05785E. DOI

Dong X.; Liu C. Preparation and Characterization of Self-Assembled Nanoparticles of Hyaluronic Acid-Deoxycholic Acid Conjugates. J. Nanomater. 2010, 2010, e90693610.1155/2010/906936. DOI

Bushra R.; Ahmad M.; Seidi F.; Qurtulen Song J.; Jin Y.; Xiao H. Polysaccharide-Based Nanoassemblies: From Synthesis Methodologies and Industrial Applications to Future Prospects. Adv. Colloid Interface Sci. 2023, 318, 102953.10.1016/j.cis.2023.102953. PubMed DOI

Kašparová J.; Korecká L.; Bílková Z.; Palarčík J.; Lierová A.; Šinkorová Z.; Česlová L. Preparation of Hyaluronan Nanoparticles Using Different Cross-Linking Strategies. Sci. Pap. Univ. Pardubice, Ser. A 2018, 24 (2018), 49–58.

Stetefeld J.; McKenna S. A.; Patel T. R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8 (4), 409–427. 10.1007/s12551-016-0218-6. PubMed DOI PMC

Modena M. M.; Rühle B.; Burg T. P.; Wuttke S. Nanoparticle Characterization: What to Measure?. Adv. Mater. 2019, 31 (32), 1901556.10.1002/adma.201901556. PubMed DOI

Maguire C. M.; Rösslein M.; Wick P.; Prina-Mello A. Characterisation of Particles in Solution – a Perspective on Light Scattering and Comparative Technologies. Sci. Technol. Adv. Mater 2018, 19 (1), 732–745. 10.1080/14686996.2018.1517587. PubMed DOI PMC

Deiss-Yehiely E.; Brucks S. D.; Boehnke N.; Pickering A. J.; Kiessling L. L.; Hammond P. T. Surface Presentation of Hyaluronic Acid Modulates Nanoparticle–Cell Association. Bioconjugate Chem. 2022, 33 (11), 2065–2075. 10.1021/acs.bioconjchem.2c00412. PubMed DOI PMC

Vecchies F.; Sacco P.; Marsich E.; Cinelli G.; Lopez F.; Donati I. Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates. Polymers 2020, 12, 897.10.3390/polym12040897. PubMed DOI PMC

Antunes J. C.; Oliveira J. M.; Reis R. L.; Soria J. M.; Gómez-Ribelles J. L.; Mano J. F. Novel Poly(L-Lactic Acid)/Hyaluronic Acid Macroporous Hybrid Scaffolds: Characterization and Assessment of Cytotoxicity. J. Biomed. Mater. Res., Part A 2010, 94A (3), 856–869. 10.1002/jbm.a.32753. PubMed DOI

Pan N. C.; Pereira H. C. B.; Vasconcelos A. F. D.; Celligoi M. A. P. C. Improvement Production of Hyaluronic Acid by Streptococcus Zooepidemicus in Sugarcane Molasses. Appl. Biochem. Biotechnol. 2017, 182 (1), 276–293. 10.1007/s12010-016-2326-y. PubMed DOI

Thi-Hiep N.; Hoa D. V.; Toi V. V. Injectable in situ crosslinkable hyaluronan-polyvinyl phosphonic acid hydrogels for bone engineering. J. Biomed. Sci. Eng. 2013, 6 (8), 854–862. 10.4236/jbise.2013.68104. DOI

Holubova L.; Korecka L.; Podzimek S.; Moravcova V.; Rotkova J.; Ehlova T.; Velebny V.; Bilkova Z. Enhanced Multiparametric Hyaluronan Degradation for Production of Molar-Mass-Defined Fragments. Carbohydr. Polym. 2014, 112, 271–276. 10.1016/j.carbpol.2014.05.096. PubMed DOI

Chiesa E.; Greco A.; Riva F.; Dorati R.; Conti B.; Modena T.; Genta I. Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics 2021, 13 (10), 1565.10.3390/pharmaceutics13101565. PubMed DOI PMC

Yao H.; Zhang S.; Guo X.; Li Y.; Ren J.; Zhou H.; Du B.; Zhou J. A Traceable Nanoplatform for Enhanced Chemo-Photodynamic Therapy by Reducing Oxygen Consumption. Nanomedicine 2019, 20, 101978.10.1016/j.nano.2019.03.001. PubMed DOI

Liu R.; Xiao W.; Hu C.; Xie R.; Gao H. Theranostic Size-Reducible and No Donor Conjugated Gold Nanocluster Fabricated Hyaluronic Acid Nanoparticle with Optimal Size for Combinational Treatment of Breast Cancer and Lung Metastasis. J. Controlled Release 2018, 278, 127–139. 10.1016/j.jconrel.2018.04.005. PubMed DOI

Shen Y.; Li W. HA/HSA Co-Modified Erlotinib–Albumin Nanoparticles for Lung Cancer Treatment. Drug Des., Dev. Ther. 2018, 12, 2285–2292. 10.2147/DDDT.S169734. PubMed DOI PMC

Sun B.; Deng C.; Meng F.; Zhang J.; Zhong Z. Robust, Active Tumor-Targeting and Fast Bioresponsive Anticancer Nanotherapeutics Based on Natural Endogenous Materials. Acta Biomater. 2016, 45, 223–233. 10.1016/j.actbio.2016.08.048. PubMed DOI

Cho H.-J.; Yoon I.-S.; Yoon H. Y.; Koo H.; Jin Y.-J.; Ko S.-H.; Shim J.-S.; Kim K.; Kwon I. C.; Kim D.-D. Polyethylene Glycol-Conjugated Hyaluronic Acid-Ceramide Self-Assembled Nanoparticles for Targeted Delivery of Doxorubicin. Biomaterials 2012, 33 (4), 1190–1200. 10.1016/j.biomaterials.2011.10.064. PubMed DOI

Salari N.; Mansouri K.; Valipour E.; Abam F.; Jaymand M.; Rasoulpoor S.; Dokaneheifard S.; Mohammadi M. Hyaluronic Acid-Based Drug Nanocarriers as a Novel Drug Delivery System for Cancer Chemotherapy: A Systematic Review. Daru, J. Pharm. Sci. 2021, 29 (2), 439–447. 10.1007/s40199-021-00416-6. PubMed DOI PMC

Chen Z.; Chen J.; Wu L.; Li W.; Chen J.; Cheng H.; Pan J.; Cai B. Hyaluronic Acid-Coated Bovine Serum Albumin Nanoparticles Loaded with Brucine as Selective Nanovectors for Intra-Articular Injection. Int. J. Nanomed. 2013, 3843.10.2147/IJN.S50721. PubMed DOI PMC

Huang D.; Chen Y.-S.; Rupenthal I. D. Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Mol. Pharmaceutics 2017, 14 (2), 533–545. 10.1021/acs.molpharmaceut.6b01029. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...