Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27380723
PubMed Central
PMC8028967
DOI
10.1111/bpa.12413
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation profiling, SMARCB1/INI1, atypical teratoid/rhabdoid tumor, copy number alterations, tyrosinase,
- MeSH
- dítě MeSH
- gen SMARCB1 nedostatek genetika MeSH
- Kaplanův-Meierův odhad MeSH
- kojenec MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- mutace genetika MeSH
- nádory mozku genetika MeSH
- neparametrická statistika MeSH
- neuroepitelové nádory genetika patologie MeSH
- předškolní dítě MeSH
- rhabdoidní nádor genetika patologie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gen SMARCB1 MeSH
- SMARCB1 protein, human MeSH Prohlížeč
Rhabdoid phenotype and loss of SMARCB1 expression in a brain tumor are characteristic features of atypical teratoid/rhabdoid tumors (ATRT). Rare non-rhabdoid brain tumors showing cribriform growth pattern and SMARCB1 loss have been designated cribriform neuroepithelial tumor (CRINET). Small case series suggest that CRINETs may have a relatively favorable prognosis. However, the long-term outcome is unclear and it remains uncertain whether CRINET represents a distinct entity or a variant of ATRT. Therefore, 10 CRINETs were clinically and molecularly characterized and compared with 10 ATRTs of each of three recently described molecular subgroups (i.e. ATRT-TYR, ATRT-SHH and ATRT-MYC) using Illumina Infinium HumanMethylation450 arrays, FISH, MLPA, and sequencing. Furthermore, outcome was compared to a larger cohort of 27 children with ATRT-TYR. Median age of the 6 boys and 4 girls harboring a CRINET was 20 months. On histopathological examination, all CRINETs demonstrated a cribriform growth pattern and distinct tyrosinase staining. On unsupervised cluster analysis of methylation data, all CRINETs examined exclusively clustered within the ATRT-TYR molecular subgroup. As ATRT-TYR, CRINETs mainly showed large heterozygous 22q deletions (9/10) and SMARCB1 mutations of the other allele. In two patients, SMARCB1 mutations were also present in the germline. Estimated mean overall survival in patients with CRINETs was 125 months (95% confidence interval 100-151 months) as compared to only 53 (33-74) months in patients with ATRTs of the ATRT-TYR subgroup (Log-Rank P < 0.05). In conclusion, CRINET represents a SMARCB1-deficient non-rhabdoid tumor, which shares molecular similarities with the ATRT-TYR subgroup but has distinct histopathological features and favorable long-term outcome.
2nd Department of Pediatrics Semmelweis University Budapest Hungary
Clinical Cooperation Unit Neuropathology German Cancer Research Center Heidelberg Germany
Department of Neuropathology Burdenko Neurosurgical Institute Moscow Russia
Department of Neuropathology University Hospital Heidelberg Heidelberg Germany
Department of Pathology Keimyung University Dongsan Medical Center Daegu Korea
Department of Pediatric Oncology and Hematology University Hospital Heidelberg Heidelberg Germany
Department of Pediatric Oncology Oslo University Hospital Oslo Norway
Division of Molecular Genetics German Cancer Research Center Heidelberg Germany
Division of Pathology The Hospital for Sick Children Toronto Canada
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
German Cancer Consortium Core Center Heidelberg Heidelberg Germany
Institute of Human Genetics University Ulm Ulm Germany
Institute of Neuropathology University Hospital Münster Münster Germany
Swabian Childrens' Cancer Center Childrens' Hospital Augsburg and EU RHAB Registry Augsburg Germany
Zobrazit více v PubMed
Ammerlaan AC, Ararou A, Houben MP, Baas F, Tijssen CC, Teepen JL et al (2008) Long‐term survival and transmission of INI1‐mutation via nonpenetrant males in a family with rhabdoid tumour predisposition syndrome. Br J Cancer 98:474–479. PubMed PMC
Arnold MA, Stallings‐Archer K, Marlin E, Grondin R, Olshefski R, Biegel JA, Pierson CR (2013) Cribriform neuroepithelial tumor arising in the lateral ventricle. Pediatr Dev Pathol 16:301–307. PubMed
Biegel JA, Rorke LB, Packer RJ, Emanuel BS (1990) Monosomy 22 in rhabdoid or atypical tumors of the brain. J Neurosurg 73:710–714. PubMed
Dunham C (2015) Uncommon pediatric tumors of the posterior fossa: pathologic and molecular features. Childs Nerv Syst 31:1729–1737. PubMed
Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA (2011) Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56:7–15. PubMed PMC
Gessi M, Japp AS, Dreschmann V, Zur Muhlen A, Goschzik T, Dorner E, Pietsch T (2015) High‐resolution genomic analysis of cribriform neuroepithelial tumors of the central nervous system. J Neuropathol Exp Neurol 74:970–974. PubMed
Haberler C, Laggner U, Slavc I, Czech T, Ambros IM, Ambros PF et al (2006) Immunohistochemical analysis of INI1 protein in malignant pediatric CNS tumors: lack of INI1 in atypical teratoid/rhabdoid tumors and in a fraction of primitive neuroectodermal tumors without rhabdoid phenotype. Am J Surg Pathol 30:1462–1468. PubMed
Hasselblatt M, Oyen F, Gesk S, Kordes U, Wrede B, Bergmann M et al (2009) Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J Neuropathol Exp Neurol 68:1249–1255. PubMed
Hasselblatt M, Isken S, Linge A, Eikmeier K, Jeibmann A, Oyen F et al (2013) High‐resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer 52:185–190. PubMed
Hulsebos TJ, Kenter S, Verhagen WI, Baas F, Flucke U, Wesseling P (2014) Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis‐associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathol 128:439–448. PubMed
Ibrahim GM, Huang A, Halliday W, Dirks PB, Malkin D, Baskin B et al (2011) Cribriform neuroepithelial tumour: novel clinicopathological, ultrastructural and cytogenetic findings. Acta Neuropathol 122:511–514. PubMed
Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L et al (2009) Genomic analysis using high‐density single nucleotide polymorphism‐based oligonucleotide arrays and multiplex ligation‐dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res 15:1923–1930. PubMed PMC
Johann P, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al (2016) Atypical teratoid/rhabdoid tumor (ATRT) comprises three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29:379–393. PubMed
Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA (2004) Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 28:644–650. PubMed
Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype‐related response to smoothened inhibition. Cancer Cell 25:393–405. PubMed PMC
Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA et al (2012) Molecular subgroups of medulloblastoma: an international meta‐analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484. PubMed PMC
Kordes U, Gesk S, Frühwald MC, Graf N, Leuschner I, Hasselblatt M et al (2010) Clinical and molecular features in patients with atypical teratoid rhabdoid tumor or malignant rhabdoid tumor. Genes Chromosomes Cancer 49:176–181. PubMed
Nijssen PC, Deprez RH, Tijssen CC, Hagemeijer A, Arnoldus EP, Teepen JL et al (1994) Familial anaplastic ependymoma: evidence of loss of chromosome 22 in tumour cells. J Neurol Neurosurg Psychiatry 57:1245–1248. PubMed PMC
Park JY, Kim E, Kim DW, Chang HW, Kim SP (2012) Cribriform neuroepithelial tumor in the third ventricle: a case report and literature review. Neuropathology 32:570–576. PubMed
Patil S, Perry A, Maccollin M, Dong S, Betensky RA, Yeh TH et al (2008) Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 18:517–519. PubMed PMC
Ruland V, Hartung S, Kordes U, Wolff JE, Paulus W, Hasselblatt M (2014) Choroid plexus carcinomas are characterized by complex chromosomal alterations related to patient age and prognosis. Genes Chromosomes Cancer 53:373–380. PubMed
Savard ML, Gilchrist DM (1989) Ependymomas in two sisters and a maternal male cousin with mosaicism with monosomy 22 in tumour. Pediatr Neurosci 15:80–84. PubMed
Swensen JJ, Keyser J, Coffin CM, Biegel JA, Viskochil DH, Williams MS (2009) Familial occurrence of schwannomas and malignant rhabdoid tumour associated with a duplication in SMARCB1. J Med Genet 46:68–72. PubMed PMC
Taylor MD, Gokgoz N, Andrulis IL, Mainprize TG, Drake JM, Rutka JT (2000) Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. Am J Hum Genet 66:1403–1406. PubMed PMC