Synthesis and Physicochemical Characterization of Undecylenic Acid Grafted to Hyaluronan for Encapsulation of Antioxidants and Chemical Crosslinking
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31878337
PubMed Central
PMC7023664
DOI
10.3390/polym12010035
PII: polym12010035
Knihovny.cz E-zdroje
- Klíčová slova
- amphiphiles, crosslinking, esterification, hyaluronan, hydrogels,
- Publikační typ
- časopisecké články MeSH
In this work, a new amphiphilic derivative made of 10-undecylenic acid grafted to hyaluronan was prepared by mixed anhydrides. The reaction conditions were optimized, and the effect of the molecular weight (Mw), reaction time, and the molar ratio of reagents was explored. Using this methodology, a degree of substitution up to 50% can be obtained. The viscosity of the conjugate can be controlled by varying the substitution degree. The physicochemical characterization of the modified hyaluronan was performed by infrared spectroscopy, Nuclear Magnetic Resonance, Size-Exclusion Chromatography combined with Multiangle Laser Light Scattering (SEC-MALLS), and rheology. The low proton motility and self-aggregation of the amphiphilic conjugate produced overestimation of the degree of substitution. Thus, a novel method using proton NMR was developed. Encapsulation of model hydrophobic guest molecules, coenzyme Q10, curcumin, and α-tocopherol into the micellar core was also investigated by solvent evaporation. HA-UDA amphiphiles were also shown to self-assemble into spherical nanostructures (about 300 nm) in water as established by dynamic light scattering. Furthermore, HA-UDA was crosslinked via radical polymerization mediated by ammonium persulphate (APS/TEMED). The cross-linking was also tested by photo-polymerization catalyzed by Irgacure 2959. The presence of the hydrophobic moiety decreases the swelling degree of the prepared hydrogels compared to methacrylated-HA. Here, we report a novel hybrid hyaluronan (HA) hydrogel system of physically encapsulated active compounds and chemical crosslinking for potential applications in drug delivery.
Zobrazit více v PubMed
Dimatteo R., Darling N.J., Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv. Drug Deliv. Rev. 2018;127:167–184. doi: 10.1016/j.addr.2018.03.007. PubMed DOI PMC
Son S.U., Lim J.W., Kang T., Jung J., Lim E.K. Hyaluronan-based nanohydrogels as effective carriers for transdermal delivery of lipophilic agents: Towards transdermal drug administration in neurological disorders. Nanomaterials. 2017;7:427. doi: 10.3390/nano7120427. PubMed DOI PMC
Antunes J., Gaspar V.M., Ferreira L., Monteiro M., Henrique R., Jerónimo C., Mano J.F. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater. 2019;94:392–409. doi: 10.1016/j.actbio.2019.06.012. PubMed DOI
Pekař M. Hydrogels with Micellar Hydrophobic (Nano)Domains. Front. Mater. 2015;1:35. doi: 10.3389/fmats.2014.00035. DOI
Okay O. Semicrystalline physical hydrogels with shape-memory and self-healing properties. J. Mater. Chem. B. 2019;7:1581–1596. doi: 10.1039/C8TB02767F. PubMed DOI
Burdick J.A., Chung C., Jia X., Randolph M.A., Langer R. Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules. 2005;6:386–391. doi: 10.1021/bm049508a. PubMed DOI PMC
Bencherif S.A., Srinivasan A., Horkay F., Hollinger J.O., Matyjaszewski K., Washburn N.R. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties. Biomaterials. 2008;29:1739–1749. doi: 10.1016/j.biomaterials.2007.11.047. PubMed DOI
Poldervaart M.T., Goversen B., de Ruijter M., Abbadessa A., Melchels F.P.W., Oner F.C., Dhert W.J., Vermonden T., Alblas J. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE. 2017;12:e0177628. doi: 10.1371/journal.pone.0177628. PubMed DOI PMC
Larrañeta E., Henry M., Irwin N.J., Trotter J., Perminova A.A., Donnelly R.F. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym. 2018;181:1194–1205. doi: 10.1016/j.carbpol.2017.12.015. PubMed DOI PMC
Lee S.Y., Cho H.J. Mitochondria Targeting and Destabilizing Hyaluronic Acid Derivative-Based Nanoparticles for the Delivery of Lapatinib to Triple-Negative Breast Cancer. Biomacromolecules. 2019;20:835–845. doi: 10.1021/acs.biomac.8b01449. PubMed DOI
Zhang X., Liang N., Gong X., Kawashima Y., Cui F., Sun S. Tumor-targeting micelles based on folic acid and alpha-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Colloids Surf. B Biointerfaces. 2019;177:11–18. doi: 10.1016/j.colsurfb.2019.01.044. PubMed DOI
Achbergerová E., Šmejkalová D., Huerta-Angeles G., Souček K., Hermannová M., Vágnerová H., Vícha R., Velebný V. In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye. Carbohydr. Polym. 2018;198:339–347. doi: 10.1016/j.carbpol.2018.06.082. PubMed DOI
Bongiovì F., Fiorica C., Palumbo F.S., Di Prima G., Giammona G., Pitarresi G. Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. Mol. Pharm. 2018;15:5031–5045. doi: 10.1021/acs.molpharmaceut.8b00620. PubMed DOI
Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/j.carbpol.2016.09.013. PubMed DOI
Huerta-Angeles G., Brandejsová M., Kulhánek J., Pavlík V., Šmejkalová D., Vágnerová H., Velebný V. Linolenic acid grafted hyaluronan: Process development, structural characterization, biological assessing, and stability studies. Carbohydr. Polym. 2016;152:815–824. doi: 10.1016/j.carbpol.2016.07.030. PubMed DOI
Šmejkalová D., Nešporova K., Huerta-Angeles G., Syrovatka J., Jirák D., Gálisová A., Velebny V. Selective In Vitro Anticancer Effect of Superparamagnetic Iron Oxide Nanoparticles Loaded in Hyaluronan Polymeric Micelles. Biomacromolecules. 2014;15:4012–4020. doi: 10.1021/bm501065q. PubMed DOI
Jiang L., Wang W., He Q., Wu Y., Lu Z., Sun J., Liu Z., Shao Y., Wang A. Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas. Sci. Rep. 2017;7:11277. doi: 10.1038/s41598-017-11842-5. PubMed DOI PMC
Laskar K., Faisal S.M., Rauf A., Ahmed A., Owais M. Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr. Polym. 2017;166:14–23. doi: 10.1016/j.carbpol.2017.02.082. PubMed DOI
Machado T.O., Cardoso P.B., Feuser P.E., Sayer C., Araújo P.H.H. Thiol-ene miniemulsion polymerization of a biobased monomer for biomedical applications. Colloids Surf. B Biointerfaces. 2017;159:509–517. doi: 10.1016/j.colsurfb.2017.07.043. PubMed DOI
Meng X., Roy Choudhury S., Edgar K.J. Multifunctional cellulose esters by olefin cross-metathesis and thiol-Michael addition. Polym. Chem. 2016;7:3848–3856. doi: 10.1039/C6PY00539J. DOI
Dong Y., Matson J.B., Edgar K.J. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review. Biomacromolecules. 2017;18:1661–1676. doi: 10.1021/acs.biomac.7b00364. PubMed DOI
Chung C., Chung K., Kim D.Y., Lee S.H., Kim J.S., Rhee Y.H. Preparation and biocompatibility of crosslinked poly(3-hydroxyundecenoate) Int. J. Biol. Macromol. 2018;107:276–282. doi: 10.1016/j.ijbiomac.2017.08.170. PubMed DOI
Lu Y., Zhang E., Yang J., Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11:4985–4998. doi: 10.1007/s12274-018-2152-3. PubMed DOI PMC
Vištejnová L., Dvořakova J., Hasová M., Muthný T., Velebný V., Souček K., Kubala L. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuro Endocrinol. Lett. 2009;30:121–127. PubMed
Matelová A., Huerta-Angeles G., Šmejkalová D., Brůnová Z., Dušek J., Vícha R., Velebný V. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles. Carbohydr. Polym. 2016;151:1175–1183. doi: 10.1016/j.carbpol.2016.06.085. PubMed DOI
Cross M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965;20:417–437. doi: 10.1016/0095-8522(65)90022-X. DOI
Hiemstra C., Zhou W., Zhong Z., Wouters M., Feijen J. Rapidly in Situ Forming Biodegradable Robust Hydrogels by Combining Stereocomplexation and Photopolymerization. J. Am. Chem. Soc. 2007;129:9918–9926. doi: 10.1021/ja072113p. PubMed DOI
Chmelar J., Kotzianova A., Hermannova M., Sulakova R., Smejkalova D., Kulhanek J., Velebný V. Evaluating the degree of substitution of water-insoluble acyl derivatives of hyaluronan using Raman spectroscopy: Method development and comparison with gas chromatography and 1H NMR. Anal. Methods. 2017;9:232–239. doi: 10.1039/C6AY03067J. DOI
Ret D., Steiner G., Gentilini S., Knaus S. Exact determination of the degree of substitution of high molar mass hyaluronan by controlling the conformation in solution. Carbohydr. Polym. 2019;204:124–130. doi: 10.1016/j.carbpol.2018.10.003. PubMed DOI
Simon S., Dugast J.Y., Le Cerf D., Picton L., Muller G. Amphiphilic polysaccharides. Evidence for a competition between intra and intermolecular associations in dilute system. Polymer. 2003;44:7917–7924.
Knott A., Achterberg V., Smuda C., Mielke H., Sperling G., Dunckelmann K., Vogelsang A., Krüger A., Schwengler H., Behtash M., et al. Topical treatment with coenzyme Q10-containing formulas improves skin’s Q10 level and provides antioxidative effects. Biofactors. 2015;41:383–390. doi: 10.1002/biof.1239. PubMed DOI PMC
Hernández-Camacho J.D., Bernier M., López-Lluch G., Navas P. Coenzyme Q(10) Supplementation in Aging and Disease. Front. Physiol. 2018;9:44. doi: 10.3389/fphys.2018.00044. PubMed DOI PMC
Petrou A.L., Petrou P.L., Ntanos T., Liapis A. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data. Antioxidants. 2018;7:35. doi: 10.3390/antiox7030035. PubMed DOI PMC
Zhang Y., Xia Q., Li Y., He Z., Li Z., Guo T., Wu Z., Feng N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics. 2019;9:48–64. doi: 10.7150/thno.29715. PubMed DOI PMC
Aguirre G., Khoukh A., Taboada P., Chougrani K., Alard V., Billon L. Smart self-assembled microgel films as encapsulating carriers for UV-absorbing molecules. Polym. Chem. 2018;9:1155–1159. doi: 10.1039/C8PY00146D. DOI
Le L.V., Mohindra P., Fang Q., Sievers R.E., Mkrtschjan M.A., Solis C., Safranek C.W., Russell B., Lee R.J., Desai T.A. Injectable hyaluronic acid based microrods provide local micromechanical and biochemical cues to attenuate cardiac fibrosis after myocardial infarction. Biomaterials. 2018;169:11–21. doi: 10.1016/j.biomaterials.2018.03.042. PubMed DOI PMC
Huerta-Ángeles G., Nešporová K., Ambrožová G., Kubala L., Velebný V. An Effective Translation: The Development of Hyaluronan-Based Medical Products from the Physicochemical, and Preclinical Aspects. Front. Bioeng. Biotechnol. 2018;6:62. doi: 10.3389/fbioe.2018.00062. PubMed DOI PMC
Duan S., Zhu W., Yu L., Ding J. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel. Chin. Sci. Bull. 2005;50:1093–1096. doi: 10.1360/982004-459. DOI
Char C., Padilla C., Campos V., Pepczynska M., Díaz-Calderón P., Enrione J. Characterization and Testing of a Novel Sprayable Crosslinked Edible Coating Based on Salmon Gelatin. Coatings. 2019;9:595. doi: 10.3390/coatings9100595. DOI