Insight into the Lubrication and Adhesion Properties of Hyaluronan for Ocular Drug Delivery
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34680064
PubMed Central
PMC8533502
DOI
10.3390/biom11101431
PII: biom11101431
Knihovny.cz E-zdroje
- Klíčová slova
- biotribology, eye drops, friction, hyaluronan, lubrication,
- MeSH
- adhezivita MeSH
- buněčné linie keratinocytů HaCaT MeSH
- filtrace MeSH
- hlen účinky léků MeSH
- kyselina hyaluronová chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- lubrikace * MeSH
- nefelometrie a turbidimetrie MeSH
- oči účinky léků MeSH
- oční roztoky farmakologie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- reologie MeSH
- sterilizace MeSH
- systémy cílené aplikace léků * MeSH
- tření MeSH
- viskozita MeSH
- vysoušení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina hyaluronová MeSH
- oční roztoky MeSH
Hyaluronan (HA) is widely used for eye drops as lubricant to counteract dry eye disease. High and low molecular weight HA are currently used in ophthalmology. However, a large portion of the current literature on friction and lubrication addresses articular (joint) cartilage. Therefore, eye drops compositions based on HA and its derivatized forms are extensively characterized providing data on the tribological and mucoadhesive properties. The physiochemical properties are investigated in buffers used commonly in eye drops formulations. The tribological investigation reveals that amphiphilic HA-C12 decreases the friction coefficient. At the same time, the combination of trehalose/HA or HAC12 enhances up to eighty-fold the mucoadhesiveness. Thus, it is predicted a prolonged residence time on the surface of the eye. The incorporation of trehalose enhances the protection of human keratinocytes (HaCaT) cells, as demonstrated in an in-vitro cell-desiccation model. The presence of trehalose increases the friction coefficient. Medium molecular weight HA shows significantly lower friction coefficient than high molecular weight HA. This research represents a first, wide array of features of diverse HA forms for eye drops contributing to increase the knowledge of these preparations. The results here presented also provide valuable information for the design of highly performing HA-formulations addressing specific needs before preclinic.
Zobrazit více v PubMed
Stapleton F., Alves M., Bunya V.Y., Jalbert I., Lekhanont K., Malet F., Na K.-S., Schaumberg D., Uchino M., Vehof J., et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017;15:334–365. doi: 10.1016/j.jtos.2017.05.003. PubMed DOI
Markoulli M., Kolanu S. Contact lens wear and dry eyes: Challenges and solutions. Clin. Optom. 2017;9:41–48. doi: 10.2147/OPTO.S111130. PubMed DOI PMC
Kathuria A., Shamloo K., Jhanji V., Sharma A. Categorization of Marketed Artificial Tear Formulations Based on Their Ingredients: A Rational Approach for Their Use. J. Clin. Med. 2021;10:1289. doi: 10.3390/jcm10061289. PubMed DOI PMC
Tavianatou A.G., Caon I., Franchi M., Piperigkou Z., Galesso D., Karamanos N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–2908. doi: 10.1111/febs.14777. PubMed DOI
Müller-Lierheim W.G.K. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics. 2020;10:511. doi: 10.3390/diagnostics10080511. PubMed DOI PMC
Huerta-Ángeles G., Nešporová K. Hyaluronan and its derivatives for ophthalmology: Recent advances and future perspectives. Carbohydr. Polym. 2021;259:117697. doi: 10.1016/j.carbpol.2021.117697. PubMed DOI
Aragona P., Simmons P.A., Wang H., Wang T. Physicochemical Properties of Hyaluronic Acid-Based Lubricant Eye Drops. Transl. Vis. Sci. Technol. 2019;8:2. doi: 10.1167/tvst.8.6.2. PubMed DOI PMC
Morrison S., Sullivan D.A., Sullivan B.D., Sheardown H., Schmidt T.A. Dose-Dependent and Synergistic Effects of Proteoglycan 4 on Boundary Lubrication at a Human Cornea–Polydimethylsiloxane Biointerface. Eye Contact Lens Sci. Clin. Pract. 2012;38:27–35. doi: 10.1097/ICL.0b013e31823f7041. PubMed DOI
Samsom M., Iwabuchi Y., Sheardown H., Schmidt T.A. Proteoglycan 4 and hyaluronan as boundary lubricants for model contact lens hydrogels. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;106:1329–1338. doi: 10.1002/jbm.b.33895. PubMed DOI
Sterner O., Karageorgaki C., Zürcher M., Zürcher S., Scales C.W., Fadli Z., Spencer N.D., Tosatti S.G.P. Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS Appl. Mater. Interfaces. 2017;9:20150–20160. doi: 10.1021/acsami.6b16425. PubMed DOI
Yamasaki K., Drolle E., Nakagawa H., Hisamura R., Ngo W., Jones L. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Contact Lens Anterior Eye. 2021;44:101334. doi: 10.1016/j.clae.2020.05.003. PubMed DOI
Liu Z., Lin W., Fan Y., Kampf N., Wang Y., Klein J. Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary-layers. Biomacromolecules. 2020;21:4345–4354. doi: 10.1021/acs.biomac.0c01151. PubMed DOI PMC
Marian M., Shah R., Gashi B., Zhang S., Bhavnani K., Wartzack S., Rosenkranz A. Exploring the Lubrication Mechanisms of Synovial Fluids for Joint Longevity—A Perspective. Colloids Surf. B Biointerfaces. 2021;206:111926. doi: 10.1016/j.colsurfb.2021.111926. PubMed DOI
Sforza C., Rango M., Galante D., Bresolin N., Ferrario V. Spontaneous blinking in healthy persons: An optoelectronic study of eyelid motion. Ophthalmic Physiol. Opt. 2008;28:345–353. doi: 10.1111/j.1475-1313.2008.00577.x. PubMed DOI
Winkeljann B., Boettcher K., Balzer B.N., Lieleg O. Mucin Coatings Prevent Tissue Damage at the Cornea-Contact Lens Interface. Adv. Mater. Interfaces. 2017;4:1700186. doi: 10.1002/admi.201700186. DOI
Kutálková E., Hrnčiřík J., Witasek R., Ingr M., Huerta-Ángeles G., Hermannová M., Velebný V. The rate and evenness of the substitutions on hyaluronan grafted by dodecanoic acid influenced by the mixed-solvent composition. Int. J. Biol. Macromol. 2021;189:826–836. doi: 10.1016/j.ijbiomac.2021.08.137. PubMed DOI
Huerta-Ángeles G., Ondreáš F., Brandejsová M., Kopecká K., Vagnerová H., Kulhánek J., Drmota T. Formulation of hyaluronan grafted with dodecanoic acid as a potential ophthalmic treatment. Carbohydr. Polym. 2020;246:116578. doi: 10.1016/j.carbpol.2020.116578. PubMed DOI
Podzimek S., Hermannova M., Bilerova H., Bezakova Z., Velebny V. Solution properties of hyaluronic acid and comparison of SEC-MALS-VIS data with off-line capillary viscometry. J. Appl. Polym. Sci. 2010;116:3013–3020. doi: 10.1002/app.31834. DOI
Čožíková D., Šílová T., Moravcová V., Šmejkalová D., Pepeliaev S., Velebný V., Hermannová M. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr. Polym. 2017;160:134–142. doi: 10.1016/j.carbpol.2016.12.045. PubMed DOI
Shih P.-J., Huang C.-J., Huang T.-H., Lin H.-C., Yen J.-Y., Wang I.-J., Cao H.-J., Shih W.-P., Dai C.-A. Estimation of the Corneal Young’s ModulusIn VivoBased on a Fluid-Filled Spherical-Shell Model with Scheimpflug Imaging. J. Ophthalmol. 2017;2017:1–11. doi: 10.1155/2017/5410143. PubMed DOI PMC
Pult H., Tosatti S.G., Spencer N.D., Asfour J.-M., Ebenhoch M., Murphy P. Spontaneous Blinking from a Tribological Viewpoint. Ocul. Surf. 2015;13:236–249. doi: 10.1016/j.jtos.2014.12.004. PubMed DOI
Carvalho A., Vilhena L., Ramalho A. Study of the frictional behavior of soft contact lenses by an innovative method. Tribol. Int. 2021;153:106633. doi: 10.1016/j.triboint.2020.106633. DOI
Hermans K., Plas D.V.D., Schreurs E., Weyenberg W., Ludwig A. Cytotoxicity and anti-inflammatory activity of cyclosporine A loaded PLGA nanoparticles for ocular use. Die Pharm. 2014;69:32–37. PubMed
Tømmeraas K., Mellergaard M., Malle B.M., Skagerlind P. New amphiphilic hyaluronan derivatives based on modification with alkenyl and aryl succinic anhydrides. Carbohydr. Polym. 2011;85:173–179. doi: 10.1016/j.carbpol.2011.02.011. DOI
Mun J., Mok J.W., Jeong S., Cho S., Joo C.-K., Hahn S.K. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Adv. 2019;9:16578–16585. doi: 10.1039/C9RA02858G. PubMed DOI PMC
Tram N., Swindle-Reilly K.E. Rheological Properties and Age-Related Changes of the Human Vitreous Humor. Front. Bioeng. Biotechnol. 2018;6:199. doi: 10.3389/fbioe.2018.00199. PubMed DOI PMC
Moreddu R., Vigolo D., Yetisen A.K. Contact Lens Technology: From Fundamentals to Applications. Adv. Health Mater. 2019;8:e1900368. doi: 10.1002/adhm.201900368. PubMed DOI
Nichols J.J., Willcox M.D.P., Bron A.J., Belmonte C., Ciolino J.B., Craig J.P., Dogru M., Foulks G.N., Jones L., Nelson J.D., et al. The TFOS International Workshop on Contact Lens Discomfort: Executive Summary. Investig. Opthalmol. Vis. Sci. 2013;54:TFOS7–TFOS13. doi: 10.1167/iovs.13-13212. PubMed DOI PMC
Ubels J., Clousing D., Van Haitsma T., Hong B.-S., Stauffer P., Asgharian B., Meadows D. Pre-clinical investigation of the efficacy of an artificial tear solution containing hydroxypropyl-guar as a gelling agent. Curr. Eye Res. 2004;28:437–444. doi: 10.1080/02713680490503787. PubMed DOI
Doan S., Bremond-Gignac D., Chiambaretta F. Comparison of the effect of a hyaluronate–trehalose solution to hyaluronate alone on Ocular Surface Disease Index in patients with moderate to severe dry eye disease. Curr. Med. Res. Opin. 2018;34:1373–1376. doi: 10.1080/03007995.2018.1434496. PubMed DOI
Chiambaretta F., Doan S., Labetoulle M., Rocher N., El Fekih L., Messaoud R., Khairallah M., Baudouin C., for the HA-trehalose Study Group A Randomized, Controlled Study of the Efficacy and Safety of a New Eyedrop Formulation for Moderate to Severe Dry Eye Syndrome. Eur. J. Ophthalmol. 2017;27:1–9. doi: 10.5301/ejo.5000836. PubMed DOI
Kern J.R., Perry S.S., Rex J., Rudy A. Surface friction modification of lotrafilcon B contact lenses by commercial drops. Investig. Ophthalmol. Vis. Sci. 2016;57:1464.
Cohen S., Martin A., Sall K. Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose. Clin. Ophthalmol. 2013;8:157–164. doi: 10.2147/OPTH.S53822. PubMed DOI PMC
Albarkah Y.A., Green R.J., Khutoryanskiy V.V. Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Water-Soluble Polymers. Macromol. Biosci. 2015;15:1546–1553. doi: 10.1002/mabi.201500158. PubMed DOI
Rossi S., Ferrari F., Bonferoni M.C., Caramella C. Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. Eur. J. Pharm. Sci. 2000;10:251–257. doi: 10.1016/S0928-0987(00)00065-8. PubMed DOI
Salzillo R., Schiraldi C., Corsuto L., D’Agostino A., Filosa R., De Rosa M., La Gatta A. Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 2016;153:275–283. doi: 10.1016/j.carbpol.2016.07.106. PubMed DOI
Grassiri B., Zambito Y., Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv. Colloid Interface Sci. 2021;288:102342. doi: 10.1016/j.cis.2020.102342. PubMed DOI
Schömig V.J., Käsdorf B.T., Scholz C., Bidmon K., Lieleg O., Berensmeier S. An optimized purification process for porcine gastric mucin with preservation of its native functional properties. RSC Adv. 2016;6:44932–44943. doi: 10.1039/C6RA07424C. DOI
Caretti L., Valerio A.L.G., Piermarocchi R., Badin G., Verzola G., Masarà F., Scalora T., Monterosso C. Efficacy of carbomer sodium hyaluronate trehalose vs hyaluronic acid to improve tear film instability and ocular surface discomfort after cataract surgery. Clin. Ophthalmol. 2019;13:1157–1163. doi: 10.2147/OPTH.S208256. PubMed DOI PMC
Zheng X., Goto T., Shiraishi A., Ohashi Y. In Vitro Efficacy of Ocular Surface Lubricants Against Dehydration. Cornea. 2013;32:1260–1264. doi: 10.1097/ICO.0b013e31829cfd44. PubMed DOI
Huerta-Ángeles G., Brandejsová M., Kopecká K., Ondreáš F., Medek T., Židek O., Kulhánek J., Vagnerová H., Velebný V. Synthesis and Physicochemical Characterization of Undecylenic Acid Grafted to Hyaluronan for Encapsulation of Antioxidants and Chemical Crosslinking. Polymers. 2019;12:35. doi: 10.3390/polym12010035. PubMed DOI PMC
Irimia T., Ghica M.V., Popa L., Anuţa V., Arsene A.-L., Dinu-Pîrvu C.-E. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers. 2018;10:1221. doi: 10.3390/polym10111221. PubMed DOI PMC