Insight into the Lubrication and Adhesion Properties of Hyaluronan for Ocular Drug Delivery

. 2021 Sep 30 ; 11 (10) : . [epub] 20210930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34680064

Hyaluronan (HA) is widely used for eye drops as lubricant to counteract dry eye disease. High and low molecular weight HA are currently used in ophthalmology. However, a large portion of the current literature on friction and lubrication addresses articular (joint) cartilage. Therefore, eye drops compositions based on HA and its derivatized forms are extensively characterized providing data on the tribological and mucoadhesive properties. The physiochemical properties are investigated in buffers used commonly in eye drops formulations. The tribological investigation reveals that amphiphilic HA-C12 decreases the friction coefficient. At the same time, the combination of trehalose/HA or HAC12 enhances up to eighty-fold the mucoadhesiveness. Thus, it is predicted a prolonged residence time on the surface of the eye. The incorporation of trehalose enhances the protection of human keratinocytes (HaCaT) cells, as demonstrated in an in-vitro cell-desiccation model. The presence of trehalose increases the friction coefficient. Medium molecular weight HA shows significantly lower friction coefficient than high molecular weight HA. This research represents a first, wide array of features of diverse HA forms for eye drops contributing to increase the knowledge of these preparations. The results here presented also provide valuable information for the design of highly performing HA-formulations addressing specific needs before preclinic.

Zobrazit více v PubMed

Stapleton F., Alves M., Bunya V.Y., Jalbert I., Lekhanont K., Malet F., Na K.-S., Schaumberg D., Uchino M., Vehof J., et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017;15:334–365. doi: 10.1016/j.jtos.2017.05.003. PubMed DOI

Markoulli M., Kolanu S. Contact lens wear and dry eyes: Challenges and solutions. Clin. Optom. 2017;9:41–48. doi: 10.2147/OPTO.S111130. PubMed DOI PMC

Kathuria A., Shamloo K., Jhanji V., Sharma A. Categorization of Marketed Artificial Tear Formulations Based on Their Ingredients: A Rational Approach for Their Use. J. Clin. Med. 2021;10:1289. doi: 10.3390/jcm10061289. PubMed DOI PMC

Tavianatou A.G., Caon I., Franchi M., Piperigkou Z., Galesso D., Karamanos N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–2908. doi: 10.1111/febs.14777. PubMed DOI

Müller-Lierheim W.G.K. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics. 2020;10:511. doi: 10.3390/diagnostics10080511. PubMed DOI PMC

Huerta-Ángeles G., Nešporová K. Hyaluronan and its derivatives for ophthalmology: Recent advances and future perspectives. Carbohydr. Polym. 2021;259:117697. doi: 10.1016/j.carbpol.2021.117697. PubMed DOI

Aragona P., Simmons P.A., Wang H., Wang T. Physicochemical Properties of Hyaluronic Acid-Based Lubricant Eye Drops. Transl. Vis. Sci. Technol. 2019;8:2. doi: 10.1167/tvst.8.6.2. PubMed DOI PMC

Morrison S., Sullivan D.A., Sullivan B.D., Sheardown H., Schmidt T.A. Dose-Dependent and Synergistic Effects of Proteoglycan 4 on Boundary Lubrication at a Human Cornea–Polydimethylsiloxane Biointerface. Eye Contact Lens Sci. Clin. Pract. 2012;38:27–35. doi: 10.1097/ICL.0b013e31823f7041. PubMed DOI

Samsom M., Iwabuchi Y., Sheardown H., Schmidt T.A. Proteoglycan 4 and hyaluronan as boundary lubricants for model contact lens hydrogels. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;106:1329–1338. doi: 10.1002/jbm.b.33895. PubMed DOI

Sterner O., Karageorgaki C., Zürcher M., Zürcher S., Scales C.W., Fadli Z., Spencer N.D., Tosatti S.G.P. Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS Appl. Mater. Interfaces. 2017;9:20150–20160. doi: 10.1021/acsami.6b16425. PubMed DOI

Yamasaki K., Drolle E., Nakagawa H., Hisamura R., Ngo W., Jones L. Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Contact Lens Anterior Eye. 2021;44:101334. doi: 10.1016/j.clae.2020.05.003. PubMed DOI

Liu Z., Lin W., Fan Y., Kampf N., Wang Y., Klein J. Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary-layers. Biomacromolecules. 2020;21:4345–4354. doi: 10.1021/acs.biomac.0c01151. PubMed DOI PMC

Marian M., Shah R., Gashi B., Zhang S., Bhavnani K., Wartzack S., Rosenkranz A. Exploring the Lubrication Mechanisms of Synovial Fluids for Joint Longevity—A Perspective. Colloids Surf. B Biointerfaces. 2021;206:111926. doi: 10.1016/j.colsurfb.2021.111926. PubMed DOI

Sforza C., Rango M., Galante D., Bresolin N., Ferrario V. Spontaneous blinking in healthy persons: An optoelectronic study of eyelid motion. Ophthalmic Physiol. Opt. 2008;28:345–353. doi: 10.1111/j.1475-1313.2008.00577.x. PubMed DOI

Winkeljann B., Boettcher K., Balzer B.N., Lieleg O. Mucin Coatings Prevent Tissue Damage at the Cornea-Contact Lens Interface. Adv. Mater. Interfaces. 2017;4:1700186. doi: 10.1002/admi.201700186. DOI

Kutálková E., Hrnčiřík J., Witasek R., Ingr M., Huerta-Ángeles G., Hermannová M., Velebný V. The rate and evenness of the substitutions on hyaluronan grafted by dodecanoic acid influenced by the mixed-solvent composition. Int. J. Biol. Macromol. 2021;189:826–836. doi: 10.1016/j.ijbiomac.2021.08.137. PubMed DOI

Huerta-Ángeles G., Ondreáš F., Brandejsová M., Kopecká K., Vagnerová H., Kulhánek J., Drmota T. Formulation of hyaluronan grafted with dodecanoic acid as a potential ophthalmic treatment. Carbohydr. Polym. 2020;246:116578. doi: 10.1016/j.carbpol.2020.116578. PubMed DOI

Podzimek S., Hermannova M., Bilerova H., Bezakova Z., Velebny V. Solution properties of hyaluronic acid and comparison of SEC-MALS-VIS data with off-line capillary viscometry. J. Appl. Polym. Sci. 2010;116:3013–3020. doi: 10.1002/app.31834. DOI

Čožíková D., Šílová T., Moravcová V., Šmejkalová D., Pepeliaev S., Velebný V., Hermannová M. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr. Polym. 2017;160:134–142. doi: 10.1016/j.carbpol.2016.12.045. PubMed DOI

Shih P.-J., Huang C.-J., Huang T.-H., Lin H.-C., Yen J.-Y., Wang I.-J., Cao H.-J., Shih W.-P., Dai C.-A. Estimation of the Corneal Young’s ModulusIn VivoBased on a Fluid-Filled Spherical-Shell Model with Scheimpflug Imaging. J. Ophthalmol. 2017;2017:1–11. doi: 10.1155/2017/5410143. PubMed DOI PMC

Pult H., Tosatti S.G., Spencer N.D., Asfour J.-M., Ebenhoch M., Murphy P. Spontaneous Blinking from a Tribological Viewpoint. Ocul. Surf. 2015;13:236–249. doi: 10.1016/j.jtos.2014.12.004. PubMed DOI

Carvalho A., Vilhena L., Ramalho A. Study of the frictional behavior of soft contact lenses by an innovative method. Tribol. Int. 2021;153:106633. doi: 10.1016/j.triboint.2020.106633. DOI

Hermans K., Plas D.V.D., Schreurs E., Weyenberg W., Ludwig A. Cytotoxicity and anti-inflammatory activity of cyclosporine A loaded PLGA nanoparticles for ocular use. Die Pharm. 2014;69:32–37. PubMed

Tømmeraas K., Mellergaard M., Malle B.M., Skagerlind P. New amphiphilic hyaluronan derivatives based on modification with alkenyl and aryl succinic anhydrides. Carbohydr. Polym. 2011;85:173–179. doi: 10.1016/j.carbpol.2011.02.011. DOI

Mun J., Mok J.W., Jeong S., Cho S., Joo C.-K., Hahn S.K. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Adv. 2019;9:16578–16585. doi: 10.1039/C9RA02858G. PubMed DOI PMC

Tram N., Swindle-Reilly K.E. Rheological Properties and Age-Related Changes of the Human Vitreous Humor. Front. Bioeng. Biotechnol. 2018;6:199. doi: 10.3389/fbioe.2018.00199. PubMed DOI PMC

Moreddu R., Vigolo D., Yetisen A.K. Contact Lens Technology: From Fundamentals to Applications. Adv. Health Mater. 2019;8:e1900368. doi: 10.1002/adhm.201900368. PubMed DOI

Nichols J.J., Willcox M.D.P., Bron A.J., Belmonte C., Ciolino J.B., Craig J.P., Dogru M., Foulks G.N., Jones L., Nelson J.D., et al. The TFOS International Workshop on Contact Lens Discomfort: Executive Summary. Investig. Opthalmol. Vis. Sci. 2013;54:TFOS7–TFOS13. doi: 10.1167/iovs.13-13212. PubMed DOI PMC

Ubels J., Clousing D., Van Haitsma T., Hong B.-S., Stauffer P., Asgharian B., Meadows D. Pre-clinical investigation of the efficacy of an artificial tear solution containing hydroxypropyl-guar as a gelling agent. Curr. Eye Res. 2004;28:437–444. doi: 10.1080/02713680490503787. PubMed DOI

Doan S., Bremond-Gignac D., Chiambaretta F. Comparison of the effect of a hyaluronate–trehalose solution to hyaluronate alone on Ocular Surface Disease Index in patients with moderate to severe dry eye disease. Curr. Med. Res. Opin. 2018;34:1373–1376. doi: 10.1080/03007995.2018.1434496. PubMed DOI

Chiambaretta F., Doan S., Labetoulle M., Rocher N., El Fekih L., Messaoud R., Khairallah M., Baudouin C., for the HA-trehalose Study Group A Randomized, Controlled Study of the Efficacy and Safety of a New Eyedrop Formulation for Moderate to Severe Dry Eye Syndrome. Eur. J. Ophthalmol. 2017;27:1–9. doi: 10.5301/ejo.5000836. PubMed DOI

Kern J.R., Perry S.S., Rex J., Rudy A. Surface friction modification of lotrafilcon B contact lenses by commercial drops. Investig. Ophthalmol. Vis. Sci. 2016;57:1464.

Cohen S., Martin A., Sall K. Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose. Clin. Ophthalmol. 2013;8:157–164. doi: 10.2147/OPTH.S53822. PubMed DOI PMC

Albarkah Y.A., Green R.J., Khutoryanskiy V.V. Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Water-Soluble Polymers. Macromol. Biosci. 2015;15:1546–1553. doi: 10.1002/mabi.201500158. PubMed DOI

Rossi S., Ferrari F., Bonferoni M.C., Caramella C. Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. Eur. J. Pharm. Sci. 2000;10:251–257. doi: 10.1016/S0928-0987(00)00065-8. PubMed DOI

Salzillo R., Schiraldi C., Corsuto L., D’Agostino A., Filosa R., De Rosa M., La Gatta A. Optimization of hyaluronan-based eye drop formulations. Carbohydr. Polym. 2016;153:275–283. doi: 10.1016/j.carbpol.2016.07.106. PubMed DOI

Grassiri B., Zambito Y., Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv. Colloid Interface Sci. 2021;288:102342. doi: 10.1016/j.cis.2020.102342. PubMed DOI

Schömig V.J., Käsdorf B.T., Scholz C., Bidmon K., Lieleg O., Berensmeier S. An optimized purification process for porcine gastric mucin with preservation of its native functional properties. RSC Adv. 2016;6:44932–44943. doi: 10.1039/C6RA07424C. DOI

Caretti L., Valerio A.L.G., Piermarocchi R., Badin G., Verzola G., Masarà F., Scalora T., Monterosso C. Efficacy of carbomer sodium hyaluronate trehalose vs hyaluronic acid to improve tear film instability and ocular surface discomfort after cataract surgery. Clin. Ophthalmol. 2019;13:1157–1163. doi: 10.2147/OPTH.S208256. PubMed DOI PMC

Zheng X., Goto T., Shiraishi A., Ohashi Y. In Vitro Efficacy of Ocular Surface Lubricants Against Dehydration. Cornea. 2013;32:1260–1264. doi: 10.1097/ICO.0b013e31829cfd44. PubMed DOI

Huerta-Ángeles G., Brandejsová M., Kopecká K., Ondreáš F., Medek T., Židek O., Kulhánek J., Vagnerová H., Velebný V. Synthesis and Physicochemical Characterization of Undecylenic Acid Grafted to Hyaluronan for Encapsulation of Antioxidants and Chemical Crosslinking. Polymers. 2019;12:35. doi: 10.3390/polym12010035. PubMed DOI PMC

Irimia T., Ghica M.V., Popa L., Anuţa V., Arsene A.-L., Dinu-Pîrvu C.-E. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers. 2018;10:1221. doi: 10.3390/polym10111221. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Editorial of Special Issue "Hyaluronic Acid in Human Medicine"

. 2022 Oct 17 ; 12 (10) : . [epub] 20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace