Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons

. 2022 Jul 04 ; 15 (7) : . [epub] 20220704

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35890127

Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.

Zobrazit více v PubMed

Rachel H.W., Christopher A.B. Rodent genetic models of Ah receptor. Drug Metab. Rew. 2021;53:350–374. doi: 10.1080/03602532.2021.1955916. PubMed DOI PMC

Gassmann K., Abel J., Bothe H. Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ. Health Perspect. 2010;118:1571–1577. doi: 10.1289/ehp.0901545. PubMed DOI PMC

Klocke C., Lein P.J. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Dev. Neurotox. Int. J. Mol. Sci. 2020;21:1013. doi: 10.3390/ijms21031013. PubMed DOI PMC

Davidsen N., Lauvås A.J., Myhre O., Ropsta E., Carpi D., Gyves E.M., Berntsen H.F., Dirven H., Paulsen R.E., Bal-Price A., et al. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod. Toxicol. 2021;100:17–34. doi: 10.1016/j.reprotox.2020.12.013. PubMed DOI PMC

Ash P.E.A., Stanford E.A., Al Abdulatif A., Ramirez-Cardenas A., Balance H.I., Boudeau S., Jeh A., Murithi J.M., Tripodis Y., Murphy G.J., et al. Dioxins and related environmental contaminants increase TDP-43 levels. Mol. Neurodegener. 2017;12:35. doi: 10.1186/s13024-017-0177-9. PubMed DOI PMC

Bailon-Moscoso N., Cevallos-Solorzano G., Romero-Benavides J.C., Orellana M.I. Natural compounds as modulators of cell cycle arrest: Application for anticancer chemotherapies. Curr. Genom. 2017;18:106–131. doi: 10.2174/1389202917666160808125645. PubMed DOI PMC

Avilla M.N., Malecki K.M.C., Hahn M.E., Wilson R.H., Bradfield C.A. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem. Res. Toxicol. 2020;33:860–879. doi: 10.1021/acs.chemrestox.9b00476. PubMed DOI PMC

Gomez-Zepeda D., Taghi M., Scherrmann J.M., Decleves X., Menet M.C. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics. 2019;12:20. doi: 10.3390/pharmaceutics12010020. PubMed DOI PMC

Liu Y., Chen Y., Zhu R., Xu L., Xie H.Q., Zhao B. Rutaecarpine Inhibits U87 Glioblastoma Cell Migration by Activating the Aryl Hydrocarbon Receptor Pathway. Front. Mol. Neurosci. 2021;14:765712. doi: 10.3389/fnmol.2021.765712. PubMed DOI PMC

Chang C.C., Lee P.S., Chou Y., Hwang L.L., Juan S.H. Mediating effects of aryl-hydrocarbon receptor and RhoA in altering brain vascular integrity: The therapeutic potential of statins. Am. J. Pathol. 2012;181:211–221. doi: 10.1016/j.ajpath.2012.03.032. PubMed DOI

Iqbal K., Pierce S.H., Kozai K., Dhakal P., Scott R.L., Roby K.F., Vyhlidal C.A., Soares M.J. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. Environ. Health Perspect. 2021;129:117001. doi: 10.1289/EHP9256. PubMed DOI PMC

Zaragoza-Ojeda M., Apatiga-Vega E., Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications. Oncol. Lett. 2021;21:460. doi: 10.3892/ol.2021.12721. PubMed DOI PMC

Ishihara Y., Kado S.Y., Bein K.J., He Y., Pouraryan A.A., Urban A., Haarmann-Stemmann T., Sweeney C., Vogel C.F.A. Aryl Hydrocarbon Receptor Synergizes with TLR/NF-κB- for Induction of IL-22 Through Canonical and Non-Canonical AhR Pathways. Front. Toxicol. 2022;3:787360. doi: 10.3389/ftox.2021.787360. PubMed DOI PMC

Desaulniers D., Xiao G.H., Leingartner K., Chu I., Musicki B., Tsang B.K. Comparisons of brain, uterus, and liver mRNA expression for cytochrome p450s, DNA methyltransferase-1, and catechol-omethyltransferase in prepubertal female Sprague-Dawley rats exposed to a mixture of aryl hydrocarbon receptor agonists. Toxicol. Sci. Off. J. Soc. Toxicol. 2005;86:175–184. doi: 10.1093/toxsci/kfi178. PubMed DOI

Galijatovic A., Beaton D., Nguyen N. The human CYP1A1 gene is regulated in a developmental and tissue-specific fashion in transgenic mice. J. Biol. Chem. 2004;275:23969–23976. doi: 10.1074/jbc.M400973200. PubMed DOI

Anwar-Mohamed A., Abdelhamid G., Amara I.E., El-Kadi A.O. Differential modulation of cytochrome P450 1a1 by arsenite in vivo and in vitro in C57BL/6 mice. Free Radic. Biol. Med. 2013;58:52–63. doi: 10.1016/j.freeradbiomed.2013.01.012. PubMed DOI

Yun C.H., Park H.J., Kim S.J., Kim H.K. Identification of cytochrome P450 1A1 in human brain. Biochem. Biophys. Res. Commun. 1998;243:808–810. doi: 10.1006/bbrc.1998.8171. PubMed DOI

McMillan D.M., Tyndale R.F. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol. Ther. 2018;184:189–200. doi: 10.1016/j.pharmthera.2017.10.008. PubMed DOI

Consiglio E.D., Pistollato F., Gyves E.M., Bal-Price A., Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards al and glial cells. Reprod. Toxicol. 2020;98:174–188. doi: 10.1016/j.reprotox.2020.09.010. PubMed DOI PMC

Tripathi V.K., Kumar V., Singh A.K. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells. PLoS ONE. 2014;9:e91946. doi: 10.1371/journal.pone.0091946. PubMed DOI PMC

Latchney S.E., Majewska A.K. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev. Neuorobiol. 2021;81:623–652. doi: 10.1002/dneu.22825. PubMed DOI PMC

Wu M.L., Li H., Wu D.C. CYP1A1 and CYP1B1 expressions in medulloblastoma cells are AhR independent and have no direct link with resveratrol-induced differentiation and apoptosis. Neurosci. Lett. 2005;384:33–37. doi: 10.1016/j.neulet.2005.04.055. PubMed DOI

Re D.B., Yan B., Calderón-Garcidueñas L., Andrew A.S., Tischbein M., Stommel E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol. 2022;269:2359–2377. doi: 10.1007/s00415-021-10928-5. PubMed DOI PMC

Su F.C., Goutman S.A., Chernyak S., Mukherjee B., Callaghan B.C., Batterman S., Feldman E.L. Association of Environmental Toxins with Amyotrophic Lateral Sclerosis. JAMA Neurol. 2016;73:803–811. doi: 10.1001/jamaneurol.2016.0594. PubMed DOI PMC

Ames J., Warner M., Siracusa C., Signorini S., Brambilla P., Mocarelli P., Eskenazi B. Prenatal dioxin exposure and neuropsychological functioning in the Seveso Second Generation Health Study. Int. J. Hyg. Environ. Health. 2019;222:425–433. doi: 10.1016/j.ijheh.2018.12.009. PubMed DOI PMC

Perera F.P., Rauh V., Whyatt R.M. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ. Health Perspect. 2006;114:1287–1292. doi: 10.1289/ehp.9084. PubMed DOI PMC

Gu A., Ji G., Jiang T. Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts. Toxicol. Sci. Off. J. Soc. Toxicol. 2012;128:357–364. doi: 10.1093/toxsci/kfs158. PubMed DOI

Chevallier A., Mialot A., Petit J.M. Oculomotor deficits in aryl hydrocarbon receptor null mouse. PLoS ONE. 2013;8:e53520. doi: 10.1371/journal.pone.0053520. PubMed DOI PMC

Moran T.B., Brannick K.E., Raetzman L.T. Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary. Toxicol. Appl. Pharmacol. 2012;265:139–145. doi: 10.1016/j.taap.2012.08.026. PubMed DOI PMC

Collins L.L., Williamson M.A., Thompson B.D., Dever D.P., Gasiewicz T.A., Opanashuk L.A. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule precursor maturation in the developing mouse cerebellum. Toxicol. Sci. Off. J. Soc. Toxicol. 2008;103:125–136. doi: 10.1093/toxsci/kfn017. PubMed DOI

Juricek L., Coumoul X. The Aryl Hydrocarbon Receptor and the Nervous System. Int. J. Mol. Sci. 2018;19:2504. doi: 10.3390/ijms19092504. PubMed DOI PMC

Dever D.P., Adham Z.O., Thompson B., Genestine M., Cherry J., Olschowka J.A., DiCicco-Bloom E., Opanashuk L.A. Aryl hydrocarbon receptor deletion in cerebellar granule precursors impairs neurogenesis. Dev. Neurobiol. 2015;76:533–550. doi: 10.1002/dneu.22330. PubMed DOI PMC

DiNatale B.C., Murray I.A., Schroeder J.C., Flaveny C.A., Lahoti T.S., Laurenzana E.M., Omiecinski C.J., Perdew G.H. Kynurenic Acid Is a Potent Endogenous Aryl Hydrocarbon Receptor Ligand that Synergistically Induces Interleukin-6 in the Presence of Inflammatory. Toxicol. Sci. 2010;115:89–97. doi: 10.1093/toxsci/kfq024. PubMed DOI PMC

Nguyen L.P., Bradfield C.A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 2008;21:102–116. doi: 10.1021/tx7001965. PubMed DOI PMC

Mezrich J.D., Fechner J.H., Zhang X., Johnson B.P., Burlingham W.J., Bradfield C.A. An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells. J. Immunol. 2010;185:3190–3198. doi: 10.4049/jimmunol.0903670. PubMed DOI PMC

Stone T.W., Stoy N., Darlington L.G. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 2013;34:136–143. doi: 10.1016/j.tips.2012.09.006. PubMed DOI

Napolitano M., Fabbrocini G., Martora F., Picone V., Morelli P., Patruno C. Role of Aryl Hydrocarbon Receptor Activation in Inflammatory Chronic Skin Diseases. Cells. 2021;10:3559. doi: 10.3390/cells10123559. PubMed DOI PMC

Imran S., Ferretti P., Vrzal R. Different regulation of aryl hydrocarbon receptor-regulated genes in response to dioxin in undifferentiated and ally differentiated human neuroblastoma SHSY5Y cells. Toxicol. Mech. Methods. 2015;25:689–697. doi: 10.3109/15376516.2015.1070227. PubMed DOI

Hu B.Y., Zhang S.C. Differentiation of spinal motor s from pluripotent human stem cells. Nat. Protoc. 2009;4:1295–1304. doi: 10.1038/nprot.2009.127. PubMed DOI PMC

Semkova V., Haupt S., Segschneider M., Bell C., Ingelman-Sundberg M., Hajo M., Weykopf B., Muthukottiappan P., Till A., Brüstle O. Dynamics of Metabolic Pathways and Stress Response Patterns during Human Neural Stem Cell Proliferation and Differentiation. Cells. 2022;11:1388. doi: 10.3390/cells11091388. PubMed DOI PMC

Walczak K., Langner E., Makuch-Kocka A., Szelest M., Szalast K., Marciniak S., Tomasz P. Effect of Tryptophan-Derived AhR Ligands, Kynurenine, Kynurenic Acid and FICZ, on Proliferation, Cell Cycle Regulation and Cell Death of Melanoma Cells—In Vitro Studies. Int. J. Mol. Sci. 2020;21:7946. doi: 10.3390/ijms21217946. PubMed DOI PMC

Jin J., Wahlang B., Thapa M., Head K.Z., Hardesty J.E., Srivastava S., Merchant M.L., Rai S.N., Prough R.A., Cave M.C. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharm. Sin. B. 2021;11:3806–3819. doi: 10.1016/j.apsb.2021.10.014. PubMed DOI PMC

Teino I., Matvere A., Pook M., Varik I., Pajusaar L., Uudeküll K., Vaher H., Trei A., Kristjuhan A., Org T., et al. Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation. Int. J. Mol. Sci. 2020;21:9052. doi: 10.3390/ijms21239052. PubMed DOI PMC

Hao N., Bhakti V.L., Peet D.J., Whitelaw M.L. Reciprocal regulation of the basic helix-loop-helix/Per-Arnt-Sim partner proteins, Arnt and Arnt2, during al differentiation. Nucle Acids Res. 2013;41:5626–5638. doi: 10.1093/nar/gkt206. PubMed DOI PMC

Sadowska A., Paukszto L., Nynca A., Szczerbal I., Orlowska K., Swigonska S., Ruszkowska M., Molcan T., Jastrzebski J.P., Panasiewicz G., et al. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes. J. Genet. 2017;96:75–85. doi: 10.1007/s12041-017-0745-3. PubMed DOI

Xie H.Q., Xu H.M., Fu H.L., Hu Q., Tian W.J., Pei X.H., Zhao B. AhR-mediated effects of dioxin on al acetylcholinesterase expression in vitro. Environ. Health Perspect. 2013;121:613–618. doi: 10.1289/ehp.1206066. PubMed DOI PMC

Lidin E., Sköld M.K., Angéria M., Davidsson J., Risling M. Hippocampal Expression of Cytochrome P450 1B1 in Penetrating Traumatic Brain Injury. Int. J. Mol. Sci. 2022;23:722. doi: 10.3390/ijms23020722. PubMed DOI PMC

Farin F.M., Omiecinski C.J. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J. Toxicol. Environ. Health. 1993;40:317–335. doi: 10.1080/15287399309531797. PubMed DOI

D’Uva G., Baci D., Albini A., Noonan D.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat. Rev. 2018;63:1–18. doi: 10.1016/j.ctrv.2017.10.013. PubMed DOI

Jacob A., Hartz A.M., Potin S. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1by TCDD and diesel exhaust particles in rat brain microvessels. Fluids Barriers CNS. 2011;8:23. doi: 10.1186/2045-8118-8-23. PubMed DOI PMC

Wincent E., Bengtsson J., Bardbori A.M., Alsberg T., Luecke S., Rannug U., Rannug A. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Biol. Sci. 2012;9:4479–4484. doi: 10.1073/pnas.1118467109. PubMed DOI PMC

Hua Y., Yoshimochi K., Li J., Takekita K., Shimotsuma M., Li L., Qu X., Zhang J., Sawa Y., Liu L., et al. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res. Ther. 2022;13:223. doi: 10.1186/s13287-022-02879-z. PubMed DOI PMC

Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI

Kriska J., Janeckova L., Kirdajova D., Honsa P., Knotek T., Dzamba D., Kolenicova D., Butenko O., Vojtechova M., Capek M., et al. Wnt/β-Catenin Promotes Differentiation of Ischemia-Activated Adult Neural Stem/Progenitor Cells to al Precursors. Front. Neurosci. 2021;15:628983. doi: 10.3389/fnins.2021.628983. PubMed DOI PMC

Forostyak S., Forostyak O., Kwok J.C.F., Romanyuk N., Rehorova M., Kriska J., Dayanithi G., Raha-Chowdhury R., Jendelova P., Anderova M., et al. Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perial Nets and Stimulate Neural Plasticity in ALS Rats. Int. J. Mol. Sci. 2020;21:9593. doi: 10.3390/ijms21249593. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...