• This record comes from PubMed

Polymer/Layered Clay/Polyurethane Nanocomposites: P3HB Hybrid Nanobiocomposites-Preparation and Properties Evaluation

. 2023 Jan 04 ; 13 (2) : . [epub] 20230104

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This paper presents an attempt to improve the properties of poly(3-hydroxybutyrate) (P3HB) using linear aliphatic polyurethane (PU400) and organomodified montmorillonite (MMT)-(Cloisite®30B). The nanostructure of hybrid nanobiocomposites produced by extrusion was analyzed by X-ray diffraction and transmission electron microscopy, and the morphology was analyzed by scanning electron microscopy. In addition, selected mechanical properties and thermal properties were studied by thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC. The interactions of the composite ingredients were indicated by FT IR spectroscopy. The effect of the amount of nanofiller on the properties of prepared hybrid nanobiocomposites was noted. Moreover, the non-equilibrium and equilibrium thermal parameters of nanobiocomposites were established based on their thermal history. Based on equilibrium parameters (i.e., the heat of fusion for the fully crystalline materials and the change in the heat capacity at the glass transition temperature for the fully amorphous nanobiocomposites), the degree of crystallinity and the mobile and rigid amorphous fractions were estimated. The addition of Cloisite®30B and aliphatic polyurethane to the P3HB matrix caused a decrease in the degree of crystallinity in reference to the unfilled P3HB. Simultaneously, an increase in the amorphous phase contents was noted. A rigid amorphous fraction was also denoted. Thermogravimetric analysis of the nanocomposites was also carried out and showed that the thermal stability of all nanocomposites was higher than that of the unfilled P3HB. An additional 1% mass of nanofiller increased the degradation temperature of the nanocomposites by about 30 °C in reference to the unfilled P3HB. Moreover, it was found that obtained hybrid nanobiocomposites containing 10 wt.% of aliphatic polyurethane (PU400) and the smallest amount of nanofiller (1 wt.% of Cloisite®30B) showed the best mechanical properties. We observed a desirable decrease in hardness of 15%, an increase in the relative strain at break of 60% and in the impact strength of 15% of the newly prepared nanobiocomposites with respect to the unfiled P3HB. The produced hybrid nanobiocomposites combined the best features induced by the plasticizing effect of polyurethane and the formation of P3HB-montmorillonite-polyurethane (P3HB-PU-MMT) adducts, which resulted in the improvement of the thermal and mechanical properties.

See more in PubMed

Rhim J.-W., Park H.-M., Ha C.-S. Bionanocomposities for food packaging applications. Prog. Polym. Sci. 2013;38:1629–1652. doi: 10.1016/j.progpolymsci.2013.05.008. DOI

Bhardwaj R., Mohanty A.K., Drzal L.T., Pourboghrat F., Misra M. Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic. Biomacromolecules. 2006;7:2044. doi: 10.1021/bm050897y. PubMed DOI

Mehrotra S., Chouhan D., Konwarh R., Kumar M., Jadi P.K., Mandal B.B. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater. Sci. Eng. 2019;5:2054–2078. doi: 10.1021/acsbiomaterials.8b01560. PubMed DOI

Chen G.Q., Wu Q. The application of polyhydroxyalcanoates as tissue engineering materials Biomaterials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI

Demirbas A. Biodegradable Plastics from Renewable Resources Energ. Source Part A. 2007;29:419. doi: 10.1080/009083190965820. DOI

Franchetti S.M., Marconato J.C. Biodegradable polymers—A partial way for decreasing the amount of plastic waste. Quim. Nova. 2006;29:811. doi: 10.1590/S0100-40422006000400031. DOI

Freier T. Biopolyesters in Tissue Engineering Applications. Adv. Polym. Sci. 2006;203:1–61.

Ikada Y., Tsuji H. Biodegradable polyesters for medical and ecological applications Macromol. Rapid Commun. 2000;21:117. doi: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X. DOI

Koller M., Salerno A., Muhr A., Reiterer A., Braunegg G. Polyhydroxyalkanoates: Biodegradable Polymeric Materials from Renewable Resources. Mater. Technol. 2013;47:5.

Insomphun C., Chuah J.-A., Kobayashi S., Fujiki T., Numata K. Influence of Hydroxyl Groups on the Cell Viability of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2017;3:3064–3075. doi: 10.1021/acsbiomaterials.6b00279. PubMed DOI

Lenz R.W., Marchessault R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI

Kaniuk U.Ł. Stachewicz, Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater. Sci. Eng. 2021;7:5339–5362. doi: 10.1021/acsbiomaterials.1c00757. PubMed DOI PMC

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Philip S., Keshavarz T., Roy I. Review Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI

Reddy C.S.K., Ghai R., Rashmi, Kalia V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003;87:137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI

Marcano A., Haidar N.B., Marais S., Valleton J.-M., Duncan A.C. Designing Biodegradable PHA-Based 3D Scaffolds with Antibiofilm Properties for Wound Dressings: Optimization of the Microstructure/Nanostructure. ACS Biomater. Sci. Eng. 2017;3:3654–3661. doi: 10.1021/acsbiomaterials.7b00552. PubMed DOI

Wu Q., Wang Y., Chen G.Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates Artif. Cell Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI

Dias Y.J., Robles J.R., Sinha-Ray S., Abiade J., Pourdeyhimi B., Niemczyk-Soczynska B., Kolbuk D., Sajkiewicz P., Yarin A.L. Solution-Blown Poly(hydroxybutyrate) and ε-Poly-l-lysine Submicro- and Microfiber-Based Sustainable Nonwovens with Antimicrobial Activity for Single-Use Applications. ACS Biomater. Sci. Eng. 2021;7:3980–3992. doi: 10.1021/acsbiomaterials.1c00594. PubMed DOI

Matsumoto K., Shiba T., Hiraide Y., Taguchi S. Incorporation of Glycolate Units Promotes Hydrolytic Degradation in Flexible Poly(glycolate-co-3-hydroxybutyrate) Synthesized by Engineered Escherichia coli. ACS Biomater. Sci. Eng. 2017;3:3058–3063. doi: 10.1021/acsbiomaterials.6b00194. PubMed DOI

Flechter A. Plastics from Bacteria and for Bacteria: PHA as Natural, Biodegradable Polyesters. Volume 6. Springer; New York, NY, USA: 1993. pp. 77–93.

Leja K., Lewandowicz G. Polymer biodegradation and biodegradable polymers—A review. Polish J. Environ. Stud. 2010;19:255–266.

Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI

Poli A., Di Donato P., Abbamondi G.R., Nicolaus B. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates. Archaea. 2011:1–13. doi: 10.1155/2011/693253. PubMed DOI PMC

Pan P., Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009;34:605–640. doi: 10.1016/j.progpolymsci.2009.01.003. DOI

Yokouchi M., Chatani Y., Tadokoro H., Teranishi K., Tani H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate) Polymer. 1973;14:267–272. doi: 10.1016/0032-3861(73)90087-6. DOI

Gain O., Espuche E., Pollet E., Alexandre M., Dubois P. Gas barrier properties of poly(3-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions. J. Polym. Sci. Part B Polym. Phys. 2005;43:205–214. doi: 10.1002/polb.20316. DOI

Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polym. Degrad. Stab. 1984;6:127–134. doi: 10.1016/0141-3910(84)90032-6. DOI

Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 1—Identification and quantitative analysis of products. Polym. Degrad Stab. 1984;6:47–61. doi: 10.1016/0141-3910(84)90016-8. DOI

Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 2—Changes in molecular weight. Polym. Degrad Stab. 1984;6:95–103. doi: 10.1016/0141-3910(84)90075-2. DOI

Rivera-Briso A., Serrano-Aroca Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers. 2018;10:732. doi: 10.3390/polym10070732. PubMed DOI PMC

de Oliveira A.D., Beatrice C.A.G. Polymer Nanocomposites with Different Types of Nanofiller, Polymer Nanocomposites—Recent Evolutions. IntechOpen; Rijeka, Croatia: 2019. p. 26.

Rajapaksha A.U., Vithanage M. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Elsevier; Amsterdam, The Netherlands: 2019.

Akpan E.I., Shen X., Wetzel B., Friedrich K. Design and Synthesis of Polymer Nanocomposite in Polymer Composites with Functionalized Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2018. pp. 47–83.

Mozumder M.S., Mairpady A., Mourad A.H.I. Polymeric nanobiocomposites for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105:1241–1259. doi: 10.1002/jbm.b.33633. PubMed DOI

Hasan K.M.F., Horvath P.G., Alpar T. Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers. 2020;12:1072. doi: 10.3390/polym12051072. PubMed DOI PMC

Zarzyka I., Czerniecka-Kubicka A., Hęclik K., Dobrowolski D., Pyda M., Leś K., Walczak M., Białkowska A., Bakar M. Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes—Preparation and properties. Acta Bioeng. Biomech. 2021;23:1–15. doi: 10.37190/ABB-01782-2021-05. PubMed DOI

Wunderlich B. Thermal Analysis of Polymeric Materials. Springer; Berlin/Heidelberg, Germany: 2005.

Czerniecka-Kubicka A., Zarzyka I., Pyda M. Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity. J. Therm. Anal. Calorim. 2017;127:905–914. doi: 10.1007/s10973-016-5903-y. DOI

Czerniecka-Kubicka A., Frącz W., Jasiorski M., Pilch-Pitera B., Pyda M., Zarzyka I. Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J. Therm. Anal. Calorim. 2017;128:1513–1526. doi: 10.1007/s10973-016-6039-9. DOI

Garcia-Quiles L., Cuello A.F., Castell P. Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite. Polymers. 2019;11:696–714. doi: 10.3390/polym11040696. PubMed DOI PMC

Naguib H.F., Aziz M.S., Saad G.R. Effect of organo-modified montmorillonite on thermal properties of bacterial poly (3-hydroxybutyrate) Polym.-Plast. Technol. Eng. 2014;53:90–96. doi: 10.1080/03602559.2013.843693. DOI

Corre Y.M., Bruzaud S., Audic J.L., Grohens Y. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polym. Test. 2012;31:226–235. doi: 10.1016/j.polymertesting.2011.11.002. DOI

Thiré R.M., Arruda L.C., Barreto L.S. Morphology and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/attapulgite nanocomposites. Mater. Res. 2011;14:340–344. doi: 10.1590/S1516-14392011005000046. DOI

Czerniecka-Kubicka A., Skotnicki M., Zarzyka I., Lovecka L., Maternia-Dudzik K., Kovarova M., Sedlarik V., Tutka P., Pyda M. The cytisine-enriched poly(3-hydroxybutyrate) fine fibers as a starting product for the production of a new dosage form of cytisine with sustained release. Int. J. Biol. Macromol. 2021 in review . PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...