Polymer/Layered Clay/Polyurethane Nanocomposites: P3HB Hybrid Nanobiocomposites-Preparation and Properties Evaluation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36677979
PubMed Central
PMC9861881
DOI
10.3390/nano13020225
PII: nano13020225
Knihovny.cz E-resources
- Keywords
- aliphatic polyurethane, modified montmorillonite, nanobiocomposites, nanoclay, polyalcanoates, properties modification,
- Publication type
- Journal Article MeSH
This paper presents an attempt to improve the properties of poly(3-hydroxybutyrate) (P3HB) using linear aliphatic polyurethane (PU400) and organomodified montmorillonite (MMT)-(Cloisite®30B). The nanostructure of hybrid nanobiocomposites produced by extrusion was analyzed by X-ray diffraction and transmission electron microscopy, and the morphology was analyzed by scanning electron microscopy. In addition, selected mechanical properties and thermal properties were studied by thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC. The interactions of the composite ingredients were indicated by FT IR spectroscopy. The effect of the amount of nanofiller on the properties of prepared hybrid nanobiocomposites was noted. Moreover, the non-equilibrium and equilibrium thermal parameters of nanobiocomposites were established based on their thermal history. Based on equilibrium parameters (i.e., the heat of fusion for the fully crystalline materials and the change in the heat capacity at the glass transition temperature for the fully amorphous nanobiocomposites), the degree of crystallinity and the mobile and rigid amorphous fractions were estimated. The addition of Cloisite®30B and aliphatic polyurethane to the P3HB matrix caused a decrease in the degree of crystallinity in reference to the unfilled P3HB. Simultaneously, an increase in the amorphous phase contents was noted. A rigid amorphous fraction was also denoted. Thermogravimetric analysis of the nanocomposites was also carried out and showed that the thermal stability of all nanocomposites was higher than that of the unfilled P3HB. An additional 1% mass of nanofiller increased the degradation temperature of the nanocomposites by about 30 °C in reference to the unfilled P3HB. Moreover, it was found that obtained hybrid nanobiocomposites containing 10 wt.% of aliphatic polyurethane (PU400) and the smallest amount of nanofiller (1 wt.% of Cloisite®30B) showed the best mechanical properties. We observed a desirable decrease in hardness of 15%, an increase in the relative strain at break of 60% and in the impact strength of 15% of the newly prepared nanobiocomposites with respect to the unfiled P3HB. The produced hybrid nanobiocomposites combined the best features induced by the plasticizing effect of polyurethane and the formation of P3HB-montmorillonite-polyurethane (P3HB-PU-MMT) adducts, which resulted in the improvement of the thermal and mechanical properties.
See more in PubMed
Rhim J.-W., Park H.-M., Ha C.-S. Bionanocomposities for food packaging applications. Prog. Polym. Sci. 2013;38:1629–1652. doi: 10.1016/j.progpolymsci.2013.05.008. DOI
Bhardwaj R., Mohanty A.K., Drzal L.T., Pourboghrat F., Misra M. Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic. Biomacromolecules. 2006;7:2044. doi: 10.1021/bm050897y. PubMed DOI
Mehrotra S., Chouhan D., Konwarh R., Kumar M., Jadi P.K., Mandal B.B. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater. Sci. Eng. 2019;5:2054–2078. doi: 10.1021/acsbiomaterials.8b01560. PubMed DOI
Chen G.Q., Wu Q. The application of polyhydroxyalcanoates as tissue engineering materials Biomaterials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI
Demirbas A. Biodegradable Plastics from Renewable Resources Energ. Source Part A. 2007;29:419. doi: 10.1080/009083190965820. DOI
Franchetti S.M., Marconato J.C. Biodegradable polymers—A partial way for decreasing the amount of plastic waste. Quim. Nova. 2006;29:811. doi: 10.1590/S0100-40422006000400031. DOI
Freier T. Biopolyesters in Tissue Engineering Applications. Adv. Polym. Sci. 2006;203:1–61.
Ikada Y., Tsuji H. Biodegradable polyesters for medical and ecological applications Macromol. Rapid Commun. 2000;21:117. doi: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X. DOI
Koller M., Salerno A., Muhr A., Reiterer A., Braunegg G. Polyhydroxyalkanoates: Biodegradable Polymeric Materials from Renewable Resources. Mater. Technol. 2013;47:5.
Insomphun C., Chuah J.-A., Kobayashi S., Fujiki T., Numata K. Influence of Hydroxyl Groups on the Cell Viability of Polyhydroxyalkanoate (PHA) Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2017;3:3064–3075. doi: 10.1021/acsbiomaterials.6b00279. PubMed DOI
Lenz R.W., Marchessault R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI
Kaniuk U.Ł. Stachewicz, Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater. Sci. Eng. 2021;7:5339–5362. doi: 10.1021/acsbiomaterials.1c00757. PubMed DOI PMC
Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI
Philip S., Keshavarz T., Roy I. Review Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI
Reddy C.S.K., Ghai R., Rashmi, Kalia V.C. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003;87:137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI
Marcano A., Haidar N.B., Marais S., Valleton J.-M., Duncan A.C. Designing Biodegradable PHA-Based 3D Scaffolds with Antibiofilm Properties for Wound Dressings: Optimization of the Microstructure/Nanostructure. ACS Biomater. Sci. Eng. 2017;3:3654–3661. doi: 10.1021/acsbiomaterials.7b00552. PubMed DOI
Wu Q., Wang Y., Chen G.Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates Artif. Cell Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI
Dias Y.J., Robles J.R., Sinha-Ray S., Abiade J., Pourdeyhimi B., Niemczyk-Soczynska B., Kolbuk D., Sajkiewicz P., Yarin A.L. Solution-Blown Poly(hydroxybutyrate) and ε-Poly-l-lysine Submicro- and Microfiber-Based Sustainable Nonwovens with Antimicrobial Activity for Single-Use Applications. ACS Biomater. Sci. Eng. 2021;7:3980–3992. doi: 10.1021/acsbiomaterials.1c00594. PubMed DOI
Matsumoto K., Shiba T., Hiraide Y., Taguchi S. Incorporation of Glycolate Units Promotes Hydrolytic Degradation in Flexible Poly(glycolate-co-3-hydroxybutyrate) Synthesized by Engineered Escherichia coli. ACS Biomater. Sci. Eng. 2017;3:3058–3063. doi: 10.1021/acsbiomaterials.6b00194. PubMed DOI
Flechter A. Plastics from Bacteria and for Bacteria: PHA as Natural, Biodegradable Polyesters. Volume 6. Springer; New York, NY, USA: 1993. pp. 77–93.
Leja K., Lewandowicz G. Polymer biodegradation and biodegradable polymers—A review. Polish J. Environ. Stud. 2010;19:255–266.
Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI
Poli A., Di Donato P., Abbamondi G.R., Nicolaus B. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates. Archaea. 2011:1–13. doi: 10.1155/2011/693253. PubMed DOI PMC
Pan P., Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 2009;34:605–640. doi: 10.1016/j.progpolymsci.2009.01.003. DOI
Yokouchi M., Chatani Y., Tadokoro H., Teranishi K., Tani H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate) Polymer. 1973;14:267–272. doi: 10.1016/0032-3861(73)90087-6. DOI
Gain O., Espuche E., Pollet E., Alexandre M., Dubois P. Gas barrier properties of poly(3-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions. J. Polym. Sci. Part B Polym. Phys. 2005;43:205–214. doi: 10.1002/polb.20316. DOI
Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polym. Degrad. Stab. 1984;6:127–134. doi: 10.1016/0141-3910(84)90032-6. DOI
Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 1—Identification and quantitative analysis of products. Polym. Degrad Stab. 1984;6:47–61. doi: 10.1016/0141-3910(84)90016-8. DOI
Grassie N., Murray E.J., Holmes P.A. Thermal degradation of poly(-(D)-β-hydroxybutyric acid): Part 2—Changes in molecular weight. Polym. Degrad Stab. 1984;6:95–103. doi: 10.1016/0141-3910(84)90075-2. DOI
Rivera-Briso A., Serrano-Aroca Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers. 2018;10:732. doi: 10.3390/polym10070732. PubMed DOI PMC
de Oliveira A.D., Beatrice C.A.G. Polymer Nanocomposites with Different Types of Nanofiller, Polymer Nanocomposites—Recent Evolutions. IntechOpen; Rijeka, Croatia: 2019. p. 26.
Rajapaksha A.U., Vithanage M. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Elsevier; Amsterdam, The Netherlands: 2019.
Akpan E.I., Shen X., Wetzel B., Friedrich K. Design and Synthesis of Polymer Nanocomposite in Polymer Composites with Functionalized Nanoparticles. Elsevier; Amsterdam, The Netherlands: 2018. pp. 47–83.
Mozumder M.S., Mairpady A., Mourad A.H.I. Polymeric nanobiocomposites for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105:1241–1259. doi: 10.1002/jbm.b.33633. PubMed DOI
Hasan K.M.F., Horvath P.G., Alpar T. Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers. 2020;12:1072. doi: 10.3390/polym12051072. PubMed DOI PMC
Zarzyka I., Czerniecka-Kubicka A., Hęclik K., Dobrowolski D., Pyda M., Leś K., Walczak M., Białkowska A., Bakar M. Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes—Preparation and properties. Acta Bioeng. Biomech. 2021;23:1–15. doi: 10.37190/ABB-01782-2021-05. PubMed DOI
Wunderlich B. Thermal Analysis of Polymeric Materials. Springer; Berlin/Heidelberg, Germany: 2005.
Czerniecka-Kubicka A., Zarzyka I., Pyda M. Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity. J. Therm. Anal. Calorim. 2017;127:905–914. doi: 10.1007/s10973-016-5903-y. DOI
Czerniecka-Kubicka A., Frącz W., Jasiorski M., Pilch-Pitera B., Pyda M., Zarzyka I. Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay. J. Therm. Anal. Calorim. 2017;128:1513–1526. doi: 10.1007/s10973-016-6039-9. DOI
Garcia-Quiles L., Cuello A.F., Castell P. Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite. Polymers. 2019;11:696–714. doi: 10.3390/polym11040696. PubMed DOI PMC
Naguib H.F., Aziz M.S., Saad G.R. Effect of organo-modified montmorillonite on thermal properties of bacterial poly (3-hydroxybutyrate) Polym.-Plast. Technol. Eng. 2014;53:90–96. doi: 10.1080/03602559.2013.843693. DOI
Corre Y.M., Bruzaud S., Audic J.L., Grohens Y. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polym. Test. 2012;31:226–235. doi: 10.1016/j.polymertesting.2011.11.002. DOI
Thiré R.M., Arruda L.C., Barreto L.S. Morphology and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/attapulgite nanocomposites. Mater. Res. 2011;14:340–344. doi: 10.1590/S1516-14392011005000046. DOI
Czerniecka-Kubicka A., Skotnicki M., Zarzyka I., Lovecka L., Maternia-Dudzik K., Kovarova M., Sedlarik V., Tutka P., Pyda M. The cytisine-enriched poly(3-hydroxybutyrate) fine fibers as a starting product for the production of a new dosage form of cytisine with sustained release. Int. J. Biol. Macromol. 2021 in review . PubMed